Transcript
PD - 97523
IRF9333PbF HEXFET® Power MOSFET VDS
-30
V
RDS(on) max
19.4
m
:
32.5
m
:
(@VGS = -10V)
RDS(on) max (@VGS = -4.5V)
Qg (typical)
14
nC
ID
-9.2
A
(@TA = 25°C)
6
'
6
'
6
'
*
'
SO-8
Applications
• Charge and Discharge Switch for Notebook PC Battery Application Features and Benefits Features
Resulting Benefits
Industry-Standard SO8 Package
Multi-Vendor Compatibility
RoHS Compliant Containing no Lead, no Bromide and no Halogen
Environmentally Friendlier
Orderable part number
Package Type
IRF9333PbF IRF9333TRPbF
SO8 SO8
Standard Pack Form Quantity Tube/Bulk 95 4000 Tape and Reel
Note
Absolute Maximum Ratings Parameter
Max.
VDS
Drain-to-Source Voltage
-30
VGS
Gate-to-Source Voltage
± 20
ID @ TA = 25°C
Continuous Drain Current, VGS @ 10V
-9.2
ID @ TA = 70°C
Continuous Drain Current, VGS @ 10V
-7.3
IDM
Pulsed Drain Current
-75
PD @TA = 25°C
Power Dissipation
PD @TA = 70°C
f Power Dissipation f
c
2.5 1.6
Linear Derating Factor
0.02
TJ
Operating Junction and
-55 to + 150
TSTG
Storage Temperature Range
Units V
A
W W/°C °C
Notes through are on page 2
www.irf.com
1 6/21/10
IRF9333PbF Static @ TJ = 25°C (unless otherwise specified) Parameter Drain-to-Source Breakdown Voltage
-30
–––
ΔΒVDSS/ΔTJ
Breakdown Voltage Temp. Coefficient
–––
0.019
–––
–––
15.6
19.4
–––
25.6
32.5
RDS(on)
Static Drain-to-Source On-Resistance
–––
V
e e
Gate Threshold Voltage
-1.3
-1.8
-2.4
V
ΔVGS(th)
Gate Threshold Voltage Coefficient
–––
-5.7
–––
mV/°C
IDSS
Drain-to-Source Leakage Current
–––
–––
-1.0
–––
–––
-150
Gate-to-Source Forward Leakage
–––
–––
-100
Gate-to-Source Reverse Leakage
–––
–––
100
gfs
Forward Transconductance
13
–––
–––
S
Qg
Total Gate Charge
–––
14
–––
nC
Qg Qgs Qgd RG
h Total Gate Charge h
h Gate-to-Drain Charge h Gate Resistance h Gate-to-Source Charge
–––
25
38
–––
3.5
–––
–––
6.4
–––
VGS = 0V, ID = -250μA
V/°C Reference to 25°C, ID = -1mA VGS = -10V, ID = -9.2A mΩ VGS = -4.5V, ID = -7.5A
VGS(th)
IGSS
Conditions
Min. Typ. Max. Units
BVDSS
μA nA
nC
VDS = VGS, ID = -25μA VDS = -24V, VGS = 0V VDS = -24V, VGS = 0V, TJ = 125°C VGS = -20V VGS = 20V VDS = -10V, ID = -7.5A VDS = -15V, VGS = -4.5V, ID = - 7.5A VGS = -10V VDS = -15V ID = -7.5A
Ω
–––
15
–––
Turn-On Delay Time
–––
16
–––
VDD = -15V, VGS = -4.5V
tr
Rise Time
–––
44
–––
ID = -1.0A
td(off)
Turn-Off Delay Time
–––
55
–––
tf
Fall Time
–––
49
–––
Ciss
Input Capacitance
–––
1110
–––
Coss
Output Capacitance
–––
230
–––
Crss
Reverse Transfer Capacitance
–––
160
–––
td(on)
ns
e
RG = 6.8Ω See Figs. 20a &20b VGS = 0V
pF
VDS = -25V ƒ = 1.0MHz
Avalanche Characteristics Parameter EAS
Single Pulse Avalanche Energy
IAR
Avalanche Current
Diode Characteristics
c
d
Parameter IS
Max.
Units
–––
100
mJ
–––
-7.5
A
Conditions
Min. Typ. Max. Units
Continuous Source Current (Body Diode)
ISM
Typ.
–––
–––
MOSFET symbol
-2.5 A
Pulsed Source Current
c
(Body Diode)
–––
–––
-75
D
showing the G
integral reverse
S
p-n junction diode.
e
VSD
Diode Forward Voltage
–––
–––
-1.2
V
TJ = 25°C, IS = -2.5A, VGS = 0V
trr
Reverse Recovery Time
–––
24
36
ns
TJ = 25°C, IF = -2.5A, VDD = -24V
Qrr
Reverse Recovery Charge
–––
15
23
nC
di/dt = 100A/μs
Thermal Resistance Parameter RθJL
Junction-to-Drain Lead
RθJA
Junction-to-Ambient
f
g
Typ.
Max.
–––
20
–––
50
e
Units °C/W
Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 3.5mH, RG = 25Ω, IAS = -7.5A. Pulse width ≤ 400μs; duty cycle ≤ 2%. When mounted on 1 inch square copper board.
Rθ is measured at TJ of approximately 90°C. For DESIGN AID ONLY, not subject to production testing.
2
www.irf.com
IRF9333PbF 100
100
10 BOTTOM
TOP
-ID, Drain-to-Source Current (A)
-ID, Drain-to-Source Current (A)
TOP
VGS -10V -5.0V -4.5V -4.0V -3.5V -3.0V -2.8V -2.5V
1
-2.5V
0.1
10
BOTTOM
-2.5V
1
≤60μs PULSE WIDTH Tj = 25°C
≤60μs PULSE WIDTH Tj = 150°C
0.01
0.1 0.1
1
10
100
0.1
-VDS, Drain-to-Source Voltage (V)
10
100
Fig 2. Typical Output Characteristics
100
1.6 RDS(on) , Drain-to-Source On Resistance (Normalized)
-ID, Drain-to-Source Current (A)
1
-VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
10
TJ = 150°C 1
TJ = 25°C
0.1
VDS = -15V
≤ 60μs PULSE WIDTH 0.01 1.0
2.0
3.0
4.0
5.0
ID = -9.2A
1.2
1.0
0.8
0.6 -60 -40 -20 0
Fig 4. Normalized On-Resistance vs. Temperature 14 -VGS, Gate-to-Source Voltage (V)
VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd
Ciss
1000
20 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics 10000
VGS = -10V
1.4
-VGS, Gate-to-Source Voltage (V)
C, Capacitance(pF)
VGS -10V -5.0V -4.5V -4.0V -3.5V -3.0V -2.8V -2.5V
Coss Crss
ID= -7.5A
12
VDS= -24V VDS= -15V
10
VDS= -6.0V
8 6 4 2 0
100 1
10
100
-VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage
www.irf.com
0
8
16
24
32
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage
3
IRF9333PbF 100
1000 -ID, Drain-to-Source Current (A)
-ISD, Reverse Drain Current (A)
TJ = 150°C
OPERATION IN THIS AREA LIMITED BY R DS(on)
100
10
TJ = 25°C
1
1msec 10
10msec
1
TA = 25°C Tj = 150°C Single Pulse
VGS = 0V 0.1 0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
0.1
-VSD, Source-to-Drain Voltage (V)
1
10
100
-VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area 2.5 -VGS(th), Gate threshold Voltage (V)
10
8 -ID, Drain Current (A)
DC
0.1
6
4
2
2.0
ID = -25μA
1.5
1.0
0 25
50
75
100
125
-75 -50 -25
150
0
25
50
75 100 125 150
TJ , Temperature ( °C )
TA , Ambient Temperature (°C)
Fig 10. Threshold Voltage vs. Temperature
Fig 9. Maximum Drain Current vs. Ambient Temperature
Thermal Response ( ZthJA ) °C/W
100
10
1
D = 0.50 0.20 0.10 0.05 0.02 0.01
0.1
0.01
0.001 1E-006
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + T A
SINGLE PULSE ( THERMAL RESPONSE )
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
4
www.irf.com
60
( Ω) RDS(on), Drain-to -Source On Resistance m
RDS(on), Drain-to -Source On Resistance (mΩ)
IRF9333PbF ID = -9.4A 50
40
30 TJ = 125°C
20 TJ = 25°C 10 2
4
6
8
10
12
14
16
18
80 70 60 50
VGS = -4.5V
40 30 VGS = -10V
20 10
20
0
10
30
40
-VGS, Gate -to -Source Voltage (V)
60
70
Fig 13. Typical On-Resistance vs. Drain Current
420
1000
ID TOP -2.1A -3.0A BOTTOM -7.5A
300
800
Single Pulse Power (W)
360
240 180 120
600
400
200
60 0
0 25
50
75
100
125
1E-5
150
1E-4
Fig 14. Maximum Avalanche Energy vs. Drain Current
D.U.T *
1E-2
Driver Gate Drive
+
-
D.U.T. ISD Waveform Reverse Recovery Current
+
di/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test
VDD
+ -
Re-Applied Voltage
Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
Body Diode
www.irf.com
VDD
Forward Drop
Inductor Current Inductor Curent Ripple ≤ 5%
Reverse Polarity of D.U.T for P-Channel
P.W. Period
*
• • • •
1E+0
VGS=10V
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
D=
Period
P.W.
-
1E-1
Fig 16. Typical Power vs. Time
+
RG
1E-3
Time (sec)
Starting TJ , Junction Temperature (°C)
*
50
-ID, Drain Current (A)
Fig 12. On-Resistance vs. Gate Voltage EAS , Single Pulse Avalanche Energy (mJ)
20
ISD
* VGS = 5V for Logic Level Devices
Fig 17. Diode Reverse Recovery Test Circuit for P-Channel HEXFET® Power MOSFETs
5
IRF9333PbF Id Vds Vgs
L VCC
DUT
0
20K 1K
Vgs(th)
SS
Qgodr
Fig 18a. Gate Charge Test Circuit
I AS
D.U.T
RG
IAS
-V GS -20V
tp
Qgs2 Qgs1
Fig 18b. Gate Charge Waveform
L
VDS
Qgd
VDD A
DRIVER 0.01Ω
tp V(BR)DSS 15V
Fig 19b. Unclamped Inductive Waveforms
Fig 19a. Unclamped Inductive Test Circuit
VDS
RD td(on)
VGS RG
t d(off)
tf
VGS
D.U.T.
-
+
10% V DD
-VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
Fig 20a. Switching Time Test Circuit
6
tr
90% VDS
Fig 20b. Switching Time Waveforms
www.irf.com
IRF9333PbF SO-8 Package Outline(Mosfet & Fetky) Dimensions are shown in milimeters (inches)
'
,1&+(6 0,1 0$; $ $ E F ' ( H %$6,& H %$6,& + . / \
',0
%
$
+ >@
(
$
; H
H
;E >@
$
.[ &
\ >@
$
0,//,0(7(56 0,1 0$; %$6,& %$6,&
;/
;F
& $ %
)22735,17 127(6 ',0(16,21,1* 72/(5$1&,1*3(5$60(<0 &21752//,1*',0(16,210,//,0(7(5 ',0(16,216$5(6+2:1,10,//,0(7(56>,1&+(6@ 287/,1(&21)250672-('(&287/,1(06$$ ',0(16,21'2(6127,1&/8'(02/'3527586,216 02/'3527586,21612772(;&(('>@ ',0(16,21'2(6127,1&/8'(02/'3527586,216 02/'3527586,21612772(;&(('>@ ',0(16,21,67+(/(1*7+2)/($')2562/'(5,1*72 $68%675$7(
;>@
>@
;>@
;>@
SO-8 Part Marking Information (;$03/(7+,6,6$1,5)026)(7
,17(51$7,21$/ 5(&7,),(5 /2*2
;;;; )
'$7(&2'(<:: 3 ',6*1$7(6/($')5(( 352'8&7237,21$/ < /$67',*,72)7+(<($5 :: :((. $ $66(0%/<6,7(&2'( /27&2'( 3$57180%(5
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
7
IRF9333PbF SO-8 Tape and Reel (Dimensions are shown in milimeters (inches)) TERMINAL NUMBER 1
12.3 ( .484 ) 11.7 ( .461 )
8.1 ( .318 ) 7.9 ( .312 )
FEED DIRECTION
NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
330.00 (12.992) MAX.
14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
†
Qualification Information
Consumer ††
Qualification level
Moisture Sensitivity Level RoHS Compliant
(per JEDEC JESD47F††† guidelines) MSL1
SO-8
(per JEDEC J-STD-020D†††) Yes
Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/ Applicable version of JEDEC standard at the time of product release. Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.6/2010
8
www.irf.com