Transcript
PD -97140
IRFP4668PbF HEXFET® Power MOSFET Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits G
D
Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free
S
VDSS
200V
RDS(on) typ.
8.0m:
max. 9.7m: 130A
ID D
G
D
S
TO-247AC G
D
S
Gate
Drain
Source
Absolute Maximum Ratings Symbol ID @ TC = 25°C
Parameter
Max.
Continuous Drain Current, VGS @ 10V
Units
130
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V
92
IDM
Pulsed Drain Current c
520
PD @TC = 25°C
Maximum Power Dissipation
520
W
Linear Derating Factor
3.5
VGS
Gate-to-Source Voltage
± 30
W/°C V
dv/dt TJ
Peak Diode Recovery e
57
Operating Junction and
-55 to + 175
TSTG
Storage Temperature Range
A
V/ns °C
300
Soldering Temperature, for 10 seconds (1.6mm from case)
10lbxin (1.1Nxm)
Mounting torque, 6-32 or M3 screw
Avalanche Characteristics EAS (Thermally limited)
Single Pulse Avalanche Energy d
IAR
Avalanche Current c
EAR
Repetitive Avalanche Energy f
mJ
760 See Fig. 14, 15, 22a, 22b,
A mJ
Thermal Resistance Symbol
Parameter
Typ.
Max.
RθJC
Junction-to-Case j
–––
0.29
RθCS
Case-to-Sink, Flat Greased Surface
0.24
–––
RθJA
Junction-to-Ambient ij
–––
40
www.irf.com
Units °C/W
1 9/8/08
IRFP4668PbF Static @ TJ = 25°C (unless otherwise specified) Symbol
Parameter
V(BR)DSS ΔV(BR)DSS/ΔTJ RDS(on) VGS(th) IDSS
Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance
RG
Min. Typ. Max. Units 200 ––– ––– 3.0 ––– ––– ––– ––– –––
––– 0.21 8.0 ––– ––– ––– ––– ––– 1.0
––– ––– 9.7 5.0 20 250 100 -100 –––
Conditions
V VGS = 0V, ID = 250μA V/°C Reference to 25°C, ID = 5mAc mΩ VGS = 10V, ID = 81A f V VDS = VGS, ID = 250μA μA VDS = 200V, VGS = 0V VDS = 200V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Ω
Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR)
Parameter
Min. Typ. Max. Units
Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd)
150 ––– ––– ––– 161 241 ––– 54 ––– ––– 52 ––– ––– 109 ––– Turn-On Delay Time ––– 41 ––– Rise Time ––– 105 ––– Turn-Off Delay Time ––– 64 ––– Fall Time ––– 74 ––– Input Capacitance ––– 10720 ––– Output Capacitance ––– 810 ––– Reverse Transfer Capacitance ––– 160 ––– Effective Output Capacitance (Energy Related)h ––– 630 ––– ––– 790 ––– Effective Output Capacitance (Time Related)g
S nC
ns
pF
Conditions VDS = 50V, ID = 81A ID = 81A VDS = 100V VGS = 10V f ID = 81A, VDS =0V, VGS = 10V VDD = 130V ID = 81A RG = 2.7Ω VGS = 10V f VGS = 0V VDS = 50V ƒ = 1.0MHz VGS = 0V, VDS = 0V to 160V h VGS = 0V, VDS = 0V to 160V g
Diode Characteristics Symbol
Parameter
IS
Continuous Source Current
ISM
(Body Diode) Pulsed Source Current
VSD trr
(Body Diode)c Diode Forward Voltage Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM ton
Reverse Recovery Current Forward Turn-On Time
Notes: Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.23mH RG = 25Ω, IAS = 81A, VGS =10V. Part not recommended for use above this value. ISD ≤ 81A, di/dt ≤ 520A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 400μs; duty cycle ≤ 2%.
2
Min. Typ. Max. Units ––– –––
––– –––
130 520
A
Conditions MOSFET symbol showing the integral reverse
D
G
p-n junction diode. TJ = 25°C, IS = 81A, VGS = 0V f TJ = 25°C VR = 100V, IF = 81A TJ = 125°C di/dt = 100A/μs f TJ = 25°C
––– ––– 1.3 V ––– 130 ––– ns ––– 155 ––– ––– 633 ––– nC TJ = 125°C ––– 944 ––– ––– 8.7 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
S
Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS.
When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application note #AN-994.
Rθ is measured at TJ approximately 90°C.
www.irf.com
IRFP4668PbF 1000
1000
100
BOTTOM
10
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
≤60μs PULSE WIDTH
1
Tj = 25°C
0.1
100
BOTTOM
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V
10 4.5V
4.5V
≤60μs PULSE WIDTH Tj = 175°C
0.01
1 0.1
1
10
100
1000
0.1
100
1000
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics 3.5 RDS(on) , Drain-to-Source On Resistance (Normalized)
ID, Drain-to-Source Current(Α)
10
VDS, Drain-to-Source Voltage (V)
1000
100
TJ = 175°C 10
TJ = 25°C 1
VDS = 50V
≤ 60μs PULSE WIDTH 0.1 3.0
4.0
5.0
6.0
7.0
8.0
2.5 2.0 1.5 1.0 0.5 0.0
9.0
-60 -40 -20 0 20 40 60 80 100120140160180 TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics 16000
VGS, Gate-to-Source Voltage (V)
Coss = Cds + Cgd
Ciss 8000
4000 Coss Crss
0 1
ID= 81A VDS = 160V VDS = 100V
12
VDS = 40V
8
4
0
10
100
VDS , Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
Fig 4. Normalized On-Resistance vs. Temperature 16
VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd
12000
ID = 81A VGS = 10V
3.0
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
1
VDS, Drain-to-Source Voltage (V)
0
40
80
120
160
200
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3
IRFP4668PbF 10000 ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
TJ = 175°C
100
TJ = 25°C
10
1
1000
VGS = 0V 0.5
1.0
100μsec 100 10msec 10 1msec 1
0.1
1.5
ID , Drain Current (A)
120 100 80 60 40 20 0 100
125
150
175
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
140
75
1
1000
Id = 5mA 240 230 220 210 200 190 -60 -40 -20 0 20 40 60 80 100120140160180 TJ , Temperature ( °C )
Fig 9. Maximum Drain Current vs. Case Temperature
Fig 10. Drain-to-Source Breakdown Voltage 2500
EAS, Single Pulse Avalanche Energy (mJ)
14 12 10
Energy (μJ)
100
250
TC , CaseTemperature (°C)
8 6 4 2
ID 18A 24A BOTTOM 81A TOP
2000
1500
1000
500
0
0 0
40
80
120
160
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
4
10
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode Forward Voltage
50
DC
VDS , Drain-toSource Voltage (V)
VSD , Source-to-Drain Voltage (V)
25
Tc = 25°C Tj = 175°C Single Pulse
0.1
0.1 0.0
OPERATION IN THIS AREA LIMITED BY R DS (on)
200
25
50
75
100
125
150
175
Starting TJ, Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent
www.irf.com
IRFP4668PbF
Thermal Response ( Z thJC )
1
D = 0.50
0.1
0.20 0.10 0.05 0.02
0.01
τJ
0.01
R1 R1 τJ τ1
R2 R2
R3 R3
Ri (°C/W) τC
τ1
τ2
τ2
Ci= τi/Ri Ci= τi/Ri
τ3
τ3
τ
τι (sec)
0.063359 0.000278 0.110878 0.005836 0.114838 0.053606
0.001
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000
Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔTj = 150°C and Tstart =25°C (Single Pulse)
Avalanche Current (A)
Duty Cycle = Single Pulse 100
0.01 0.05
10
0.10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔΤ j = 25°C and Tstart = 150°C. 1 1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
800
Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 22a, 22b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP Single Pulse BOTTOM 1% Duty Cycle ID = 81A
600
400
200
0 25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
IRFP4668PbF 70
ID = 1.0A
60
ID = 1.0mA
5.0
ID = 250μA
50
4.0
IRRM - (A)
VGS(th) Gate threshold Voltage (V)
6.0
3.0
40 30
2.0
1.0
0.0
20
IF = 52A VR = 100V
10
TJ = 125°C TJ = 25°C
0 -75
-50 -25
0
25
50
75
100 125 150 175
100 200 300 400 500 600 700 800 900 1000
TJ , Temperature ( °C )
dif / dt - (A / μs)
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage Vs. Temperature
5000
70 60
4000
QRR - (nC)
IRRM - (A)
50 40 30 20
IF = 81A VR = 100V
10
TJ = 125°C TJ = 25°C
0
3000
2000 IF = 52A VR = 100V
1000
TJ = 125°C TJ = 25°C
0
100 200 300 400 500 600 700 800 900 1000
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / μs)
dif / dt - (A / μs)
Fig. 18 - Typical Recovery Current vs. dif/dt
Fig. 19 - Typical Stored Charge vs. dif/dt
5000
QRR - (nC)
4000
3000
2000
1000
IF = 81A VR = 100V TJ = 125°C TJ = 25°C
0 100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / μs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRFP4668PbF Driver Gate Drive
D.U.T
-
-
-
*
D.U.T. ISD Waveform Reverse Recovery Current
+
RG
• • • •
dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test
VDD
P.W. Period VGS=10V
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
+
D=
Period
P.W.
+
+ -
Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
Re-Applied Voltage
Body Diode
VDD
Forward Drop
Inductor Current Inductor Curent ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V
DRIVER
L
VDS
tp
D.U.T
RG
+ V - DD
IAS VGS 20V
A
0.01Ω
tp
I AS
Fig 22a. Unclamped Inductive Test Circuit RD
VDS
Fig 22b. Unclamped Inductive Waveforms VDS 90%
VGS
D.U.T.
RG
+
- VDD
V10V GS
10% VGS
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
td(on)
Fig 23a. Switching Time Test Circuit
tr
t d(off)
Fig 23b. Switching Time Waveforms Id
Current Regulator Same Type as D.U.T.
Vds Vgs
50KΩ 12V
tf
.2μF .3μF
D.U.T.
+ V - DS
Vgs(th) VGS 3mA
IG
ID
Current Sampling Resistors
Fig 24a. Gate Charge Test Circuit
www.irf.com
Qgs1 Qgs2
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
7
IRFP4668PbF TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information EXAMPLE: THIS IS AN IRFPE30 WIT H AS S EMBLY LOT CODE 5657 AS S EMBLED ON WW 35, 2001 IN T HE AS S EMBLY LINE "H" Note: "P" in ass embly line pos ition indicates "Lead-Free"
INTERNATIONAL RECT IFIER LOGO
PART NUMBER IRFPE30 56
135H 57
AS S EMBLY LOT CODE
DAT E CODE YEAR 1 = 2001 WEEK 35 LINE H
TO-247AC packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site.
8
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 09/08
www.irf.com