Preview only show first 10 pages with watermark. For full document please download

Irf8721pbf

   EMBED


Share

Transcript

PD - 97119 IRF8721PbF Applications l Control MOSFET of Sync-Buck Converters used for Notebook Processor Power l Control MOSFET for Isolated DC-DC Converters in Networking Systems Benefits l Very Low Gate Charge l Low RDS(on) at 4.5V VGS l Low Gate Impedance l Fully Characterized Avalanche Voltage and Current l 20V VGS Max. Gate Rating l Lead-Free Description HEXFET® Power MOSFET VDSS RDS(on) max Qg 30V 8.5m:@VGS = 10V 8.3nC A A D S 1 8 S 2 7 D S 3 6 D G 4 5 D SO-8 Top View The IRF8721PbF incorporates the latest HEXFET Power MOSFET Silicon Technology into the industry standard SO-8 package The IRF8721PbF has been optimized for parameters that are critical in synchronous buck operation including Rds(on) and gate charge to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors for Notebook and Netcom applications. Absolute Maximum Ratings Parameter VDS VGS ID @ TA = 25°C Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Max. Units 30 ± 20 V 14 IDM Continuous Drain Current, VGS @ 10V Pulsed Drain Current 110 PD @TA = 25°C Power Dissipation 2.5 PD @TA = 70°C Power Dissipation TJ Linear Derating Factor Operating Junction and TSTG Storage Temperature Range ID @ TA = 70°C 11 c A W 1.6 0.02 -55 to + 150 W/°C °C Thermal Resistance Parameter RθJL RθJA g Junction-to-Ambient fg Junction-to-Drain Lead Typ. Max. Units ––– 20 °C/W ––– 50 Notes  through … are on page 9 www.irf.com 1 07/30/07 IRF8721PbF Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units V Conditions BVDSS Drain-to-Source Breakdown Voltage 30 ––– ––– VGS = 0V, ID = 250μA ΔΒVDSS/ΔTJ Breakdown Voltage Temp. Coefficient ––– 0.021 ––– V/°C Reference to 25°C, ID = 1mA RDS(on) Static Drain-to-Source On-Resistance ––– 6.9 8.5 mΩ ––– 10.6 12.5 VGS = 10V, ID = 14A VGS = 4.5V, ID = 11A VDS = VGS, ID = 25μA VGS(th) Gate Threshold Voltage 1.35 ––– 2.35 V ΔVGS(th) Gate Threshold Voltage Coefficient ––– -6.2 ––– mV/°C IDSS Drain-to-Source Leakage Current μA VDS = 24V, VGS = 0V nA VGS = 20V IGSS ––– ––– 1.0 ––– ––– 150 Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 e e VDS = 24V, VGS = 0V, TJ = 125°C VGS = -20V S VDS = 15V, ID = 11A gfs Forward Transconductance 27 ––– ––– Qg Total Gate Charge ––– 8.3 12 Qgs1 Pre-Vth Gate-to-Source Charge ––– 2.0 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 1.0 ––– Qgd Gate-to-Drain Charge ––– 3.2 ––– ID = 11A Qgodr See Fig. 16a and 16b VDS = 15V nC VGS = 4.5V Gate Charge Overdrive ––– 2.0 ––– Qsw Switch Charge (Qgs2 + Qgd) ––– 4.2 ––– Qoss RG Output Charge ––– 5.0 ––– nC Gate Resistance ––– 1.8 Ω td(on) Turn-On Delay Time ––– 8.2 3.0 ––– tr Rise Time ––– 11 ––– td(off) Turn-Off Delay Time ––– 8.1 ––– tf Fall Time ––– 7.0 ––– See Fig. 15a Ciss Input Capacitance ––– 1040 ––– VGS = 0V Coss Output Capacitance ––– 229 ––– Crss Reverse Transfer Capacitance ––– 114 ––– VDS = 16V, VGS = 0V VDD = 15V, VGS = 4.5V ID = 11A ns pF RG = 1.8Ω VDS = 15V ƒ = 1.0MHz Avalanche Characteristics EAS Parameter Single Pulse Avalanche Energy IAR Avalanche Current c d Typ. Max. Units ––– 68 mJ ––– 11 A Diode Characteristics Parameter Min. Typ. Max. Units Conditions D IS Continuous Source Current ––– ––– 3.1 ISM (Body Diode) Pulsed Source Current ––– ––– 112 showing the integral reverse VSD (Body Diode) Diode Forward Voltage ––– ––– 1.0 V p-n junction diode. TJ = 25°C, IS = 11A, VGS = 0V trr Reverse Recovery Time ––– 14 21 ns TJ = 25°C, IF = 11A, VDD = 15V Qrr Reverse Recovery Charge ––– 15 23 nC di/dt = 300A/μs ton Forward Turn-On Time 2 c MOSFET symbol A G S e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRF8721PbF 1000 1000 100 BOTTOM 10 TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V 2.3V 1 0.1 100 BOTTOM 10 2.3V ≤ 60μs PULSE WIDTH Tj = 25°C 2.3V ≤ 60μs PULSE WIDTH Tj = 150°C 1 0.01 0.1 1 10 0.1 100 1 10 100 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics 1000 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) VDS = 15V ID, Drain-to-Source Current (A) VGS 10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V 2.3V ≤ 60μs PULSE WIDTH 100 10 TJ = 150°C 1 TJ = 25°C 0.1 0.01 1.0 2.0 3.0 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 4.0 ID = 14A VGS = 10V 1.5 1.0 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature (°C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRF8721PbF 10000 16 VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd C, Capacitance (pF) Coss = Cds + Cgd 1000 Ciss Coss Crss ID= 11A VDS = 24V VDS= 15V 12 8 4 0 100 1 10 0 100 5 1000 1000 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 20 25 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 100 TJ = 150°C 10 TJ = 25°C OPERATION IN THIS AREA LIMITED BY R DS (on) 100 100μsec 1msec 10 10msec 1 VGS = 0V TA = 25°C Tj = 150°C Single Pulse 0.1 0.1 0.2 0.4 0.6 0.8 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 15 Qg, Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) 1 10 1.0 0.1 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF8721PbF 2.4 VGS(th) Gate threshold Voltage (V) ID , Drain Current (A) 16 12 8 4 0 2.2 2.0 1.8 ID = 25μA 1.6 1.4 1.2 1.0 0.8 25 50 75 100 125 150 -75 -50 -25 TA, Ambient Temperature (°C) Fig 9. Maximum Drain Current Vs. Case Temperature 0 25 50 75 100 125 150 TJ, Temperature ( °C ) Fig 10. Threshold Voltage Vs. Temperature 100 Thermal Response ( Z thJA ) D = 0.50 10 0.20 0.10 0.05 0.02 0.01 1 τJ R1 R1 τJ τ1 R2 R2 R3 R3 R4 R4 τ3 τ4 τa τ1 τ2 τ2 τ3 τ4 Ci= τi/Ri Ci i/Ri 0.1 Ri (°C/W) τι (sec) 1.935595 0.000148 7.021545 0.019345 26.61013 0.81305 14.43961 26.2 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1, Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 RDS (on), Drain-to -Source On Resistance (mΩ) IRF8721PbF 16 14 12 TJ = 125°C 10 8 TJ = 25°C 6 2.0 4.0 6.0 8.0 10.0 VGS, Gate-to-Source Voltage (V) EAS, Single Pulse Avalanche Energy (mJ) 300 ID = 14A ID 0.83A 1.05A BOTTOM 11A 250 TOP 200 150 100 50 0 25 50 75 V(BR)DSS tp DRIVER L D.U.T + V - DD IAS 20V A 0.01Ω tp I AS Fig 14a. Unclamped Inductive Test Circuit VDS VGS RG RD Fig 14b. Unclamped Inductive Waveforms VDS 90% D.U.T. + -VDD V10V GS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 10% VGS td(on) Fig 15a. Switching Time Test Circuit 6 150 Fig 13. Maximum Avalanche Energy vs. Drain Current 15V RG 125 Starting T J, Junction Temperature (°C) Fig 12. On-Resistance vs. Gate Voltage VDS 100 tr t d(off) tf Fig 15b. Switching Time Waveforms www.irf.com IRF8721PbF Id Current Regulator Same Type as D.U.T. Vds Vgs 50KΩ .2μF 12V .3μF + V - DS D.U.T. Vgs(th) VGS 3mA IG ID Current Sampling Resistors Qgodr Fig 16b. Gate Charge Waveform Fig 16a. Gate Charge Test Circuit D.U.T Driver Gate Drive P.W. + ƒ + ‚ „ Reverse Recovery Current VDD P.W. Period D.U.T. ISD Waveform + dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test D= *  • • • • Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - - RG Qgs2 Qgs1 Qgd + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs www.irf.com 7 IRF8721PbF SO-8 Package Outline Dimensions are shown in milimeters (inches) D DIM B 5 A 8 6 7 6 5 H E 1 6X 2 3 0.25 [.010] 4 A e e1 8X b 0.25 [.010] A A1 INCH E S MIL L IME T E R S MIN MAX MIN A .0532 .0688 1.35 1.75 MAX A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 E .1497 .1574 3.80 4.00 e .050 B AS IC 1.27 B AS IC e1 .025 B AS IC 0.635 B AS IC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° K x 45° C y 0.10 [.004] 8X L 8X c 7 C A B FOOT PRINT 8X 0.72 [.028] NOT ES : 1. DIMENS IONING & T OLERANCING PER AS ME Y14.5M-1994. 2. CONT ROLLING DIMENS ION: MILLIMET ER 3. DIMENS IONS ARE S HOWN IN MILLIMET ERS [INCHES ]. 4. OUT LINE CONFORMS T O JEDEC OUT LINE MS -012AA. 5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS . MOLD PROT RUS IONS NOT T O EXCEED 0.15 [.006]. 6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS . MOLD PROT RUS IONS NOT T O EXCEED 0.25 [.010]. 6.46 [.255] 7 DIMENS ION IS T HE LENGT H OF LEAD FOR S OLDERING T O A S UBS T RAT E. 3X 1.27 [.050] 8X 1.78 [.070] SO-8 Part Marking Information EXAMPLE: THIS IS AN IRF7101 (MOS FET ) INT ERNAT IONAL RECTIFIER LOGO XXXX F7101 DAT E CODE (YWW) P = DIS GNAT ES LEAD - FREE PRODUCT (OPT IONAL) Y = LAS T DIGIT OF T HE YEAR WW = WEEK A = AS S EMBLY S IT E CODE LOT CODE PART NUMBER Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 www.irf.com IRF8721PbF SO-8 Tape and Reel Dimensions are shown in milimeters (inches) TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Notes:  Repetitive rating; pulse width limited by max. junction temperature. ‚ Starting TJ = 25°C, L = 1.09mH, RG = 25Ω, IAS = 11A. ƒ Pulse width ≤ 400μs; duty cycle ≤ 2%. „ When mounted on 1 inch square copper board. … Rθ is measured at TJ of approximately 90°C. Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.07/2007 www.irf.com 9