Preview only show first 10 pages with watermark. For full document please download

Irf2804spbf

   EMBED


Share

Transcript

PD - 94436C IRF2804 IRF2804S IRF2804L AUTOMOTIVE MOSFET HEXFET® Power MOSFET Features l l l l l Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax D VDSS = 40V RDS(on) = 2.0mΩ‰ G Description ID = 75A S Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. D2Pak IRF2804S TO-220AB IRF2804 TO-262 IRF2804L Absolute Maximum Ratings Parameter Max. Units ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 280 A ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (See Fig. 9) 200 ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited) IDM Pulsed Drain Current PD @TC = 25°C Maximum Power Dissipation 330 W VGS Linear Derating Factor Gate-to-Source Voltage 2.2 ± 20 W/°C V 670 mJ EAS 75 c 1080 EAS (tested) Single Pulse Avalanche Energy (Thermally Limited) Single Pulse Avalanche Energy Tested Value IAR Avalanche Current EAR Repetitive Avalanche Energy TJ Operating Junction and TSTG Storage Temperature Range i c d 1160 See Fig.12a,12b,15,16 h A mJ °C -55 to + 175 Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting torque, 6-32 or M3 screw 10 lbf•in (1.1N•m) Thermal Resistance Parameter RθJC RθCS Junction-to-Case Case-to-Sink, Flat, Greased Surface RθJA Junction-to-Ambient RθJA Junction-to-Ambient (PCB Mount, steady state) j Typ. Max. Units ––– 0.45 °C/W 0.50 ––– ––– 62 ––– 40 HEXFET® is a registered trademark of International Rectifier. www.irf.com 1 08/27/03 IRF2804/S/L Static @ TJ = 25°C (unless otherwise specified) Parameter V(BR)DSS ∆ΒVDSS/∆TJ Drain-to-Source Breakdown Voltage RDS(on) SMD RDS(on) TO-220 Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage gfs IDSS IGSS Min. Typ. Max. Units V Conditions 40 ––– ––– VGS = 0V, ID = 250µA Breakdown Voltage Temp. Coefficient ––– 0.031 ––– V/°C Reference to 25°C, ID = 1mA Static Drain-to-Source On-Resistance ––– 1.5 2.0 mΩ ––– 1.8 2.3 2.0 ––– 4.0 f = 75A f VGS = 10V, ID = 75A VGS = 10V, ID V VDS = VGS, ID = 250µA Forward Transconductance 130 ––– ––– S VDS = 10V, ID = 75A Drain-to-Source Leakage Current ––– ––– 20 µA VDS = 40V, VGS = 0V ––– ––– 250 Gate-to-Source Forward Leakage ––– ––– 200 nA VGS = 20V nC ID = 75A VDS = 40V, VGS = 0V, TJ = 125°C Gate-to-Source Reverse Leakage ––– ––– -200 Qg Total Gate Charge ––– 160 240 VGS = -20V Qgs Gate-to-Source Charge ––– 41 62 VDS = 32V Qgd Gate-to-Drain ("Miller") Charge ––– 66 99 VGS = 10V td(on) Turn-On Delay Time ––– 13 ––– tr Rise Time ––– 120 ––– ID = 75A td(off) Turn-Off Delay Time ––– 130 ––– RG = 2.5Ω tf Fall Time ––– 130 ––– LD Internal Drain Inductance ––– 4.5 ––– LS Internal Source Inductance ––– 7.5 ––– 6mm (0.25in.) from package and center of die contact VGS = 0V ns VGS = 10V nH f VDD = 20V f Between lead, D G S Ciss Input Capacitance ––– 6450 ––– Coss Output Capacitance ––– 1690 ––– Crss Reverse Transfer Capacitance ––– 840 ––– ƒ = 1.0MHz, See Fig. 5 Coss Output Capacitance ––– 5350 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 1520 ––– VGS = 0V, VDS = 32V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 2210 ––– VGS = 0V, VDS = 0V to 32V pF VDS = 25V Diode Characteristics Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 280 ISM (Body Diode) Pulsed Source Current ––– ––– 1080 VSD (Body Diode) Diode Forward Voltage ––– ––– 1.3 V p-n junction diode. TJ = 25°C, IS = 75A, VGS = 0V trr Qrr Reverse Recovery Time Reverse Recovery Charge ––– ––– 56 67 84 100 ns nC TJ = 25°C, IF = 75A, VDD = 20V di/dt = 100A/µs ton Forward Turn-On Time c A D showing the integral reverse G S f f Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Notes:  Repetitive rating; pulse width limited by † max. junction temperature. (See fig. 11). ‚ Limited by TJmax, starting TJ = 25°C, ‡ L=0.24mH, RG = 25Ω, IAS = 75A, VGS =10V. Part not recommended for use above this value. ˆ ƒ ISD ≤ 75A, di/dt ≤ 220A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. „ Pulse width ≤ 1.0ms; duty cycle ≤ 2%. ‰ … Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. 2 MOSFET symbol Limited by T Jmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. This value determined from sample failure population. 100% tested to this value in production. This is applied to D 2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994. Max R DS(on) for D2Pak and TO-262 (SMD) devices. www.irf.com IRF2804/S/L 10000 10000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 1000 TOP TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 100 10 4.5V 1000 VGS V GS 15V 15V 10V 10V 8.0V 8.0V 7.0V 7.0V 6.0V 6.0V 5.5V 5.5V 5.0V BOTTOM 5.0V 4.5V BOTTOM 4.5V 100 4.5V 20µs PULSE WIDTH Tj = 25°C 20µs PULSE WIDTH Tj = 175°C 1 10 0.1 1 10 100 0.1 VDS, Drain-to-Source Voltage (V) 10 100 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 300 G fs , Forward Transconductance ( S) ID, Drain-to-Source Current (Α) 1 T J = 175°C 100 T J = 25°C 10 VDS = 10V 20µs PULSE WIDTH 1 250 T J = 25°C 200 T J = 175°C 150 100 50 VDS = 10V 20µs PULSE WIDTH 0 4.0 5.0 6.0 7.0 8.0 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 9.0 0 40 80 120 160 200 ID, Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance vs. Drain Current 3 IRF2804/S/L 12000 20 10000 VGS , Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd C, Capacitance (pF) Coss = Cds + Cgd 8000 Ciss 6000 4000 Coss 2000 Crss VDS= 32V VDS= 20V VDS= 8.0V 16 12 8 4 0 0 1 ID= 75A 10 0 100 120 160 200 240 Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 10000 1000.0 OPERATION IN THIS AREA LIMITED BY RDS(on) ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 80 Q G Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) T J = 175°C 100.0 10.0 1.0 T J = 25°C VGS = 0V 0.1 0.2 0.6 1.0 1.4 1.8 VSD, Source-toDrain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 40 1000 100 1msec 10 1 2.2 100µsec Tc = 25°C Tj = 175°C Single Pulse 0 1 10msec 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF2804/S/L 2.0 LIMITED BY PACKAGE ID , Drain Current (A) 250 200 150 100 50 0 ID = 75A VGS = 10V 1.5 (Normalized) RDS(on) , Drain-to-Source On Resistance 300 1.0 0.5 25 50 75 100 125 150 175 -60 -40 -20 T C , Case Temperature (°C) 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 10. Normalized On-Resistance vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature Thermal Response ( Z thJC ) 1 D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRF2804/S/L 1600 DRIVER L VDS D.U.T RG + V - DD IAS VGS 20V A 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS, Single Pulse Avalanche Energy (mJ) 15V ID 31A 53A BOTTOM 75A TOP 1200 800 400 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V QGS QGD VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF D.U.T. + V - DS VGS(th) Gate threshold Voltage (V) 4.0 ID = 250µA 3.0 2.0 1.0 -75 -50 -25 VGS 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage vs. Temperature www.irf.com IRF2804/S/L 10000 Avalanche Current (A) Duty Cycle = Single Pulse 1000 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 0.01 100 0.05 0.10 10 1 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 800 TOP Single Pulse BOTTOM 10% Duty Cycle ID = 75A 600 400 200 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asT jmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRF2804/S/L D.U.T Driver Gate Drive + ƒ + ‚ - P.W. „ D.U.T. ISD Waveform Reverse Recovery Current + V DD • dv/dt controlled by RG • Driver same type as D.U.T. • I SD controlled by Duty Factor "D" • D.U.T. - Device Under Test P.W. Period *  RG D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - Period + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V DS V GS RG RD D.U.T. + -V DD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRF2804/S/L TO-220AB Package Outline Dimensions are shown in millimeters (inches) 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) -B- 3.78 (.149) 3.54 (.139) 4.69 (.185) 4.20 (.165) -A- 1.32 (.052) 1.22 (.048) 6.47 (.255) 6.10 (.240) 4 15.24 (.600) 14.84 (.584) 1.15 (.045) MIN 1 2 3 14.09 (.555) 13.47 (.530) 4.06 (.160) 3.55 (.140) 3X 1.40 (.055) 3X 1.15 (.045) LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 4 - DRAIN 0.93 (.037) 0.69 (.027) 0.36 (.014) 3X M B A M 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information EXAMPLE : THIS IS AN IRF1010 WITH ASSEMBLY LOT CODE 9B1M A INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE www.irf.com PART NUMBER IRF1010 9246 9B 1M DATE CODE (YYWW) YY = YEAR WW = WEEK 9 IRF2804/S/L D2Pak Package Outline Dimensions are shown in millimeters (inches) D2Pak Part Marking Information T HIS IS AN IRF530S WIT H LOT CODE 8024 ASS EMBLED ON WW 02, 2000 IN T HE ASS EMBLY LINE "L" INT ERNAT IONAL RECT IFIER LOGO ASS EMBLY LOT CODE 10 PART NUMBER F 530S DAT E CODE YEAR 0 = 2000 WEEK 02 LINE L www.irf.com IRF2804/S/L TO-262 Package Outline Dimensions are shown in millimeters (inches) IGBT 1- GATE 2- COLLECTOR 3- EMITTER TO-262 Part Marking Information EXAMPLE: T HIS IS AN IRL3103L LOT CODE 1789 ASS EMBLED ON WW 19, 1997 IN THE ASS EMBLY LINE "C" INT ERNATIONAL RECTIFIER LOGO AS SEMBLY LOT CODE www.irf.com PART NUMBER DATE CODE YEAR 7 = 1997 WEEK 19 LINE C 11 IRF2804/S/L D2Pak Tape & Reel Information Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 11.60 (.457) 11.40 (.449) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 60.00 (2.362) MIN. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 TO-220AB package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 08/03 12 www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/