Preview only show first 10 pages with watermark. For full document please download

Irfr540zpbf

   EMBED


Share

Transcript

APPROVED PD - TBD AUTOMOTIVE MOSFET IRFR540Z IRFU540Z Features HEXFET® Power MOSFET Advanced Process Technology Ultra Low On-Resistance l175°C Operating Temperature lFast Switching lRepetitive Avalanche Allowed up to Tjmax l l D VDSS = 100V RDS(on) = 28.5mΩ G Description Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. ID = 35A S D-Pak IRFR540Z Absolute Maximum Ratings Parameter Max. ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 35 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited) Pulsed Drain Current 140 PD @TC = 25°C Power Dissipation VGS Linear Derating Factor Gate-to-Source Voltage d EAS (Thermally limited) Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value EAS (Tested ) c IAR Avalanche Current EAR TJ Repetitive Avalanche Energy TSTG Storage Temperature Range h Parameter RθJA Junction-to-Ambient j mJ A °C Mounting Torque, 6-32 or M3 screw Junction-to-Ambient (PCB mount) 39 -55 to + 175 y ij 300 y 10 lbf in (1.1N m) Thermal Resistance RθJA W W/°C V mJ Reflow Soldering Temperature, for 10 seconds j 91 0.61 ± 20 75 Operating Junction and Junction-to-Case A See Fig.12a, 12b, 15, 16 g RθJC Units 25 c IDM I-Pak IRFU540Z Typ. Max. ––– 1.64 ––– 40 ––– 110 Units °C/W HEXFET® is a registered trademark of International Rectifier. www.irf.com 1 2/3/05 IRFR/U540Z Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units ––– V Conditions V(BR)DSS Drain-to-Source Breakdown Voltage 100 ––– VGS = 0V, ID = 250µA ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.092 ––– V/°C Reference to 25°C, ID = 1mA RDS(on) Static Drain-to-Source On-Resistance ––– 22.5 28.5 mΩ VGS = 10V, ID = 21A VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 50µA gfs Forward Transconductance 28 ––– ––– S VDS = 25V, ID = 21A IDSS Drain-to-Source Leakage Current µA VDS = 100V, VGS = 0V ––– ––– 20 ––– ––– 250 Gate-to-Source Forward Leakage ––– ––– 200 Gate-to-Source Reverse Leakage ––– ––– -200 Qg Total Gate Charge ––– 39 59 Qgs Gate-to-Source Charge ––– 11 ––– Qgd Gate-to-Drain ("Miller") Charge ––– 12 ––– VGS = 10V td(on) Turn-On Delay Time ––– 14 ––– VDD = 50V tr Rise Time ––– 42 ––– ID = 21A td(off) Turn-Off Delay Time ––– 43 ––– tf Fall Time ––– 34 ––– VGS = 10V LD Internal Drain Inductance ––– 4.5 ––– Between lead, IGSS VDS = 100V, VGS = 0V, TJ = 125°C nA Internal Source Inductance ––– 7.5 VGS = 20V VGS = -20V ID = 21A nC ns nH LS e ––– VDS = 50V RG = 13 Ω e e D 6mm (0.25in.) G from package and center of die contact S Ciss Input Capacitance ––– 1690 ––– VGS = 0V Coss Output Capacitance ––– 180 ––– VDS = 25V Crss Reverse Transfer Capacitance ––– 100 ––– Coss Output Capacitance ––– 720 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 110 ––– VGS = 0V, VDS = 80V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 190 ––– VGS = 0V, VDS = 0V to 80V pF ƒ = 1.0MHz f Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 35 ISM (Body Diode) Pulsed Source Current ––– ––– 140 VSD (Body Diode) Diode Forward Voltage ––– ––– 1.3 V p-n junction diode. TJ = 25°C, IS = 21A, VGS = 0V trr Reverse Recovery Time ––– 32 48 ns TJ = 25°C, IF = 21A, VDD = 50V Qrr Reverse Recovery Charge ––– 40 60 nC di/dt = 100A/µs ton Forward Turn-On Time 2 c MOSFET symbol A showing the integral reverse e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRFR/U540Z 1000 100 BOTTOM 1000 ≤60µs PULSE WIDTH TOP Tj = 25°C ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 10 100 BOTTOM VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 4.5V 10 ≤60µs PULSE WIDTH Tj = 175°C 4.5V 1 1 0.1 1 10 100 0.1 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 70 Gfs , Forward Transconductance (S) ID, Drain-to-Source Current(Α) 1 100 TJ = 175°C 10 TJ = 25°C 1 VDS = 25V 2 3 4 5 6 7 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 50 40 TJ = 175°C 30 20 VDS = 10V 10 380µs PULSE WIDTH ≤60µs PULSE WIDTH 0.1 TJ = 25°C 60 0 8 0 10 20 30 40 50 ID,Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance vs. Drain Current 3 IRFR/U540Z 3000 20 2500 VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd C, Capacitance(pF) Coss = Cds + Cgd 2000 Ciss 1500 1000 500 Coss Crss 0 ID= 21A VDS = 80V 16 VDS= 50V VDS= 20V 12 8 4 0 1 10 0 100 1000.0 ID, Drain-to-Source Current (A) 1000 100.0 TJ = 175°C 10.0 TJ = 25°C 1.0 VGS = 0V 0.1 0.2 0.4 0.6 0.8 1.0 30 40 50 60 Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage Fig 5. Typical Capacitance vs. Drain-to-Source Voltage ISD , Reverse Drain Current (A) 20 QG Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) 1.2 VSD , Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 10 1.4 OPERATION IN THIS AREA LIMITED BY R DS (on) 100 100µsec 1msec 10 10msec 1 Tc = 25°C Tj = 175°C Single Pulse DC 0.1 0 1 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRFR/U540Z 2.5 ID = 21A RDS(on) , Drain-to-Source On Resistance 30 VGS = 10V 2.0 (Normalized) ID , Drain Current (A) 40 20 10 1.5 1.0 0.5 0 25 50 75 100 125 150 -60 -40 -20 175 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) TC , CaseTemperature (°C) Fig 10. Normalized On-Resistance vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.1 0.05 τJ 0.02 0.01 R1 R1 τJ τ1 R2 R2 τ2 τ1 τ2 Ci= τi/Ri Ci τi/Ri 0.01 SINGLE PULSE ( THERMAL RESPONSE ) R3 R3 τ3 τC τ τ3 Ri (°C/W) τi (sec) 2.626 0.000052 0.6611 0.001297 0.7154 0.01832 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFR/U540Z D.U.T RG VGS 20V DRIVER L VDS + V - DD IAS tp A 0.01Ω Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS, Single Pulse Avalanche Energy (mJ) 160 15V ID 6.5A 9.4A BOTTOM 21A TOP 120 80 40 0 25 50 75 100 125 150 175 Starting TJ, Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG QGS QGD 4.5 ID = 1.0mA VG Charge Fig 13a. Basic Gate Charge Waveform L DUT 0 1K VGS(th) Gate threshold Voltage (V) 10 V ID = 250µA ID = 50µA 4.0 3.5 3.0 2.5 2.0 1.5 VCC 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 TJ , Temperature ( °C ) Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage vs. Temperature www.irf.com IRFR/U540Z 100 Avalanche Current (A) Duty Cycle = Single Pulse 10 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆Tj = 25°C due to avalanche losses 0.01 0.05 0.10 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 40 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 21A 30 20 10 0 25 50 75 100 125 150 Starting TJ , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRFR/U540Z D.U.T Driver Gate Drive ƒ + ‚ „ * D.U.T. ISD Waveform Reverse Recovery Current +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - - D= Period P.W. + VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs VDS VGS RG RD D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRFR/U540Z D-Pak (TO-252AA) Package Outline D-Pak (TO-252AA) Part Marking Information EXAMPLE: T HIS IS AN IRFR120 WIT H AS S EMBLY LOT CODE 1234 AS S EMBLED ON WW 16, 1999 IN THE AS S EMBLY LINE "A" N ote: "P" in as s embly line pos ition indicates "Lead-Free" OR INT ERNATIONAL RECT IFIER LOGO PART NUMBER IRFR120 916A 12 INT ERNAT IONAL RECT IFIER LOGO PART NUMBER IRFR120 P916A 12 AS S EMBLY LOT CODE www.irf.com 34 AS S EMBLY LOT CODE DAT E CODE YEAR 9 = 1999 WEEK 16 LINE A 34 DAT E CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPT IONAL) YEAR 9 = 1999 WEEK 16 A = AS S EMBLY S IT E CODE 9 IRFR/U540Z I-Pak (TO-251AA) Package Outline I-Pak (TO-251AA) Part Marking Information EXAMPLE: T HIS IS AN IRFU120 WIT H AS SEMBLY LOT CODE 5678 ASS EMBLED ON WW 19, 1999 IN T HE AS SEMBLY LINE "A" Note: "P" in as sembly line pos ition indicates "Lead-Free" OR INT ERNAT IONAL RECT IFIER LOGO PART NUMBER IRFU120 919A 56 INT ERNAT IONAL RECT IFIER LOGO PART NUMBER IRFU120 56 AS SEMBLY LOT CODE 10 78 ASSEMBLY LOT CODE DAT E CODE YEAR 9 = 1999 WEEK 19 LINE A 78 DAT E CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPT IONAL) YEAR 9 = 1999 WEEK 19 A = AS SEMBLY SIT E CODE www.irf.com IRFR/U540Z D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION TRL 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Notes: „ Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . max. junction temperature. (See fig. 11). ‚ Limited by TJmax, starting TJ = 25°C, L = 0.17mH … Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive RG = 25Ω, IAS = 21A, VGS =10V. Part not avalanche performance. recommended for use above this value. † This value determined from sample failure population. 100% ƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%. tested to this value in production. ‡ When mounted on 1" square PCB (FR-4 or G-10 Material) . ˆ Rθ is measured at TJ approximately 90°C  Repetitive rating; pulse width limited by Data and specifications subject to change without notice. This product has been designed for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.2/05 www.irf.com 11