Preview only show first 10 pages with watermark. For full document please download

Ir Irg4bc10sdpbf (71-252-30)

   EMBED


Share

Transcript

PD -91784B IRG4BC10SD Standard Speed CoPack IGBT INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features C • Extremely low voltage drop 1.1Vtyp. @ 2A • S-Series: Minimizes power dissipation at up to 3 KHz PWM frequency in inverter drives, up to 4 KHz in brushless DC drives. • Very Tight Vce(on) distribution • IGBT co-packaged with HEXFREDTM ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations • Industry standard TO-220AB package VCES = 600V VCE(on) typ. = 1.10V G @VGE = 15V, IC = 2.0A E n-channel Benefits • Generation 4 IGBTs offer highest efficiencies available • IGBTs optimized for specific application conditions • HEXFRED diodes optimized for performance with IGBTs . Minimized recovery characteristics require less/no snubbing • Lower losses than MOSFET's conduction and Diode losses TO-220AB Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current  Clamped Inductive Load Current ‚ Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw. Max. Units 600 14 8.0 18 18 4.0 18 ± 20 38 15 -55 to +150 V A V W °C 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1 N•m) Thermal Resistance Parameter RθJC RθJC RθCS RθJA Wt www.irf.com Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight Min. Typ. Max. ––– ––– ––– ––– ––– ––– ––– 0.50 ––– 2.0(0.07) 3.3 7.0 ––– 80 ––– Units °C/W g (oz) 1 07/04/07 IRG4BC10SD Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Parameter Min. Typ. Collector-to-Emitter Breakdown Voltageƒ 600 — Temperature Coeff. of Breakdown Voltage — 0.64 Collector-to-Emitter Saturation Voltage — 1.58 — 2.05 — 1.68 Gate Threshold Voltage 3.0 — Temperature Coeff. of Threshold Voltage — -9.5 Forward Transconductance„ 3.65 5.48 Zero Gate Voltage Collector Current — — — — Diode Forward Voltage Drop — 1.5 — 1.4 Gate-to-Emitter Leakage Current — — Max. Units Conditions — V VGE = 0V, IC = 250µA — V/°C VGE = 0V, IC = 1.0mA 1.8 IC = 8.0A VGE = 15V — V IC = 14.0A See Fig. 2, 5 — IC = 8.0A, TJ = 150°C 6.0 VCE = VGE, IC = 250µA — mV/°C VCE = VGE, IC = 250µA — S VCE = 100V, IC =8.0A 250 µA VGE = 0V, VCE = 600V 1000 VGE = 0V, VCE = 600V, TJ = 150°C 1.8 V IC =4.0A See Fig. 13 1.7 IC =4.0A, TJ = 150°C ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets Ets td(on) tr td(off) tf Ets LE Cies Coes Cres trr Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Irr Diode Peak Reverse Recovery Current Qrr Diode Reverse Recovery Charge di(rec)M/dt Diode Peak Rate of Fall of Recovery During tb Min. — — — — — — — — — — — — — — — — — — — — — — — — — — — — Typ. Max. Units 15 22 2.42 3.6 6.53 9.8 76 — 32 — 815 1200 720 1080 0.31 — 3.28 — 3.60 10.9 1.46 2.6 70 — 36 — 890 — 890 — 3.83 — 7.5 — 280 — 30 — 4.0 — 28 42 38 57 2.9 5.2 3.7 6.7 40 60 70 105 280 — 235 — nC ns mJ mJ ns mJ nH pF ns A nC A/µs Conditions IC = 8.0A VCC = 400V See Fig. 8 VGE = 15V TJ = 25°C IC = 8.0A, VCC = 480V VGE = 15V, RG = 100Ω Energy losses include "tail" and diode reverse recovery. See Fig. 9, 10, 18 IC = 5.0A TJ = 150°C, See Fig. 10,11, 18 IC = 8.0A, VCC = 480V VGE = 15V, RG = 100Ω Energy losses include "tail" and diode reverse recovery. Measured 5mm from package VGE = 0V VCC = 30V See Fig. 7 ƒ = 1.0MHz TJ = 25°C See Fig. 14 IF =4.0A TJ = 125°C TJ = 25°C See Fig. TJ = 125°C 15 VR = 200V TJ = 25°C See Fig. 16 di/dt = 200A/µs TJ = 125°C TJ = 25°C See Fig. TJ = 125°C 17 Details of note  through „ are on the last page 2 www.irf.com IRG4BC10SD 10.0 For both: Duty cycle: 50% TJ = 125°C Tsink = 90°C Gate drive as specified LOAD CURRENT (A) 8.0 Power Dissipation = 9.2 W 6.0 Square wave: 60% of rated voltage 4.0 I 2.0 Ideal diodes 0.0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 TJ = 25 °C TJ = 150 °C 10 1 0.5 V GE = 15V 80µs PULSE WIDTH 1.0 1.5 2.0 2.5 3.0 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com I C , Collector-to-Emitter Current (A) I C , Collector Current (A) 100 TJ = 150 °C 10 TJ = 25 °C 1 V CC = 50V 5µs 5µs PULSE PULSEWIDTH WIDTH 6 8 10 12 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4BC10SD 3.00 VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) 16 IC = 16 A 2.50 12 2.00 8 IC = 8A IC = 4A 1.50 4 0 VGE = 15V 80 us PULSE WIDTH 25 50 75 100 125 150 1.00 -60 -40 -20 Fig. 4 - Maximum Collector Current vs. Case Temperature 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( ° C) TC , Case Temperature ( °C) Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 0.1 0.01 0.00001 0.02 0.01 PDM SINGLE PULSE (THERMAL RESPONSE) t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4BC10SD VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc C, Capacitance (pF) 400 Cies 300 Coes 200 Cres 100 0 1 10 20 VGE , Gate-to-Emitter Voltage (V) 500 15 10 5 0 100 VCE , Collector-to-Emitter Voltage (V) Total Switching Losses (mJ) Total Switching Losses (mJ) 100 V CC = 480V V GE = 15V TJ = 25 °C 3.55 I C = 8A 3.50 3.45 3.40 3.35 20 40 60 80 RGRG, Gate , GateResistance Resistance (Ohm) (Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 5 10 15 20 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 3.60 0 0 QG , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 3.30 VCC = 400V I C = 8A 100 RG =100Ω Ohm VGE = 15V VCC = 480V IC = 16 A 10 IC = 8A IC = 4A 1 0.1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature (° C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4BC10SD 100 = 100 100 Ω = 150 ° C = 480V = 15V I C , Collector Current (A) RG TJ VCC 12 VGE 9 6 3 0 0 4 8 12 16 10 1 20 VGE = 20V T J = 125 oC SAFE OPERATING AREA 1 I C , Collector Current (A) 10 100 1000 VCE , Collector-to-Emitter Voltage (V) Fig. 11 - Typical Switching Losses vs. Collector Current Fig. 12 - Turn-Off SOA 100 Instantaneous Forward Current ( A ) Total Switching Losses (mJ) 15 TJ = 150°C 10 T = 125°C J T = 25°C J 1 0.1 0.0 1.0 2.0 3.0 4.0 5.0 6.0 Forward Voltage Voltage Drop Drop -- VVFM ((V) V) FM 6 Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current www.irf.com IRG4BC10SD 50 14 I F = 8.0A 45 12 I F = 4.0A 10 I F = 8.0A I F = 4.0A Irr- ( A) trr- (nC) 40 VR = 200V TJ = 125°C TJ = 25°C 35 8 6 30 4 25 2 VR = 200V TJ = 125°C TJ = 25°C 20 100 di f /dt - (A/µs) 0 100 1000 di f /dt - (A/µs) 1000 Fig. 15 - Typical Recovery Current vs. dif/dt Fig. 14 - Typical Reverse Recovery vs. dif/dt 200 1000 VR = 200V TJ = 125°C TJ = 25°C VR = 200V TJ = 125°C TJ = 25°C 160 I F = 8.0A di (rec) M/dt- (A /µs) I F = 4.0A Qrr- (nC) 120 I F = 8.0A 80 I F = 4.0A 40 0 100 di f /dt - (A/µs) 1000 Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com 100 100 A di f /dt - (A/µs) 1000 Fig. 17 - Typical di(rec)M/dt vs. dif/dt, 7 IRG4BC10SD Same type device as D.U.T. 430µF 80% of Vce 90% D.U.T. 10% Vge VC 90% td(off) 10% IC 5% Fig. 18a - Test Circuit for Measurement of tf tr ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t d(on) t=5µs Eon Eoff Ets = (Eon +Eoff ) Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf GATE VOLTAGE D.U.T. 10% +Vg trr Ic Qrr = +Vg tx 10% Irr 10% Vcc DUT VOLTAGE AND CURRENT Vce Vcc 10% Ic 90% Ic tr td(on) Ipk Vpk Vcc Irr Ic DIODE RECOVERY WAVEFORMS 5% Vce t1 ∫ t2 VceieIcdt dt Eon = Vce t1 t2 DIODE REVERSE RECOVERY ENERGY t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 trr id dt tx ∫ Ic dt ∫ t4 Erec = Vd VdidIcdt dt t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com IRG4BC10SD Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T. VOLTAGE IN D.U.T. CURRENT IN D1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit D.U.T. L 1000V Vc* RL = 0 - 480V 480V 4 X I C @25°C 50V 6000µF 100V Figure 19. Clamped Inductive Load Test Circuit www.irf.com Figure 20. Pulsed Collector Current Test Circuit 9 IRG4BC10SD Notes: Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) ‚VCC=80%(VCES), VGE=20V, L=10µH, RG = 100W (figure 19) ƒPulse width ≤ 80µs; duty factor ≤ 0.1%. „Pulse width 5.0µs, single shot. TO-220AB Package Outline (Dimensions are shown in millimeters (inches)) TO-220AB Part Marking Information (; $03/( 7+,6,6$ 1,5)   / 27&2'(  $ 66(0 %/('21::   ,17 +($ 66(0 %/</ ,1(& ,17(51$7,21$/ 3$ 57 180%(5 5(&7,),(5 /2*2 '$7(&2'( 1RWH3LQDVVH P EO\OLQH S RVLWLRQ LQG LFD WH V/HD G)UHH  $ 66(0 %/ < / 27&2'( <($5    :((.   /,1(& Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 07/2007 10 www.irf.com