Transcript
PD - 96158
IRF8252PbF Applications Synchronous MOSFET for Notebook Processor Power l Synchronous Rectifier MOSFET for Isolated DC-DC Converters l
HEXFET® Power MOSFET
VDSS
RDS(on) max
Qg
25V 2.7m:@VGS = 10V 35nC
Benefits l l l l l l l l
Very Low Gate Charge Very Low RDS(on) at 4.5V VGS Ultra-Low Gate Impedance Fully Characterized Avalanche Voltage and Current 20V VGS Max. Gate Rating 100% tested for Rg RoHS Compliant (Halogen Free) Low Thermal Resistance
A A D
S
1
8
S
2
7
D
S
3
6
D
G
4
5
D
SO-8
Top View
Description The IRF8252PbF incorporates the latest HEXFET Power MOSFET Silicon Technology into the industry standard SO-8 package. The IRF8252PbF has been optimized for parameters that are critical in synchronous buck operation including Rds(on) and gate charge to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors for notebook and Netcom applications.
Absolute Maximum Ratings Parameter
Max.
VDS
Drain-to-Source Voltage
25
VGS
Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V
±20
ID @ TA = 25°C
V
25
IDM
Continuous Drain Current, VGS @ 10V Pulsed Drain Current
200
ID @ TA = 70°C
Units
20
c
PD @TA = 25°C
Power Dissipation
2.5
PD @TA = 70°C
Power Dissipation
1.6
TJ
Linear Derating Factor Operating Junction and
TSTG
Storage Temperature Range
A
W W/°C
0.02 -55 to + 150
°C
Thermal Resistance Parameter
RθJL RθJA
g Junction-to-Ambient fg Junction-to-Drain Lead
Typ.
Max.
–––
20
–––
50
Units °C/W
Notes through
are on page 9
www.irf.com
1 07/07/08
IRF8252PbF Static @ TJ = 25°C (unless otherwise specified) Parameter BVDSS ∆ΒVDSS/∆TJ RDS(on)
Min. Typ. Max. Units 25
–––
–––
Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance
––– –––
0.018 2.0
––– 2.7
Gate Threshold Voltage
––– 1.35
2.9 1.80
3.7 2.35
IDSS
Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current
––– –––
-6.67 –––
IGSS
Gate-to-Source Forward Leakage
––– –––
––– –––
Gate-to-Source Reverse Leakage Forward Transconductance
––– 89
––– –––
mV/°C VDS = VGS, ID = 100µA VDS = 20V, VGS = 0V µA VDS = 20V, VGS = 0V, TJ = 125°C 150 VGS = 20V 100 nA -100 VGS = -20V ––– S VDS = 13V, ID = 20A
Total Gate Charge Pre-Vth Gate-to-Source Charge
––– –––
35 10
53 –––
Post-Vth Gate-to-Source Charge Gate-to-Drain Charge
––– –––
4.6 12
––– –––
Qgodr Qsw
Gate Charge Overdrive Switch Charge (Qgs2 + Qgd)
––– –––
8.9 16
––– –––
Qoss Rg
Output Charge Gate Resistance
––– –––
26 0.61
––– 1.22
td(on) tr
Turn-On Delay Time Rise Time
––– –––
23 32
––– –––
td(off) tf
Turn-Off Delay Time Fall Time
––– –––
19 12
––– –––
Ciss Coss
Input Capacitance Output Capacitance
––– –––
5305 1340
––– –––
Crss
Reverse Transfer Capacitance
–––
725
–––
VGS(th) ∆VGS(th)
gfs Qg Qgs1 Qgs2 Qgd
V
Conditions
Drain-to-Source Breakdown Voltage
VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 1mA VGS = 10V, ID = 25A mΩ VGS = 4.5V, ID = 20A V VDS = VGS, ID = 100µA
e e
––– 1.0
VDS = 13V nC
VGS = 4.5V ID = 20A See Figs. 15 & 16
nC Ω
ns
pF
VDS = 16V, VGS = 0V VDD = 13V, VGS = 4.5V ID = 20A RG = 1.8Ω See Fig. 18 VGS = 0V VDS = 13V ƒ = 1.0MHz
Avalanche Characteristics EAS
Parameter Single Pulse Avalanche Energy
IAR
Avalanche Current
c
d
Typ. –––
Max. 231
Units mJ
–––
20
A
Diode Characteristics Parameter
Min. Typ. Max. Units
Conditions
IS
Continuous Source Current
–––
–––
ISM
(Body Diode) Pulsed Source Current
–––
–––
VSD
(Body Diode) Diode Forward Voltage
–––
–––
1.0
V
p-n junction diode. TJ = 25°C, IS = 20A, VGS = 0V
trr Qrr
Reverse Recovery Time Reverse Recovery Charge
––– –––
19 12
29 18
ns nC
TJ = 25°C, IF = 20A, VDD = 13V di/dt = 230A/µs
ton
Forward Turn-On Time
2
c
3.1
A
200
A
MOSFET symbol
D
showing the integral reverse
G S
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRF8252PbF 1000
1000 100 10 BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS 10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V 2.3V
100
1 0.1
≤60µs PULSE WIDTH
0.01
Tj = 25°C
2.3V
BOTTOM
10
1
2.3V
≤60µs PULSE WIDTH Tj = 150°C 0.1
0.001 0.1
1
10
0.1
100
1
10
100
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
1000
1.6
VDS = 15V ≤60µs PULSE WIDTH
RDS(on) , Drain-to-Source On Resistance (Normalized)
ID, Drain-to-Source Current (A)
VGS 10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V 2.3V
100
T J = 150°C
10
T J = 25°C
1
0.1
ID = 25A 1.4
VGS = 10V
1.2
1.0
0.8
0.6
1
2
3
4
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
5
-60 -40 -20 0
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
Fig 4. Normalized On-Resistance vs. Temperature
3
IRF8252PbF 100000
14.0 VGS, Gate-to-Source Voltage (V)
VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd
C, Capacitance (pF)
C oss = C ds + C gd
10000 Ciss Coss Crss
1000
100
ID= 20A
12.0 10.0 8.0 6.0 4.0 2.0 0.0
1
10
100
0
20
VDS, Drain-to-Source Voltage (V)
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
80
100
OPERATION IN THIS AREA LIMITED BY R DS(on)
100
T J = 150°C
T J = 25°C
10
60
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
1000
100
40
QG, Total Gate Charge (nC)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
100µsec 1msec
10 10msec 1
T A = 25°C
Tj = 150°C Single Pulse
VGS = 0V 1.0
0.1 0.2
0.4
0.6
0.8
1.0
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
4
VDS= 20V VDS= 13V
1.2
0
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF8252PbF 2.5 VGS(th) , Gate Threshold Voltage (V)
30
ID, Drain Current (A)
25 20 15 10 5
ID = 250µA
2.0 ID = 100µA
1.5
1.0
0 25
50
75
100
125
-75 -50 -25
150
0
25
50
75 100 125 150
T J , Temperature ( °C )
T A , Ambient Temperature (°C)
Fig 9. Maximum Drain Current vs. Ambient Temperature
Fig 10. Threshold Voltage vs. Temperature
Thermal Response ( Z thJA ) °C/W
100 D = 0.50 10
0.20
Ri (°C/W) τi (sec) 0.02127 0.000002
0.10 0.05
0.02040 0.000006 0.21216 0.000082
1
0.02 0.01
0.79696 0.001560 R1 R1 τJ
τJ τ1
R2 R2
R3 R3
R4 R4
R5 R5
R6 R6
R7 R7
R8 R8
τ1
τ2
τ2
τ3
τ3
τ4
τ4
τ5
τ6
τ5
τ6
τ7
τ7
1E-005
0.0001
0.001
0.45152 0.006475 16.5590 45.68988
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + T A
SINGLE PULSE ( THERMAL RESPONSE ) 0.01 1E-006
τA
26.2230 1.208856
Ci= τi/Ri Ci= τi/Ri
0.1
6.31529 0.028913 τA
0.01
0.1
1
10
100
1000
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
IRF8252PbF 1000 EAS , Single Pulse Avalanche Energy (mJ)
RDS(on), Drain-to -Source On Resistance (m Ω)
7 ID = 20A 6 5 4
TJ = 125°C
3 2
T J = 25°C
ID 2.45A 8.0A BOTTOM 20A
900
TOP
800 700 600 500 400 300 200 100 0
1 2
4
6
8
25
10
50
75
100
125
150
Starting T J , Junction Temperature (°C)
VGS, Gate -to -Source Voltage (V)
Fig 13. Maximum Avalanche Energy vs. Drain Current
Fig 12. On-Resistance vs. Gate Voltage
V(BR)DSS tp
15V
L
VDS
DUT
DRIVER
0 D.U.T
RG
IAS 20V
L
tp
0.01Ω
+ - VDD
1K 20K
VCC
S
A
I AS
Fig 15. Gate Charge Test Circuit
Fig 14. Unclamped Inductive Test Circuit and Waveform Id
Vds Vgs
Vgs(th)
Qgodr
Qgd
Qgs2 Qgs1
Fig 16. Gate Charge Waveform
6
www.irf.com
IRF8252PbF D.U.T
Driver Gate Drive
+
-
-
*
D.U.T. ISD Waveform Reverse Recovery Current
+
RG
• • • •
dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test
V DD
P.W. Period VGS=10V
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
D=
Period
P.W.
+
+ -
Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
Re-Applied Voltage
Body Diode
VDD
Forward Drop
Inductor Curent ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
V DS V GS RG
RD
VDS 90%
D.U.T. +
- V DD
V GS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
www.irf.com
10% VGS td(on)
tr
td(off) tf
Fig 18b. Switching Time Waveforms
7
IRF8252PbF SO-8 Package Outline(Mosfet & Fetky) Dimensions are shown in milimeters (inches)
'
,1&+(6 0,1 0$; $ $ E F ' ( H %$6,& H %$6,& + . / \
',0
%
$
+
(
;
>@
$
H
H
;E >@
$
0,//,0(7(56 0,1 0$; %$6,& %$6,&
.[ &
$
\ >@
;/
127(6 ',0(16,21,1* 72/(5$1&,1*3(5$60(<0 &21752//,1*',0(16,210,//,0(7(5 ',0(16,216$5(6+2:1,10,//,0(7(56>,1&+(6@ 287/,1(&21)250672-('(&287/,1(06$$ ',0(16,21'2(6127,1&/8'(02/'3527586,216 02/'3527586,21612772(;&(('>@ ',0(16,21'2(6127,1&/8'(02/'3527586,216 02/'3527586,21612772(;&(('>@ ',0(16,21,67+(/(1*7+2)/($')2562/'(5,1*72 $68%675$7(
;F
& $ %
)22735,17 ;>@
>@
;>@
;>@
SO-8 Part Marking Information (;$03/(7+,6,6$1,5)026)(7
,17(51$7,21$/ 5(&7,),(5 /2*2
;;;; )
'$7(&2'(<:: 3 ',6*1$7(6/($')5(( 352'8&7237,21$/ < /$67',*,72)7+(<($5 :: :((. $ $66(0%/<6,7(&2'( /27&2'( 3$57180%(5
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
8
www.irf.com
IRF8252PbF SO-8 Tape and Reel Dimensions are shown in milimeters (inches) TERMINAL NUMBER 1
12.3 ( .484 ) 11.7 ( .461 )
8.1 ( .318 ) 7.9 ( .312 )
FEED DIRECTION
NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
330.00 (12.992) MAX.
14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 1.12mH, RG = 25Ω, IAS = 20A. Pulse width ≤ 400µs; duty cycle ≤ 2%. When mounted on 1 inch square copper board.
Rθ is measured at TJ of approximately 90°C.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.07/2008
www.irf.com
9