Transcript
PD - 97227A
IRFB4228PbF
PDP SWITCH Features l Advanced Process Technology l Key Parameters Optimized for PDP Sustain, Energy Recovery and Pass Switch Applications l Low E PULSE Rating to Reduce Power Dissipation in PDP Sustain, Energy Recovery and Pass Switch Applications l Low QG for Fast Response l High Repetitive Peak Current Capability for Reliable Operation l Short Fall & Rise Times for Fast Switching l175°C Operating Junction Temperature for Improved Ruggedness l Repetitive Avalanche Capability for Robustness and Reliability
Key Parameters VDS min VDS (Avalanche) typ. RDS(ON) typ. @ 10V IRP max @ TC= 100°C TJ max
150 180 12 170 175
D
V V m: A °C
D
G G
S
D
S
TO-220AB
G
D
S
Gate
Drain
Source
Description This HEXFET® Power MOSFET is specifically designed for Sustain; Energy Recovery & Pass switch applications in Plasma Display Panels. This MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area and low EPULSE rating. Additional features of this MOSFET are 175°C operating junction temperature and high repetitive peak current capability. These features combine to make this MOSFET a highly efficient, robust and reliable device for PDP driving applications.
Absolute Maximum Ratings Max.
Parameter VGS ID @ TC = 25°C
Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V
ID @ TC = 100°C IDM IRP @ TC = 100°C PD @TC = 25°C PD @TC = 100°C TJ TSTG
Units
±30
V A
Continuous Drain Current, VGS @ 10V
83 59
Pulsed Drain Current Repetitive Peak Current
330 170
c
Power Dissipation Power Dissipation
g
Linear Derating Factor Operating Junction and Storage Temperature Range Soldering Temperature for 10 seconds Mounting Torque, 6-32 or M3 Screw
330 170
W
2.2 -40 to + 175
W/°C °C
x
300
x
10lb in (1.1N m)
N
Thermal Resistance Parameter
RθJC RθCS RθJA
Junction-to-Case
f
Case-to-Sink, Flat, Greased Surface Junction-to-Ambient
f
Typ. ––– 0.50 –––
Max. 0.45 ––– 62
Units °C/W
Notes through
are on page 8
www.irf.com
1 09/14/07
IRFB4228PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter
Min.
Typ. Max. Units
Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient
150 –––
––– 150
––– –––
VGS(th)
Static Drain-to-Source On-Resistance Gate Threshold Voltage
––– 3.0
12 –––
15 5.0
∆VGS(th)/∆TJ IDSS
Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current
––– –––
-14 –––
––– 20
Gate-to-Source Forward Leakage
––– –––
––– –––
1.0 100
Gate-to-Source Reverse Leakage Forward Transconductance
––– 170
––– –––
-100 –––
Total Gate Charge Gate-to-Drain Charge
––– –––
71 21
107 –––
Turn-On Delay Time Rise Time
––– –––
18 59
––– –––
Turn-Off Delay Time Fall Time
––– –––
24 33
––– –––
Shoot Through Blocking Time
100
–––
–––
–––
58
–––
–––
110
–––
Input Capacitance
–––
4530
–––
Output Capacitance Reverse Transfer Capacitance
––– –––
550 100
––– –––
Effective Output Capacitance Internal Drain Inductance
––– –––
480 4.5
––– –––
BVDSS ∆ΒVDSS/∆TJ RDS(on)
IGSS gfs Qg Qgd td(on) tr td(off) tf tst EPULSE
Ciss Coss Crss Coss eff. LD
Energy per Pulse
VGS = 0V, ID = 250µA V mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 33A
e
V
Internal Source Inductance
–––
7.5
VDS = VGS, ID = 250µA
mV/°C µA VDS = 150V, VGS = 0V mA VDS = 150V, VGS = 0V, TJ = 125°C nA
VGS = 20V VGS = -20V
S
VDS = 25V, ID = 50A VDD = 75V, ID = 50A, VGS = 10V
nC
e
VDD = 75V, VGS = 10V ns
ID = 50A
e
RG = 2.5Ω ns µJ
pF
See Fig. 22 VDD = 120V, VGS = 15V, RG= 5.1Ω L = 220nH, C= 0.3µF, VGS = 15V VDS = 120V, RG= 5.1Ω, TJ = 25°C L = 220nH, C= 0.3µF, VGS = 15V VDS = 120V, RG= 5.1Ω, TJ = 100°C VGS = 0V VDS = 25V ƒ = 1.0MHz VGS = 0V, VDS = 0V to 120V Between lead,
nH LS
Conditions
–––
D
6mm (0.25in.) from package and center of die contact
G S
Avalanche Characteristics Typ.
Max.
Units
Single Pulse Avalanche Energy
–––
120
mJ
Repetitive Avalanche Energy Repetitive Avalanche Voltage
––– 180
33 –––
mJ
–––
50
A
Parameter
EAS EAR VDS(Avalanche) IAS
Avalanche Current
d
d c c
V
Diode Characteristics Parameter IS @ TC = 25°C Continuous Source Current ISM VSD trr Qrr
2
(Body Diode) Pulsed Source Current
c
Min.
Typ. Max. Units
–––
–––
83
–––
–––
330
Conditions MOSFET symbol
A
(Body Diode) Diode Forward Voltage
–––
–––
1.3
V
Reverse Recovery Time Reverse Recovery Charge
––– –––
76 230
110 350
ns nC
showing the integral reverse p-n junction diode. TJ = 25°C, IS = 50A, VGS = 0V TJ = 25°C, IF = 50A, VDD = 50V
e
di/dt = 100A/µs
e
www.irf.com
IRFB4228PbF 1000
1000
ID, Drain-to-Source Current (A)
100
BOTTOM
10
1 5.0V 0.1
TOP
ID, Drain-to-Source Current (A)
VGS 15V 10V 8.0V 7.0V 6.5V 6.0V 5.5V 5.0V
TOP
100 BOTTOM
5.0V
10
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 25°C 0.01
Tj = 175°C
1 0.1
1
10
100
1000
0.1
V DS, Drain-to-Source Voltage (V)
10
100
1000
Fig 2. Typical Output Characteristics 3.5 RDS(on) , Drain-to-Source On Resistance (Normalized)
1000
ID, Drain-to-Source Current (A)
1
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
T J = 175°C
100
T J = 25°C
10
1 VDS = 25V ≤60µs PULSE WIDTH
ID = 50A VGS = 10V
3.0 2.5 2.0 1.5 1.0 0.5 0.0
0.1 3
4
5
6
7
8
9
10
11
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
-60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (°C)
Fig 4. Normalized On-Resistance vs. Temperature
120
120 L = 220nH C = 0.3µF 100°C 25°C
100 90
L = 220nH C = Variable 100°C 25°C
110 100
Energy per Pulse (µJ)
110
Energy per Pulse (µJ)
VGS 15V 10V 8.0V 7.0V 6.5V 6.0V 5.5V 5.0V
80 70 60 50
90 80 70 60 50 40
40
30
30
20
20
10 85
90
95
100 105 110 115 120 125
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical EPULSE vs. Drain-to-Source Voltage
www.irf.com
60
65
70
75
80
85
90
95 100 105
ID, Peak Drain Current (A)
Fig 6. Typical EPULSE vs. Drain Current
3
IRFB4228PbF 140
1000
L = 220nH ISD, Reverse Drain Current (A)
Energy per Pulse (µJ)
120 100 C = 0.3µF
80 60
C = 0.2µF
40 C = 0.1µF
20
T J = 175°C
100
T J = 25°C
10
1 VGS = 0V
0
0.1
20
40
60
80
100
120
140
160
0.2
ID= 50A
C, Capacitance (pF)
VGS, Gate-to-Source Voltage (V)
C rss = C gd
C oss = C ds + C gd
Ciss Coss Crss
100
1.4
1.6
VDS= 30V
8.0 6.0 4.0 2.0 0.0
1
10
100
0
1000
10
20
30
40
50
60
70
80
QG, Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
Fig 9. Typical Capacitance vs.Drain-to-Source Voltage 90
Fig 10. Typical Gate Charge vs.Gate-to-Source Voltage 1000
OPERATION IN THIS AREA LIMITED BY R DS(on)
ID, Drain-to-Source Current (A)
80 70 ID, Drain Current (A)
1.2
VDS= 120V VDS= 75V
10.0
10
60
100µsec
100
50 40 30 20
10msec
0
1msec
10 Tc = 25°C Tj = 175°C Single Pulse
10
1 25
50
75
100
125
150
175
T J , Junction Temperature (°C)
Fig 11. Maximum Drain Current vs. Case Temperature
4
1.0
12.0
VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED
1000
0.8
Fig 8. Typical Source-Drain Diode Forward Voltage
Fig 7. Typical EPULSE vs.Temperature
10000
0.6
VSD, Source-to-Drain Voltage (V)
Temperature (°C)
100000
0.4
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
Fig 12. Maximum Safe Operating Area
www.irf.com
IRFB4228PbF 500 EAS , Single Pulse Avalanche Energy (mJ)
RDS(on) , Drain-to -Source On Resistance (mΩ)
60 ID = 50A 50 40 T J = 125°C
30 20 10
TJ = 25°C
0
400
300
200
100
0 4
6
8
10
12
14
16
18
VGS, Gate -to -Source Voltage (V)
Fig 13. On-Resistance vs. Gate Voltage
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy vs. Temperature 250
5.0
ton= 1µs Duty cycle = 0.25 Half Sine Wave Square Pulse
4.5 Repetitive Peak Current (A)
VGS(th) , Gate Threshold Voltage (V)
ID TOP 13A 20A BOTTOM 50A
4.0 3.5 ID = 250µA
3.0 2.5 2.0
200
150
100
50
1.5 0
1.0 -75 -50 -25
0
25
25 50 75 100 125 150 175
50
75
100
125
150
175
Case Temperature (°C)
T J , Temperature ( °C )
Fig 16. Typical Repetitive peak Current vs. Case temperature
Fig 15. Threshold Voltage vs. Temperature
Thermal Response ( Z thJC )
1
D = 0.50 0.1
0.20 0.10 0.05
τJ
0.02 0.01
0.01
R1 R1 τJ τ1
τ1
R2 R2 τ2
τ3
τ2
Ci= τi/Ri Ci i/Ri
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-006
1E-005
0.0001
R3 R3 τC τ τ3
Ri (°C/W) τi (sec) 0.0852 0.000052 0.1882 0.1769
0.000980 0.008365
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFB4228PbF Driver Gate Drive
D.U.T
+
-
-
*
RG
• • • •
***
D.U.T. ISD Waveform Reverse Recovery Current
+
dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test
P.W. Period VGS=10V
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
-
D=
Period
P.W.
+
V DD
**
+ -
Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
Re-Applied Voltage
Body Diode
VDD
Forward Drop
Inductor Curent ISD
Ripple ≤ 5%
* Use P-Channel Driver for P-Channel Measurements ** Reverse Polarity for P-Channel
*** VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs
V(BR)DSS 15V
DRIVER
L
VDS
tp
D.U.T
RG VGS 20V
+ V - DD
IAS
A
0.01Ω
tp
I AS
Fig 19a. Unclamped Inductive Test Circuit
Fig 19b. Unclamped Inductive Waveforms
Current Regulator Same Type as D.U.T.
Id Vds 50KΩ 12V
Vgs
.2µF .3µF
D.U.T.
+ V - DS
VGS
Vgs(th) 3mA
IG
ID
Current Sampling Resistors
Fig 20a. Gate Charge Test Circuit
6
Qgs1 Qgs2
Qgd
Qgodr
Fig 20b. Gate Charge Waveform
www.irf.com
IRFB4228PbF A
RG
PULSE A
C
DRIVER L
VCC B
PULSE B
Ipulse
RG
DUT
tST
Fig 21b. tst Test Waveforms
Fig 21a. tst and EPULSE Test Circuit
Fig 21c. EPULSE Test Waveforms
V DS VGS RG
RD
VDS 90%
D.U.T. +
-V DD
VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
Fig 22a. Switching Time Test Circuit
www.irf.com
10% VGS td(on)
tr
t d(off)
tf
Fig 22b. Switching Time Waveforms
7
IRFB4228PbF TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information (;$03/( 7+,6,6$1,5) /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(& 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH
,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'(
3$57180%(5
'$7(&2'( <($5 :((. /,1(&
TO-220AB packages are not recommended for Surface Mount Application. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.096mH, RG = 25Ω, IAS = 50A. Pulse width ≤ 400µs; duty cycle ≤ 2%. Rθ is measured at TJ of approximately 90°C.
Half sine wave with duty cycle = 0.25, ton=1µsec.
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 09/2007
8
www.irf.com