Transcript
PD -96207A
IRFR4620PbF IRFU4620PbF HEXFET® Power MOSFET Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits
D
VDSS RDS(on) typ. max. ID
G S
Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free
200V 64m: 78m: 24A
D
D
S
G
G
DPak IRFR4620PbF
D
S
IPAK IRFU4620PbF
G
D
S
Gate
Drain
Source
Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS
Parameter
Max.
Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V
c
Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case)
e
dv/dt TJ TSTG
Avalanche Characteristics EAS (Thermally limited) IAR EAR
Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy
c
d
Units
24 17 100 144 0.96 ± 20 54 -55 to + 175
A W W/°C V V/ns
°C
300
113 See Fig. 14, 15, 22a, 22b,
c
mJ A mJ
Thermal Resistance Symbol RθJC RθJA RθJA
Parameter
j
Junction-to-Case Junction-to-Ambient (PCB Mount) Junction-to-Ambient
i
Typ.
Max.
Units
––– ––– –––
1.045 50 110
°C/W
ORDERING INFORMATION: See detailed ordering and shipping information on the last page of this data sheet.
Notes through are on page 11
www.irf.com
1 06/08/09
IRFR/U4620PbF Static @ TJ = 25°C (unless otherwise specified) Symbol
Parameter
V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS
Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current
IGSS RG(int)
Min. Typ. Max. Units
Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage
200 ––– ––– 3.0 ––– ––– ––– –––
––– 0.23 64 ––– ––– ––– ––– –––
Internal Gate Resistance
–––
2.6
Conditions
––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 5mA 78 mΩ VGS = 10V, ID = 15A 5.0 V VDS = VGS, ID = 100µA VDS = 200V, VGS = 0V 20 µA 250 VDS = 200V, VGS = 0V, TJ = 125°C 100 VGS = 20V nA VGS = -20V -100
c
f
–––
Ω
Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR)
Parameter
Min. Typ. Max. Units
Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
h
Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related)
g
37 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– –––
––– 25 8.2 7.9 17 13.4 22.4 25.4 14.8 1710 125 30 113 317
––– 38 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– –––
Conditions
S
VDS = 50V, ID = 15A ID = 15A VDS = 100V nC VGS = 10V ID = 15A, VDS =0V, VGS = 10V VDD = 130V ID = 15A ns RG = 7.3Ω VGS = 10V VGS = 0V VDS = 50V pF ƒ = 1.0MHz (See Fig.5) VGS = 0V, VDS = 0V to 160V (See Fig.11) VGS = 0V, VDS = 0V to 160V
f
f
h g
Diode Characteristics Symbol IS
Parameter Continuous Source Current
VSD trr
(Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM ton
Reverse Recovery Current Forward Turn-On Time
ISM
2
c
Min. Typ. Max. Units –––
–––
24 A
–––
–––
100
Conditions MOSFET symbol showing the integral reverse
D
G
p-n junction diode. TJ = 25°C, IS = 15A, VGS = 0V VR = 100V, TJ = 25°C TJ = 125°C IF = 15A di/dt = 100A/µs TJ = 25°C
S
f
––– ––– 1.3 V ––– 78 ––– ns ––– 99 ––– ––– 294 ––– nC TJ = 125°C ––– 432 ––– ––– 7.6 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
f
www.irf.com
IRFR/U4620PbF 1000
1000
100
BOTTOM
10
1 5.0V 0.1 ≤60µs PULSE WIDTH Tj = 25°C
100 BOTTOM
10
5.0V
1
≤60µs PULSE WIDTH Tj = 175°C 0.1
0.01 0.1
1
10
0.1
100
Fig 1. Typical Output Characteristics
10
100
Fig 2. Typical Output Characteristics
1000
3.5
100
RDS(on) , Drain-to-Source On Resistance (Normalized)
ID, Drain-to-Source Current (A)
1
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
TJ = 175°C T J = 25°C
10
1 VDS = 50V ≤60µs PULSE WIDTH 0.1
ID = 15A VGS = 10V
3.0 2.5 2.0 1.5 1.0 0.5
2
4
6
8
10
12
14
16
-60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 4. Normalized On-Resistance vs. Temperature
Fig 3. Typical Transfer Characteristics
14.0
100000
VGS, Gate-to-Source Voltage (V)
VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd
10000 C, Capacitance (pF)
VGS 15V 12V 10V 8.0V 7.0V 6.0V 5.5V 5.0V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS 15V 12V 10V 8.0V 7.0V 6.0V 5.5V 5.0V
Ciss
1000
Coss 100
Crss
ID= 15A
12.0
VDS= 160V VDS= 100V VDS= 40V
10.0 8.0 6.0 4.0 2.0 0.0
10 1
10
100
1000
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
0
5
10
15
20
25
30
35
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3
IRFR/U4620PbF 1000
T J = 175°C
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100
T J = 25°C
10
OPERATION IN THIS AREA LIMITED BY R DS(on) 100 100µsec 1msec
10
10msec
DC
1 Tc = 25°C Tj = 175°C Single Pulse
VGS = 0V
0.1
1.0 0.2
0.4
0.6
0.8
1.0
1.2
1.4
1
1.6
VSD, Source-to-Drain Voltage (V)
ID, Drain Current (A)
25 20 15 10 5 0 75
100
125
150
175
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
30
50
T C , Case Temperature (°C)
260 Id = 5mA 250 240 230 220 210 200 190 -60 -40 -20 0 20 40 60 80 100120140160180
Fig 10. Drain-to-Source Breakdown Voltage
3.0
EAS , Single Pulse Avalanche Energy (mJ)
500
2.5 2.0
Energy (µJ)
1000
T J , Temperature ( °C )
Fig 9. Maximum Drain Current vs. Case Temperature
1.5 1.0 0.5 0.0 -50
0
50
100
150
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
4
100
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode Forward Voltage
25
10
VDS, Drain-to-Source Voltage (V)
200
ID TOP 2.05A 2.94A BOTTOM 15A
450 400 350 300 250 200 150 100 50 0 25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
www.irf.com
IRFR/U4620PbF
Thermal Response ( Z thJC ) °C/W
10
1 D = 0.50 0.20 0.10 0.05
0.1
τJ
0.02 0.01 0.01
R1 R1 τJ τ1
R2 R2 τC τ2
τ1
Ci= τi/Ri Ci i/Ri
1E-005
0.0001
τ
τi (sec) 0.000311
0.589
0.003759
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-006
τ2
Ri (°C/W) 0.456
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 100
Avalanche Current (A)
Duty Cycle = Single Pulse
Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse)
0.01
10
0.05 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 0.1 1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
120
Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 15A
100 80 60 40 20 0 25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
6.0
90
5.5
80
5.0
70
4.5
IF = 10A V R = 100V TJ = 25°C TJ = 125°C
60
4.0 3.5
IRRM (A)
VGS(th), Gate threshold Voltage (V)
IRFR/U4620PbF
ID = 100µA ID = 250uA ID = 1.0mA ID = 1.0A
3.0 2.5 2.0
50 40 30 20 10
1.5
0
1.0 -75 -50 -25
0
0
25 50 75 100 125 150 175
200
600
800
1000
diF /dt (A/µs)
T J , Temperature ( °C )
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage vs. Temperature
2000
90 IF = 15A V R = 100V
80 70
IF = 10A V R = 100V
1800 1600
TJ = 25°C TJ = 125°C
TJ = 25°C TJ = 125°C
1400 QRR (A)
60 IRRM (A)
400
1200
50
1000
40 30
800
20
600
10
400 200
0 0
200
400
600
800
0
1000
200
400
600
800
1000
diF /dt (A/µs)
diF /dt (A/µs)
Fig. 19 - Typical Stored Charge vs. dif/dt
Fig. 18 - Typical Recovery Current vs. dif/dt 2000 IF = 15A V R = 100V
1800 1600
TJ = 25°C TJ = 125°C
QRR (A)
1400 1200 1000 800 600 400 200 0
200
400
600
800
1000
diF /dt (A/µs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRFR/U4620PbF Driver Gate Drive
D.U.T
-
-
-
*
D.U.T. ISD Waveform Reverse Recovery Current
+
RG
• • • •
dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test
VDD
P.W. Period VGS=10V
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
+
D=
Period
P.W.
+
+ -
Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
Re-Applied Voltage
Body Diode
VDD
Forward Drop
Inductor Current Inductor Curent ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V
DRIVER
L
VDS
tp
D.U.T
RG VGS 20V
+ V - DD
IAS
A
0.01Ω
tp
I AS
Fig 22a. Unclamped Inductive Test Circuit RD
VDS
Fig 22b. Unclamped Inductive Waveforms VDS 90%
VGS
D.U.T.
RG
+
- VDD
V10V GS
10% VGS
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
td(on)
Fig 23a. Switching Time Test Circuit
tr
t d(off)
Fig 23b. Switching Time Waveforms Id
Current Regulator Same Type as D.U.T.
Vds Vgs
50KΩ 12V
tf
.2µF .3µF
D.U.T.
+ V - DS
Vgs(th) VGS 3mA
IG
ID
Current Sampling Resistors
Fig 24a. Gate Charge Test Circuit
www.irf.com
Qgs1 Qgs2
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
7
IRFR/U4620PbF D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches)
D-Pak (TO-252AA) Part Marking Information (;$03/(
7+,6,6$1,5)5 3$57180%(5 :,7+$66(0%/<
,17(51$7,21$/
/27&2'(
,5)5 $
5(&7,),(5
$66(0%/('21::
/2*2
,17+($66(0%/</,1($
'$7(&2'( <($5
:((. /,1($
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
$66(0%/<
LQGLFDWHV/HDG)UHH
/27&2'(
3LQDVVHPEO\OLQHSRVLWLRQLQGLFDWHV /HDG)UHHTXDOLILFDWLRQWRWKHFRQVXPHUOHYHO
25
3$57180%(5 ,17(51$7,21$/ 5(&7,),(5
,5)5
'$7(&2'( 3
'(6,*1$7(6/($')5((
3
'(6,*1$7(6/($')5((
/2*2
352'8&7237,21$/
352'8&748$/,),('727+(
$66(0%/<
&21680(5/(9(/237,21$/ /27&2'( <($5
:((. $
$66(0%/<6,7(&2'(
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
8
www.irf.com
IRFR/U4620PbF I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches)
I-Pak (TO-251AA) Part Marking Information (;$03/( 7+,6,6$1,5)8 :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1($ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH
,17(51$7,21$/ 5(&7,),(5 /2*2
3$57180%(5 ,5)8 $
$66(0%/< /27&2'(
'$7(&2'( <($5 :((. /,1($
25 ,17(51$7,21$/ 5(&7,),(5 /2*2
3$57180%(5 ,5)8
$66(0%/< /27&2'(
'$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7237,21$/ <($5 :((. $ $66(0%/<6,7(&2'(
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
9
IRFR/U4620PbF D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches)
TR
TRR
TRL
16.3 ( .641 ) 15.7 ( .619 )
12.1 ( .476 ) 11.9 ( .469 )
FEED DIRECTION
16.3 ( .641 ) 15.7 ( .619 )
8.1 ( .318 ) 7.9 ( .312 )
FEED DIRECTION
NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
10
www.irf.com
IRFR/U4620PbF
Orderable part number
Package Type
IRFR4620PbF IRFR4620TRPbF
D-PAK D-PAK
IRFU4620PbF
I-PAK
Standard Pack Form Quantity Tube/Bulk 75 Tape and Reel 2000 Tube/Bulk
Note
75
Qualification Information† Industrial
Qualification level
††
(per JEDEC JESD47F
†††
guidelines)
Comments: This family of products has passed JEDEC’s Industrial qualification. IR’s Consumer qualification level is granted by extension of the higher Industrial level. Moisture Sensitivity Level
MSL1
D-PAK
(per JEDEC J-STD-020D†††) Not applicable
I-PAK Yes
RoHS Compliant
† Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/ ††† Applicable version of JEDEC standard at the time of product release.
Notes: Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 1.0mH RG = 25Ω, IAS = 15A, VGS =10V. Part not recommended for use above this value . ISD ≤ 15A, di/dt ≤ 634A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 400µs; duty cycle ≤ 2%.
Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS .
When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application note #AN-994.
Rθ is measured at TJ approximately 90°C
Data and specifications subject to change without notice
www.irf.com
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 06/2009
11