Transcript
PD - 94082A
IRG4BC15UD UltraFast CoPack IGBT
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C
Features • UltraFast: Optimized for high frequencies from10 to 30 kHz in hard switching • IGBT Co-packaged with ultra-soft-recovery antiparallel diode • Industry standard TO-220AB package
VCES = 600V VCE(on) typ. = 2.02V
G
@VGE = 15V, IC = 7.8A
E
n-ch an nel
Benefits • Best Value for Appliance and Industrial Applications • High noise immune "Positive Only" gate driveNegative bias gate drive not necessary • For Low EMI designs- requires little or no snubbing • Single Package switch for bridge circuit applications • Compatible with high voltage Gate Driver IC's • Allows simpler gate drive
TO-220AB
Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG
Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw.
Max.
Units
600 14 7.8 42 42 4.0 16 ± 20 49 19 -55 to +150
V
A
V W
°C 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1 N•m)
Thermal Resistance Parameter RθJC RθJC RθCS RθJA Wt
www.irf.com
Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight
Min.
Typ.
Max.
––– ––– ––– ––– –––
––– ––– 0.50 ––– 2 (0.07)
2.7 7.0 ––– 80 –––
Units °C/W
g (oz)
1 03/20/01
IRG4BC15UD Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Collector-to-Emitter Breakdown Voltage 600 ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage ––– VCE(on) Collector-to-Emitter Saturation Voltage ––– ––– ––– VGE(th) Gate Threshold Voltage 3.0 ∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage ––– Forward Transconductance 4.1 gfe ICES Zero Gate Voltage Collector Current ––– ––– VFM Diode Forward Voltage Drop ––– ––– IGES Gate-to-Emitter Leakage Current ––– V(BR)CES
Typ. ––– 0.63 2.02 2.56 2.21 ––– -10 6.2 ––– ––– 1.5 1.4 –––
Max. Units Conditions ––– V VGE = 0V, IC = 250µA ––– V/°C VGE = 0V, IC = 1.0mA 2.4 IC = 7.8A VGE = 15V ––– V IC = 14A ––– IC = 7.8A, TJ = 150°C 6.0 VCE = VGE, IC = 250µA ––– mV/°C VCE = VGE, IC = 250µA ––– S VCE = 100V, IC = 7.8A 250 µA VGE = 0V, VCE = 600V 1400 VGE = 0V, VCE = 600V, TJ = 150°C 1.8 V IC = 4.0A 1.7 IC = 4.0A, TJ = 150°C ±100 nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres trr Irr
Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak Reverse Recovery Current
Qrr
Diode Reverse Recovery Charge
di(rec)M/dt
Diode Peak Rate of Fall of Recovery During tb
Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– –––
Typ. 23 4.0 9.6 17 20 160 83 0.24 0.26 0.50 16 21 180 220 0.76 7.5 410 37 5.3 28 38 2.9 3.7 40 70 280 240
Max. Units Conditions 35 IC = 7.8A 6.0 nC VCC = 400V 14 VGE = 15V ––– TJ = 25°C ––– ns IC = 7.8A, VCC = 480V 240 VGE = 15V, R G = 75Ω 120 Energy losses include "tail" and ––– diode reverse recovery. ––– mJ 0.63 ––– TJ = 150°C, ––– ns IC = 7.8A, VCC = 480V ––– VGE = 15V, R G = 75Ω ––– Energy losses include "tail" and ––– mJ diode reverse recovery. ––– nH Measured 5mm from package ––– VGE = 0V ––– pF VCC = 30V ––– ƒ = 1.0MHz 42 ns TJ = 25°C 57 TJ = 125°C IF = 4.0A 5.2 A TJ = 25°C 6.7 TJ = 125°C VR = 200V 60 nC TJ = 25°C 110 TJ = 125°C di/dt 200A/µs ––– A/µs TJ = 25°C ––– TJ = 125°C
IRG4BC15UD 10
Duty cycle : 50% Tj = 125°C Tsink = 90°C Gate drive as specified Turn-on losses include effects of reverse recovery Power Dissipation = 11W
Load Current ( A )
8
6 60% of rated voltage
4
2
Ideal diodes
0 0.1
1
10
100
f , Frequency ( kHz )
Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental)
I C , Collector-to-Emitter Current (A)
10
TJ = 150 °C 1
TJ = 25 °C
0.1 0.1
V GE = 15V 20µs PULSE WIDTH 1
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
10
I C , Collector-to-Emitter Current (A)
100
100
TJ = 150 °C 10
1
0.1 5.0
TJ = 25 °C
V CC = 50V 5µs PULSE WIDTH 10.0
15.0
20.0
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
IRG4BC15UD 14
VCE , Collector-to Emitter Voltage (V)
4.0
Maximum DC Collector Current(A)
12 10 8 6 4 2
VGE = 15V 80µs PULSE WIDTH
IC = 14A 3.0
IC = 7.8A 2.0
IC = 3.9A
1.0
0 25
50
75
100
125
150
-60 -40 -20
TC , Case Temperature ( °C)
0
20
40
60
80 100 120 140
T J , Junction Temperature (°C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
Thermal Response (Z thJC )
10
D = 0.50 1 0.20 0.10 0.05 0.1
0.01 0.00001
0.02 0.01
P DM t1
SINGLE PULSE (THERMAL RESPONSE)
t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
1
IRG4BC15UD 20
VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc
VGE, Gate-to-Emitter Voltage (V)
C, Capacitance (pF)
800
600
C ies 400
C oes 200
C res
16
12
8
4
0
0 1
10
0
100
5
10
15
20
25
QG , Total Gate Charge (nC)
VCE , Collector-to-Emitter Voltage (V)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
0.48
10 VCC = 480V VGE = 15V TJ = 25°C I C = 7.8A
Total Switching Losses (mJ)
Total Switching Losses (mJ)
VCC = 400V I C = 7.8A
0.46
0.44
0.42
RG = 75Ω VGE = 15V VCC = 480V IC = 14A
1
IC = 7.8A
IC = 3.9A
0.1 0
10
20
30
40
R G, Gate Resistance ( Ω )
Fig. 9 - Typical Switching Losses vs. Gate Resistance
50
-60 -40 -20
0
20
40
60
80 100 120 140 160
T J, Junction Temperature (°C)
Fig. 10 - Typical Switching Losses vs. Junction Temperature
IRG4BC15UD 100
VGE = 20V TJ = 125°
RG = 75Ω TJ = 150°C VGE = 15V
1.6
VCC = 480V
C, Capacitance(pF)
Total Switching Losses (mJ)
2.0
1.2
0.8
SAFE OPERATING AREA 10
0.4
0.0
1 2
4
6
8
10
12
14
16
1
10
IC , Collector Current (A)
100
VDS , Drain-to-Source Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
100
TJ = 150°C
10
TJ = 125°C T = 25°C J
1
0.1 0.0
1.0
2.0
3.0
4.0
5.0
6.0
F orward V oltage D rop - V F M(V )
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
1000
IRG4BC15UD 50
14
I F = 8.0A
45
12
I F = 4.0A
VR = 20 0V T J = 1 25 °C T J = 2 5°C
I F = 8.0A 10
I F = 4.0A
Irr- ( A)
trr- (nC)
40
35
8
6 30 4
25 2
VR = 2 00 V T J = 1 2 5°C T J = 2 5 °C 20 100
di f /dt - (A/µ s)
0 100
1000
1000
di f /dt - (A/µ s)
Fig. 15 - Typical Recovery Current vs. dif/dt
Fig. 14 - Typical Reverse Recovery vs. dif/dt 200
1000 VR = 2 00 V T J = 1 25°C T J = 2 5°C
VR = 20 0V T J = 1 25 °C T J = 2 5°C
160
I F = 8.0A
di (rec) M/dt- (A /µs)
I F = 4.0A
Qrr- (nC)
120
I F = 8.0A
80
I F = 4.0A
40
0 100
di f /dt - (A/µ s)
1000
Fig. 16 - Typical Stored Charge vs. dif/dt
A
100 100
1000
di f /dt - (A/µ s )
Fig. 17 - Typical di(rec)M/dt vs. dif/dt,
IRG4BC15UD 90% Vge
Same ty pe device as D .U.T.
+Vge
V ce 430µF
80% of Vce
D .U .T.
Ic
9 0 % Ic
10% Vce Ic
5 % Ic td (o ff)
tf
E o ff =
Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
∫
t1 + 5 µ S V c e icIcd tdt Vce t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf
G A T E V O L T A G E D .U .T . 1 0 % +V g
trr
Q rr =
Ic
∫
trr id t Icddt tx
+Vg tx 10% Vcc
1 0 % Irr V cc
D UT VO LTAG E AN D CU RRE NT
Vce
V pk Irr
Vcc
1 0 % Ic
Ip k
9 0 % Ic
Ic D IO D E R E C O V E R Y W A V E FO R M S
tr
td (o n )
5% Vce
t1
∫
t2 ce ieIcd t dt E o n = VVce t1 t2
E re c = D IO D E R E V E R S E REC OVERY ENER GY t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr
∫
t4 VVd d idIc d t dt t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr
IRG4BC15UD V g G AT E SIG NA L DE VIC E U ND E R T E ST CU R RE NT D .U .T.
VO L TA G E IN D.U .T.
CU R RE NT IN D 1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit D.U.T.
L 1000V
Vc*
RL=
480V 4 X I C @25°C
0 - 480V
50V 600 0µF 100V
Figure 19. Clamped Inductive Load Test Circuit
Figure 20. Pulsed Collector Current Test Circuit
IRG4BC15UD Notes: Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature VCC=80%(VCES), VGE=20V, L=10µH, RG = 75Ω Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot.
Case Outline — TO-220AB
2 .8 7 (.1 1 3 ) 2 .6 2 (.1 0 3 )
1 0 .5 4 (.41 5 ) 1 0 .2 9 (.40 5 )
4
3.78 (.149) 3.54 (.139) -A-
1.32 (.052) 1.22 (.048)
6.47 (.255 ) 6.10 (.240 )
1 5 .2 4 (.6 0 0 ) 1 4 .8 4 (.5 8 4 )
1.15 (.045) M IN 1
2
1 4 .0 9 (.5 5 5 ) 1 3 .4 7 (.5 3 0 )
N O TE S : 1 D IM E N S IO N S & T O L E R A N C IN G P E R A N S I Y 14 .5 M , 1 9 8 2 . 2 C O N T R O L L IN G D IM E N S IO N : IN C H . 3 D IM E N S IO N S A R E S H O W N M ILL IM E T E R S (IN C H E S ). 4 C O N F O R M S T O JE D E C O U T L IN E T O -2 2 0 A B .
LEAD 1234-
3
3X
1 .4 0 (.0 5 5 ) 3 X 1 .1 5 (.0 4 5 )
-B -
4.69 (.185) 4.20 (.165)
3.96 (.160) 3.55 (.140)
A S S IG N M E N T S GA TE C O L LE C T O R E M IT T E R C O L LE C T O R
4.06 (.160 ) 3.55 (.140 )
3X
0.93 (.037) 0.69 (.027)
0 .3 6 (.01 4 )
M B A M
2 .5 4 (.1 0 0)
3X
0.55 (.022) 0.46 (.018)
2.92 (.115) 2.64 (.104)
2X
CONFORMS TO JEDEC OUTLINE TO-220AB D im e ns io ns in M illim e ters a nd (In c he s )
Data and specifications subject to change without notice. This product has been designed and qualified for the industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.03/01
Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/