Preview only show first 10 pages with watermark. For full document please download

Irfp4668pbf

   EMBED


Share

Transcript

PD -97140 IRFP4668PbF HEXFET® Power MOSFET Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits G D Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free S VDSS 200V RDS(on) typ. 8.0m: max. 9.7m: 130A ID D G D S TO-247AC G D S Gate Drain Source Absolute Maximum Ratings Symbol ID @ TC = 25°C Parameter Max. Continuous Drain Current, VGS @ 10V Units 130 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 92 IDM Pulsed Drain Current c 520 PD @TC = 25°C Maximum Power Dissipation 520 W Linear Derating Factor 3.5 VGS Gate-to-Source Voltage ± 30 W/°C V dv/dt TJ Peak Diode Recovery e 57 Operating Junction and -55 to + 175 TSTG Storage Temperature Range A V/ns °C 300 Soldering Temperature, for 10 seconds (1.6mm from case) 10lbxin (1.1Nxm) Mounting torque, 6-32 or M3 screw Avalanche Characteristics EAS (Thermally limited) Single Pulse Avalanche Energy d IAR Avalanche Current c EAR Repetitive Avalanche Energy f mJ 760 See Fig. 14, 15, 22a, 22b, A mJ Thermal Resistance Symbol Parameter Typ. Max. RθJC Junction-to-Case j ––– 0.29 RθCS Case-to-Sink, Flat Greased Surface 0.24 ––– RθJA Junction-to-Ambient ij ––– 40 www.irf.com Units °C/W 1 9/8/08 IRFP4668PbF Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS ΔV(BR)DSS/ΔTJ RDS(on) VGS(th) IDSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance RG Min. Typ. Max. Units 200 ––– ––– 3.0 ––– ––– ––– ––– ––– ––– 0.21 8.0 ––– ––– ––– ––– ––– 1.0 ––– ––– 9.7 5.0 20 250 100 -100 ––– Conditions V VGS = 0V, ID = 250μA V/°C Reference to 25°C, ID = 5mAc mΩ VGS = 10V, ID = 81A f V VDS = VGS, ID = 250μA μA VDS = 200V, VGS = 0V VDS = 200V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Ω Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Min. Typ. Max. Units Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) 150 ––– ––– ––– 161 241 ––– 54 ––– ––– 52 ––– ––– 109 ––– Turn-On Delay Time ––– 41 ––– Rise Time ––– 105 ––– Turn-Off Delay Time ––– 64 ––– Fall Time ––– 74 ––– Input Capacitance ––– 10720 ––– Output Capacitance ––– 810 ––– Reverse Transfer Capacitance ––– 160 ––– Effective Output Capacitance (Energy Related)h ––– 630 ––– ––– 790 ––– Effective Output Capacitance (Time Related)g S nC ns pF Conditions VDS = 50V, ID = 81A ID = 81A VDS = 100V VGS = 10V f ID = 81A, VDS =0V, VGS = 10V VDD = 130V ID = 81A RG = 2.7Ω VGS = 10V f VGS = 0V VDS = 50V ƒ = 1.0MHz VGS = 0V, VDS = 0V to 160V h VGS = 0V, VDS = 0V to 160V g Diode Characteristics Symbol Parameter IS Continuous Source Current ISM (Body Diode) Pulsed Source Current VSD trr (Body Diode)c Diode Forward Voltage Reverse Recovery Time Qrr Reverse Recovery Charge IRRM ton Reverse Recovery Current Forward Turn-On Time Notes:  Repetitive rating; pulse width limited by max. junction temperature. ‚ Limited by TJmax, starting TJ = 25°C, L = 0.23mH RG = 25Ω, IAS = 81A, VGS =10V. Part not recommended for use above this value. ƒ ISD ≤ 81A, di/dt ≤ 520A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. „ Pulse width ≤ 400μs; duty cycle ≤ 2%. 2 Min. Typ. Max. Units ––– ––– ––– ––– 130 520 A Conditions MOSFET symbol showing the integral reverse D G p-n junction diode. TJ = 25°C, IS = 81A, VGS = 0V f TJ = 25°C VR = 100V, IF = 81A TJ = 125°C di/dt = 100A/μs f TJ = 25°C ––– ––– 1.3 V ––– 130 ––– ns ––– 155 ––– ––– 633 ––– nC TJ = 125°C ––– 944 ––– ––– 8.7 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) S … Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. † Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. ‡ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom mended footprint and soldering techniques refer to application note #AN-994. ˆ Rθ is measured at TJ approximately 90°C. www.irf.com IRFP4668PbF 1000 1000 100 BOTTOM 10 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP ≤60μs PULSE WIDTH 1 Tj = 25°C 0.1 100 BOTTOM VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 10 4.5V 4.5V ≤60μs PULSE WIDTH Tj = 175°C 0.01 1 0.1 1 10 100 1000 0.1 100 1000 Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 3.5 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current(Α) 10 VDS, Drain-to-Source Voltage (V) 1000 100 TJ = 175°C 10 TJ = 25°C 1 VDS = 50V ≤ 60μs PULSE WIDTH 0.1 3.0 4.0 5.0 6.0 7.0 8.0 2.5 2.0 1.5 1.0 0.5 0.0 9.0 -60 -40 -20 0 20 40 60 80 100120140160180 TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics 16000 VGS, Gate-to-Source Voltage (V) Coss = Cds + Cgd Ciss 8000 4000 Coss Crss 0 1 ID= 81A VDS = 160V VDS = 100V 12 VDS = 40V 8 4 0 10 100 VDS , Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage www.irf.com Fig 4. Normalized On-Resistance vs. Temperature 16 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 12000 ID = 81A VGS = 10V 3.0 VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) 1 VDS, Drain-to-Source Voltage (V) 0 40 80 120 160 200 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 3 IRFP4668PbF 10000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 TJ = 175°C 100 TJ = 25°C 10 1 1000 VGS = 0V 0.5 1.0 100μsec 100 10msec 10 1msec 1 0.1 1.5 ID , Drain Current (A) 120 100 80 60 40 20 0 100 125 150 175 V(BR)DSS , Drain-to-Source Breakdown Voltage (V) 140 75 1 1000 Id = 5mA 240 230 220 210 200 190 -60 -40 -20 0 20 40 60 80 100120140160180 TJ , Temperature ( °C ) Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Drain-to-Source Breakdown Voltage 2500 EAS, Single Pulse Avalanche Energy (mJ) 14 12 10 Energy (μJ) 100 250 TC , CaseTemperature (°C) 8 6 4 2 ID 18A 24A BOTTOM 81A TOP 2000 1500 1000 500 0 0 0 40 80 120 160 VDS, Drain-to-Source Voltage (V) Fig 11. Typical COSS Stored Energy 4 10 Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 50 DC VDS , Drain-toSource Voltage (V) VSD , Source-to-Drain Voltage (V) 25 Tc = 25°C Tj = 175°C Single Pulse 0.1 0.1 0.0 OPERATION IN THIS AREA LIMITED BY R DS (on) 200 25 50 75 100 125 150 175 Starting TJ, Junction Temperature (°C) Fig 12. Maximum Avalanche Energy Vs. DrainCurrent www.irf.com IRFP4668PbF Thermal Response ( Z thJC ) 1 D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 τJ 0.01 R1 R1 τJ τ1 R2 R2 R3 R3 Ri (°C/W) τC τ1 τ2 τ2 Ci= τi/Ri Ci= τi/Ri τ3 τ3 τ τι (sec) 0.063359 0.000278 0.110878 0.005836 0.114838 0.053606 0.001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔTj = 150°C and Tstart =25°C (Single Pulse) Avalanche Current (A) Duty Cycle = Single Pulse 100 0.01 0.05 10 0.10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔΤ j = 25°C and Tstart = 150°C. 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 800 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 22a, 22b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1% Duty Cycle ID = 81A 600 400 200 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRFP4668PbF 70 ID = 1.0A 60 ID = 1.0mA 5.0 ID = 250μA 50 4.0 IRRM - (A) VGS(th) Gate threshold Voltage (V) 6.0 3.0 40 30 2.0 1.0 0.0 20 IF = 52A VR = 100V 10 TJ = 125°C TJ = 25°C 0 -75 -50 -25 0 25 50 75 100 125 150 175 100 200 300 400 500 600 700 800 900 1000 TJ , Temperature ( °C ) dif / dt - (A / μs) Fig. 17 - Typical Recovery Current vs. dif/dt Fig 16. Threshold Voltage Vs. Temperature 5000 70 60 4000 QRR - (nC) IRRM - (A) 50 40 30 20 IF = 81A VR = 100V 10 TJ = 125°C TJ = 25°C 0 3000 2000 IF = 52A VR = 100V 1000 TJ = 125°C TJ = 25°C 0 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 dif / dt - (A / μs) dif / dt - (A / μs) Fig. 18 - Typical Recovery Current vs. dif/dt Fig. 19 - Typical Stored Charge vs. dif/dt 5000 QRR - (nC) 4000 3000 2000 1000 IF = 81A VR = 100V TJ = 125°C TJ = 25°C 0 100 200 300 400 500 600 700 800 900 1000 dif / dt - (A / μs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFP4668PbF Driver Gate Drive D.U.T ƒ - ‚ - - „ * D.U.T. ISD Waveform Reverse Recovery Current +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG + V - DD IAS VGS 20V A 0.01Ω tp I AS Fig 22a. Unclamped Inductive Test Circuit RD VDS Fig 22b. Unclamped Inductive Waveforms VDS 90% VGS D.U.T. RG + - VDD V10V GS 10% VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % td(on) Fig 23a. Switching Time Test Circuit tr t d(off) Fig 23b. Switching Time Waveforms Id Current Regulator Same Type as D.U.T. Vds Vgs 50KΩ 12V tf .2μF .3μF D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Current Sampling Resistors Fig 24a. Gate Charge Test Circuit www.irf.com Qgs1 Qgs2 Qgd Qgodr Fig 24b. Gate Charge Waveform 7 IRFP4668PbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information EXAMPLE: THIS IS AN IRFPE30 WIT H AS S EMBLY LOT CODE 5657 AS S EMBLED ON WW 35, 2001 IN T HE AS S EMBLY LINE "H" Note: "P" in ass embly line pos ition indicates "Lead-Free" INTERNATIONAL RECT IFIER LOGO PART NUMBER IRFPE30 56 135H 57 AS S EMBLY LOT CODE DAT E CODE YEAR 1 = 2001 WEEK 35 LINE H TO-247AC packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. 8 IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 09/08 www.irf.com