Preview only show first 10 pages with watermark. For full document please download

Irfb4110pbf

   EMBED


Share

Transcript

IRFB4110PbF Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits HEXFET® Power MOSFET VDSS RDS(on) typ. max. ID (Silicon Limited) D G Benefits l Improved Gate, Avalanche and Dynamic dv/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead Free l RoHS Compliant, Halogen-Free Package Type IRFB4110PbF TO-220 c ID (Package Limited) S Base Part Number 100V 3.7mΩ 4.5mΩ 180A 120A D G D S TO-220AB G D S Gate Drain Source Standard Pack Form Quantity Tube 50 Orderable Part Number IRFB4110PbF Absolute Maximum Ratings Symbol Parameter Max. ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited) Units c 130c 180 A ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Wire Bond Limited) 120 IDM Pulsed Drain Current 670 PD @TC = 25°C Maximum Power Dissipation 370 W Linear Derating Factor 2.5 VGS Gate-to-Source Voltage ± 20 W/°C V dv/dt TJ Peak Diode Recovery 5.3 TSTG Storage Temperature Range d f 300 Soldering Temperature, for 10 seconds (1.6mm from case) x Avalanche Characteristics Single Pulse Avalanche Energy IAR Avalanche Currentd EAR Repetitive Avalanche Energy e g x 10lb in (1.1N m) Mounting torque, 6-32 or M3 screw EAS (Thermally limited) V/ns °C -55 to + 175 Operating Junction and 190 mJ See Fig. 14, 15, 22a, 22b A mJ Thermal Resistance Symbol Parameter Typ. Max. ––– 0.402 Case-to-Sink, Flat Greased Surface 0.50 ––– Junction-to-Ambient ––– 62 RθJC Junction-to-Case RθCS RθJA 1 k j www.irf.com © 2014 International Rectifier Submit Datasheet Feedback Units °C/W April 28, 2014 IRFB4110PbF Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. Typ. Max. Units 100 ––– ––– 2.0 ––– ––– ––– ––– ––– ––– 0.108 ––– 3.7 4.5 ––– 4.0 ––– 20 ––– 250 ––– 100 ––– -100 Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 5mA mΩ VGS = 10V, ID = 75A V VDS = VGS, ID = 250µA µA VDS = 100V, VGS = 0V VDS = 100V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V d g Dynamic @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units gfs Qg Qgs Qgd Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge 160 ––– ––– ––– ––– 150 35 43 ––– 210 ––– ––– S nC RG td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance ––– 1.3 25 67 78 88 9620 670 250 820 950 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Ω i Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related) h ––– ––– ––– ––– ––– ––– ––– ––– ––– ns pF Conditions VDS = 50V, ID = 75A ID = 75A VDS = 50V VGS = 10V g VDD = 65V ID = 75A RG = 2.6Ω VGS = 10V VGS = 0V VDS = 50V ƒ = 1.0MHz VGS = 0V, VDS = 0V to 80V VGS = 0V, VDS = 0V to 80V g j h Diode Characteristics Symbol IS Parameter Continuous Source Current VSD trr (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Qrr Reverse Recovery Charge IRRM ton Reverse Recovery Current Forward Turn-On Time ISM di Notes:  Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 120A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. ‚ Repetitive rating; pulse width limited by max. junction temperature. ƒ Limited by TJmax, starting TJ = 25°C, L = 0.033mH RG = 25Ω, IAS = 108A, VGS =10V. Part not recommended for use above this value. 2 www.irf.com © 2014 International Rectifier Min. Typ. Max. Units ––– ––– 170 ––– ––– c 670 A Conditions MOSFET symbol showing the integral reverse D G S p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 75A, VGS = 0V VR = 85V, ––– 50 75 ns TJ = 25°C T = 125°C I ––– 60 90 J F = 75A di/dt = 100A/µs ––– 94 140 nC TJ = 25°C TJ = 125°C ––– 140 210 ––– 3.5 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) g g „ ISD ≤ 75A, di/dt ≤ 630A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. … Pulse width ≤ 400µs; duty cycle ≤ 2%. † Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . ‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom mended footprint and soldering techniques refer to application note #AN-994. ‰ Rθ is measured at TJ approximately 90°C. Submit Datasheet Feedback April 28, 2014 IRFB4110PbF 1000 1000 BOTTOM VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V TOP 100 ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V BOTTOM 100 4.5V ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 25°C Tj = 175°C 10 10 0.1 1 10 100 0.1 V DS, Drain-to-Source Voltage (V) 100 3.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 10 Fig 2. Typical Output Characteristics 1000 100 T J = 25°C 10 T J = 175°C 1 VDS = 25V ≤60µs PULSE WIDTH 0.1 ID = 75A VGS = 10V 2.5 2.0 1.5 1.0 0.5 1 2 3 4 5 6 7 -60 -40 -20 0 20 40 60 80 100120140160180 VGS, Gate-to-Source Voltage (V) T J , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature 100000 12.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd VGS, Gate-to-Source Voltage (V) ID= 75A C oss = C ds + C gd C, Capacitance (pF) 1 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Ciss 10000 Coss 1000 Crss 100 10.0 VDS= 80V VDS= 50V 8.0 6.0 4.0 2.0 0.0 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 3 4.5V www.irf.com © 2014 International Rectifier 0 50 100 150 200 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage Submit Datasheet Feedback April 28, 2014 IRFB4110PbF 10000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 T J = 175°C 100 T J = 25°C 10 1 OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 100 100µsec 10 1msec 1 VGS = 0V 0.01 0.1 0.0 0.5 1.0 1.5 0.1 2.0 Limited By Package ID, Drain Current (A) 140 120 100 80 60 40 20 0 50 75 100 125 150 175 V(BR)DSS , Drain-to-Source Breakdown Voltage (V) 180 25 100 1000 125 Id = 5mA 120 115 110 105 100 95 90 -60 -40 -20 0 20 40 60 80 100120140160180 TC , Case Temperature (°C) T J , Temperature ( °C ) Fig 10. Drain-to-Source Breakdown Voltage Fig 9. Maximum Drain Current vs. Case Temperature 800 EAS , Single Pulse Avalanche Energy (mJ) 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ID 17A 27A BOTTOM 108A 700 TOP 600 500 400 300 200 100 0 0.0 0 20 40 60 80 100 120 VDS, Drain-to-Source Voltage (V) Fig 11. Typical COSS Stored Energy 4 10 Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 160 1 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) Energy (µJ) 10msec DC Tc = 25°C Tj = 175°C Single Pulse 0.1 www.irf.com © 2014 International Rectifier 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) Fig 12. Maximum Avalanche Energy vs. DrainCurrent Submit Datasheet Feedback April 28, 2014 IRFB4110PbF Thermal Response ( Z thJC ) 1 D = 0.50 0.1 0.20 0.10 0.05 0.01 0.02 0.01 τJ R1 R1 τJ τ1 R2 R2 R3 R3 τC τ2 τ1 τ3 τ2 τ3 Ci= τi/R i Ci= τi/Ri 0.001 SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 τC Ri (°C/W) 0.09876251 0.2066697 0.09510464 τi (sec) 0.000111 0.001743 0.012269 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Avalanche Current (A) Duty Cycle = Single Pulse 100 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse) 0.01 0.05 10 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 250 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 108A 200 150 100 50 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature 5 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback April 28, 2014 IRFB4110PbF 25 3.5 IF = 30A V R = 85V 20 TJ = 25°C TJ = 125°C 3.0 2.5 IRR (A) VGS(th), Gate threshold Voltage (V) 4.0 ID = 250µA ID = 1.0mA ID = 1.0A 2.0 1.5 15 10 5 1.0 0 0.5 -75 -50 -25 0 0 25 50 75 100 125 150 175 200 200 600 800 1000 Fig. 17 - Typical Recovery Current vs. dif/dt Fig 16. Threshold Voltage vs. Temperature 560 25 20 IF = 45A V R = 85V 480 IF = 30A V R = 85V TJ = 25°C TJ = 125°C 400 TJ = 25°C TJ = 125°C QRR (nC) 15 10 320 240 5 160 80 0 0 200 400 600 800 0 1000 200 400 600 800 1000 diF /dt (A/µs) diF /dt (A/µs) Fig. 19 - Typical Stored Charge vs. dif/dt Fig. 18 - Typical Recovery Current vs. dif/dt 560 QRR (nC) IRR (A) 400 diF /dt (A/µs) T J , Temperature ( °C ) 480 IF = 45A V R = 85V 400 TJ = 25°C TJ = 125°C 320 240 160 80 0 200 400 600 800 1000 diF /dt (A/µs) Fig. 20 - Typical Stored Charge vs. dif/dt 6 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback April 28, 2014 IRFB4110PbF D.U.T Driver Gate Drive ƒ - ‚ „ - - * D.U.T. ISD Waveform Reverse Recovery Current +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V D.U.T RG VGS 20V DRIVER L VDS tp + V - DD IAS tp A 0.01Ω I AS Fig 21a. Unclamped Inductive Test Circuit LD Fig 21b. Unclamped Inductive Waveforms VDS VDS 90% + VDD - 10% D.U.T VGS VGS Pulse Width < 1µs Duty Factor < 0.1% td(on) Fig 22a. Switching Time Test Circuit tr td(off) tf Fig 22b. Switching Time Waveforms Id Vds Vgs L DUT 0 VCC Vgs(th) 1K Qgs1 Qgs2 Fig 23a. Gate Charge Test Circuit 7 www.irf.com © 2014 International Rectifier Qgd Qgodr Fig 23b. Gate Charge Waveform Submit Datasheet Feedback April 28, 2014 IRFB4110PbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE PART NUMBER IRFB4110 PYWW? LC LC OR DATE CODE P = LEAD-FREE Y = LAST DIGIT OF YEAR WW = WORK WEEK ? = ASSEMBLY SITE CODE INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE PART NUMBER IRFB4110 YWWP LC LC DATE CODE Y = LAST DIGIT OF YEAR WW = WORK WEEK P = LEAD-FREE TO-220AB packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ 8 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback April 28, 2014 IRFB4110PbF Qualification information† † Industrial Qualification level (per JEDEC JESD47F Moisture Sensitivity Level †† guidelines) TO-220 RoHS compliant N/A Yes † Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/ †† Applicable version of JEDEC standard at the time of product release. Revision History Date 4/28/2014 Comment • Updated data sheet with new IR corporate template. • Updated package outline & part marking on page 8. • Added bullet point in the Benefits "RoHS Compliant, Halogen -Free" on page 1. • Updated typo on the Fig.19 and Fig.20, unit of Y-axis from "A" to "nC" on page 6. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/ 9 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback April 28, 2014