Transcript
PD - 97278C
IRFB4410ZPbF IRFS4410ZPbF IRFSL4410ZPbF HEXFET® Power MOSFET Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits
D
G S
Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free
VDSS RDS(on) typ. max. ID (Silicon Limited)
D
D
D
G
D
S G
D
S G
D2Pak IRFS4410ZPbF
TO-220AB IRFB4410ZPbF
100V 7.2m: 9.0m: 97A
D
S
TO-262 IRFSL4410ZPbF
G
D
S
Gate
Drain
Source
Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG
Parameter
Max.
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Units
97 69 390 230 1.5 ± 20 16 -55 to + 175
Continuous Drain Current, VGS @ 10V (Silicon Limited) Pulsed Drain Current c Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery e Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw
A W W/°C V V/ns °C
300 10lbxin (1.1Nxm)
Avalanche Characteristics EAS (Thermally limited) IAR EAR
Single Pulse Avalanche Energy d Avalanche Current Repetitive Avalanche Energy f
242 See Fig. 14, 15, 22a, 22b,
mJ A mJ
Thermal Resistance Symbol RθJC RθCS RθJA RθJA
www.irf.com
Parameter Junction-to-Case j Case-to-Sink, Flat Greased Surface , TO-220 Junction-to-Ambient, TO-220 j 2
Junction-to-Ambient (PCB Mount) , D Pak ij
Typ.
Max.
––– 0.50 ––– –––
0.65 ––– 62 40
Units °C/W
1 02/14/08
IRF/B/S/SL4410ZPbF Static @ TJ = 25°C (unless otherwise specified) Symbol
Parameter
V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS
Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance
RG
Min. Typ. Max. Units 100 ––– ––– 2.0 ––– ––– ––– ––– –––
––– 0.12 7.2 ––– ––– ––– ––– ––– 0.70
––– ––– 9.0 4.0 20 250 100 -100 –––
Conditions
V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 5mAc mΩ VGS = 10V, ID = 58A f V VDS = VGS, ID = 150µA µA VDS = 100V, VGS = 0V VDS = 80V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Ω
Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR)
Parameter
Min. Typ. Max. Units
Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
140 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Effective Output Capacitance (Energy Related) h––– ––– Effective Output Capacitance (Time Related)g
––– 83 19 27 56 16 52 43 57 4820 340 170 420 690
––– 120 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– –––
S nC
ns
pF
Conditions VDS = 10V, ID = 58A ID = 58A VDS =50V VGS = 10V f ID = 58A, VDS =0V, VGS = 10V f VDD = 65V ID = 58A RG =2.7Ω VGS = 10V f VGS = 0V VDS = 50V ƒ = 1.0MHz, See Fig.5 VGS = 0V, VDS = 0V to 80V h, See Fig.11 VGS = 0V, VDS = 0V to 80V g
Diode Characteristics Symbol IS
Parameter Continuous Source Current
VSD trr
(Body Diode) Pulsed Source Current (Body Diode)c Diode Forward Voltage Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM ton
Reverse Recovery Current Forward Turn-On Time
ISM
Notes: Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.143mH RG = 25Ω, IAS = 58A, VGS =10V. Part not recommended for use above this value. ISD ≤ 58A, di/dt ≤ 610A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
Min. Typ. Max. Units –––
–––
–––
–––
Conditions
97
A
MOSFET symbol
390
A
showing the integral reverse
D
G
p-n junction diode. TJ = 25°C, IS = 58A, VGS = 0V f TJ = 25°C VR = 85V, TJ = 125°C IF = 58A di/dt = 100A/µs f TJ = 25°C
S
––– ––– 1.3 V ––– 38 57 ns ––– 46 69 ––– 53 80 nC TJ = 125°C ––– 82 120 ––– 2.5 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS.
When mounted on 1" square PCB (FR-4 or G-10 Material). For recom mended footprint and soldering techniques refer to application note #AN-994.
Rθ is measured at TJ approximately 90°C.
www.irf.com
IRF/B/S/SL4410ZPbF 1000
1000 VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V
100 BOTTOM
VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
100
4.5V 10
BOTTOM
10
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 175°C
Tj = 25°C
1
1 0.1
1
10
0.1
100
Fig 1. Typical Output Characteristics
10
100
Fig 2. Typical Output Characteristics
1000
2.5
VDS = 50V ≤60µs PULSE WIDTH
RDS(on) , Drain-to-Source On Resistance (Normalized)
ID, Drain-to-Source Current (A)
1
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
100
T J = 25°C
10 T J = 175°C 1
0.1
ID = 58A VGS = 10V 2.0
1.5
1.0
0.5
2
3
4
5
6
7
-60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 4. Normalized On-Resistance vs. Temperature
Fig 3. Typical Transfer Characteristics 100000
12.0
VGS = 0V, f = 1 MHZ Ciss = C gs + Cgd, C ds SHORTED Crss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 58A
Coss = Cds + Cgd
C, Capacitance (pF)
4.5V
10000 Ciss Coss 1000 Crss
VDS= 80V VDS= 40V
10.0
VDS= 20V
8.0
6.0
4.0
2.0
0.0
100 1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
0
20
40
60
80
100
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3
IRF/B/S/SL4410ZPbF 1000
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
T J = 175°C
OPERATION IN THIS AREA LIMITED BY R DS(on) 100µsec 1msec
100
10 T J = 25°C 1
10msec DC
10 Tc = 25°C Tj = 175°C Single Pulse
VGS = 0V 0.1
1 0.0
0.5
1.0
1.5
2.0
2.5
0
VSD, Source-to-Drain Voltage (V)
ID, Drain Current (A)
80
60
40
20
0 75
100
125
150
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
100
50
Id = 5mA 120 115 110 105 100 95 90 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Temperature ( °C )
Fig 9. Maximum Drain Current vs. Case Temperature 2.0
Fig 10. Drain-to-Source Breakdown Voltage
EAS , Single Pulse Avalanche Energy (mJ)
1000
1.8 1.6 1.4 1.2
Energy (µJ)
100
125
T C , Case Temperature (°C)
1.0 0.8 0.6 0.4 0.2 0.0
ID TOP 6.4A 9.4A BOTTOM 58A
900 800 700 600 500 400 300 200 100 0
-10 0
10 20 30 40 50 60 70 80 90 100 VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
4
10
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode Forward Voltage
25
1
VDS, Drain-to-Source Voltage (V)
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
www.irf.com
IRF/B/S/SL4410ZPbF Thermal Response ( Z thJC ) °C/W
1
D = 0.50 0.20 0.1 0.10 0.05
τJ
0.02 0.01
0.01
R1 R1 τJ τ1
R2 R2 τ2
τ1
τC τ
Ri (°C/W) τi (sec) 0.237 0.000178 0.413
τ2
0.003772
Ci= τi/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 100 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆ Tj = 150°C and Tstart =25°C (Single Pulse)
Duty Cycle = Single Pulse
Avalanche Current (A)
0.01 0.05
10
0.10
1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 0.1 1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
150
Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 58A 100
50
0 25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
IRF/B/S/SL4410ZPbF 20 IF = 39A VR = 85V
4.0
TJ = 25°C _____
15 3.5
IRRM (A)
VGS(th) , Gate threshold Voltage (V)
4.5
3.0 2.5 2.0
ID = 150µA
1.5
ID = 1.0mA ID = 1.0A
TJ = 125°C ----------
10
5
ID = 250µA
0
1.0 -75 -50 -25 0
100
25 50 75 100 125 150 175 200
200
300
500
600
700
dif/dt (A/µs)
T J , Temperature ( °C )
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage vs. Temperature
400
20
15
400
I = 58A F V = 85V R T = 25°C _____ J T = 125°C ---------J
350
IF = 39A VR = 85V TJ = 25°C _____
300
TJ = 125°C ----------
Qrr (nC)
IRRM (A)
250 10
200 150 100
5
50 0
0 100
200
300
400
500
600
100
700
200
300
400
500
600
700
dif/dt (A/µs)
dif/dt (A/µs)
Fig. 18 - Typical Recovery Current vs. dif/dt
Fig. 19 - Typical Stored Charge vs. dif/dt
450 400 350
Qrr (nC)
300
I = 58A F V = 85V R T = 25°C _____ J T = 125°C J ----------
250 200 150 100 50 0 100
200
300
400
500
600
700
dif/dt (A/µs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRF/B/S/SL4410ZPbF D.U.T
Driver Gate Drive
-
-
-
*
D.U.T. ISD Waveform Reverse Recovery Current
+
RG
• • • •
dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test
VDD
P.W. Period VGS=10V
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
+
D=
Period
P.W.
+
+ -
Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
Re-Applied Voltage
Body Diode
VDD
Forward Drop
Inductor Current Inductor Curent ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS tp
15V
DRIVER
L
VDS
D.U.T
RG
+ V - DD
IAS 20V
tp
A
0.01Ω
I AS
Fig 22a. Unclamped Inductive Test Circuit
Fig 22b. Unclamped Inductive Waveforms
LD VDS
VGS 90%
+ VDD D.U.T
10%
VGS
VDS
Second Pulse Width < 1µs Duty Factor < 0.1%
td(off)
Fig 23a. Switching Time Test Circuit
tf
td(on)
tr
Fig 23b. Switching Time Waveforms Id Vds Vgs
L VCC DUT
0
20K 1K
Vgs(th)
S
Qgodr
Fig 24a. Gate Charge Test Circuit
www.irf.com
Qgd
Qgs2 Qgs1
Fig 24b. Gate Charge Waveform
7
IRF/B/S/SL4410ZPbF TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information (;$03/( 7+,6,6$1,5) /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(& 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH
,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'(
3$57180%(5
'$7(&2'( <($5 :((. /,1(&
TO-220AB packages are not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkhexfet.html
8
www.irf.com
IRF/B/S/SL4410ZPbF TO-262 Package Outline Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information (;$03/( 7+,6,6$1,5// /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(&
,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'(
3$57180%(5
'$7(&2'( <($5 :((. /,1(&
25 ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'(
3$57180%(5
'$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7237,21$/ <($5 :((. $ $66(0%/<6,7(&2'(
TO-262 packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkhexfet.html
www.irf.com
9
IRF/B/S/SL4410ZPbF D2Pak (TO-263AB) Package Outline
Dimensions are shown in millimeters (inches)
D2Pak (TO-263AB) Part Marking Information 7+,6,6$1,5)6:,7+ /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(/
,17(51$7,21$/ 5(&7,),(5 /2*2
3$57180%(5 )6 '$7(&2'( <($5 :((. /,1(/
$66(0%/< /27&2'(
25 ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'(
3$57180%(5 )6
'$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7237,21$/ <($5 :((. $ $66(0%/<6,7(&2'(
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkhexfet.html
10
www.irf.com
IRF/B/S/SL4410ZPbF D2Pak Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153)
FEED DIRECTION 1.85 (.073) 1.65 (.065)
1.60 (.063) 1.50 (.059)
11.60 (.457) 11.40 (.449)
0.368 (.0145) 0.342 (.0135)
15.42 (.609) 15.22 (.601)
24.30 (.957) 23.90 (.941)
TRL 10.90 (.429) 10.70 (.421)
1.75 (.069) 1.25 (.049)
4.72 (.136) 4.52 (.178)
16.10 (.634) 15.90 (.626)
FEED DIRECTION
13.50 (.532) 12.80 (.504)
27.40 (1.079) 23.90 (.941) 4
330.00 (14.173) MAX.
NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
60.00 (2.362) MIN.
26.40 (1.039) 24.40 (.961) 3
30.40 (1.197) MAX. 4
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkhexfet.html
Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 02/08
www.irf.com
11