Preview only show first 10 pages with watermark. For full document please download

Ir Irg4ph50kpbf (71-260-22)

   EMBED


Share

Transcript

PD - 9.1576 IRG4PH50K Short Circuit Rated UltraFast IGBT INSULATED GATE BIPOLAR TRANSISTOR Features C ● High short circuit rating optimized for motor control, tsc =10µs, VCC = 720V, TJ = 125°C, VGE = 15V ● Combines low conduction losses with high switching speed ● VCES = 1200V VCE(on) typ. = 2.77V G Latest generation design provides tighter parameter distribution and higher efficiency than previous generations @VGE = 15V, IC = 24A E n-channel Benefits ● As a Freewheeling Diode we recommend our HEXFREDTM ultrafast, ultrasoft recovery diodes for minimum EMI/Noise and switching losses in the Diode and IGBT ● Latest generation 4 IGBTs offer highest power density motor controls possible ● This part replaces the IRGPH50K and IRGPH50M devices TO-247 AB Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM tsc VGE EARV PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current ➀ Clamped Inductive Load Current ➁ Short Circuit Withstand Time Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy ➂ Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw. Max. Units 1200 45 24 90 90 10 ±20 190 200 78 -55 to +150 V A µs V mJ W °C 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1N•m) Thermal Resistance Parameter RθJC RθCS RθJA Wt www.irf.com Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient, typical socket mount Weight Typ. Max. — 0.24 — 6 (0.21) 0.64 — 40 — Units °C/W g (oz) C-1 IRG4PH50K Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES V(BR)ECS ∆V(BR)CES/∆TJ VCE(ON) VGE(th) ∆VGE(th)/∆TJ gfe ICES IGES Parameter Min. Typ. Max. Units Conditions Collector-to-Emitter Breakdown Voltage 1200 — — V VGE = 0V, IC = 250µA Emitter-to-Collector Breakdown Voltage 18 — — V VGE = 0V, IC = 1.0A Temperature Coeff. of Breakdown Voltage — 0.91 — V/°C VGE = 0V, IC = 2.0mA — 2.77 3.5 IC = 24A VGE = 15V Collector-to-Emitter Saturation Voltage — 3.28 — IC = 45A see figures 2, 5 V — 2.54 — IC = 24A , TJ = 150°C Gate Threshold Voltage 3.0 — 6.0 VCE = VGE, IC = 250µA Temperature Coeff. of Threshold Voltage — -10 — mV/°C VCE = VGE, IC = 2.0mA Forward Transconductance 13 19 — S VCE = 100 V, IC = 24A — — 250 VGE = 0V, VCE = 1200V Zero Gate Voltage Collector Current µA — — 2.0 VGE = 0V, VCE = 10V, TJ = 25°C — — 5000 VGE = 0V, VCE = 1200V, TJ = 150°C Gate-to-Emitter Leakage Current — — ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets tsc Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time Min. — — — — — — — — — — 10 td(on) Turn-On Delay Time — tr Rise Time — td(off) Turn-Off Delay Time — tf Fall Time — Total Switching Loss — Ets LE Internal Emitter Inductance — Cies Input Capacitance — Coes Output Capacitance — Cres Reverse Transfer Capacitance — Notes: ➀ Repetitive rating; VGE = 20V, pulse width limited bymax. junction temperature. (see figure 13b) ➁ VCC = 80% (VCES), VGE = 20V, L = 10µH, RG = 5.0Ω, (see figure 13a) C-2 Typ. 180 25 70 36 27 200 130 1.21 2.25 3.46 — 35 29 380 280 7.80 13 2800 140 53 Max. Units Conditions 270 IC = 24A 38 nC VCC = 400V see figure 8 110 VGE = 15V — — TJ = 25°C ns 300 IC = 24A, VCC = 960V 190 VGE = 15V, RG = 5.0Ω — Energy losses include "tail" — mJ see figures 9,10,14 4.1 — µs VCC = 720V, TJ = 125°C VGE = 15V, RG = 5.0Ω — TJ = 150°C, — IC = 24A, VCC = 960V ns — VGE = 15V, RG = 5.0Ω — Energy losses include "tail" — mJ see figures 10,11,14 — nH Measured 5mm from package — VGE = 0V — pF VCC = 30V see figure 7 — ƒ = 1.0MHz ➂ Repetitive rating; pulse width limited by maximum junction temperature. ➃ Pulse width ≤ 80µs; duty factor ≤ 0.1%. ➄ Pulse width 5.0µs, single shot. www.irf.com IRG4PH50K 60 F o r b o th : 50 Load Current ( A ) Tria n g u la r w a ve : Duty cycle: 50% TJ = 125° C T sink = 90°C G ate drive as specified Po w e r D is s ip a tio n = 4 0 W C la m p vo lta g e : 8 0 % o f ra te d 40 S qu are wave: 30 6 0 % o f ra te d v o lta g e 20 10 Id e al d io de s A 0 0.1 1 10 100 f, Frequency (kH z) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 TJ = 150 °C 10 TJ = 25 ° C V GE = 15V 20µs PULSE WIDTH 1 1 10 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com I C , Collector-to-Emitter Current (A) I C , Collector-to-Emitter Current (A) 100 TJ = 150 ° C 10 TJ = 25 °C V CC = 50V 5µs PULSE WIDTH 1 5 6 7 8 9 10 11 12 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics C-3 IRG4PH50K 4.0 VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) 50 40 30 20 10 0 25 50 75 100 125 150 VGE = 15V 80 us PULSE WIDTH IC = 48 A 3.5 3.0 IC = 24 A 2.5 IC = 12 A 2.0 1.5 -60 -40 -20 TC , Case Temperature (° C) Fig. 4 - Maximum Collector Current vs. Case Temperature 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature (° C) Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 1 D = 0.50 0.20 0.1 0.01 0.001 0.00001 0.10 0.05 0.02 0.01 P DM SINGLE PULSE (THERMAL RESPONSE) t1 t2 Notes: 1. Duty factor D = t 1 / t2 2. Peak TJ = PDM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case C-4 www.irf.com IRG4PH50K VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc 3000 Cies 2000 1000 Coes Cres 0 1 10 20 VGE , Gate-to-Emitter Voltage (V) C, Capacitance (pF) 4000 16 12 8 4 0 100 0 VCE , Collector-to-Emitter Voltage (V) 100 = 960V = 15V = 25 ° C = 24A 6.0 5.0 4.0 3.0 0 10 20 30 40 RG, Gate Resistance ( Ω ) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 80 120 160 200 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage Total Switching Losses (mJ) Total Switching Losses (mJ) V CC V GE TJ IC 40 QG , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 7.0 VCC = 400V I C = 24A 50 RG = 5.0Ω Ohm VGE = 15V VCC = 960V IC = 48 A 10 IC = 24 A IC = 12 A 1 0.1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature °( C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature C-5 IRG4PH50K RG TJ VCC 20 VGE 1000 = 5.0Ω Ohm = 150° C = 960V = 15V I C , Collector Current (A) Total Switching Losses (mJ) 25 100 15 10 5 10 SAFE OPERATING AREA 0 0 10 20 30 40 I C , Collector-to-emitter Current (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current C-6 VGE = 20V T J = 125 oC 50 1 1 10 100 1000 10000 VCE , Collector-to-Emitter Voltage (V) Fig. 12 - Turn-Off SOA www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/