Transcript
APPROVED
PD - TBD
AUTOMOTIVE MOSFET
IRFR540Z IRFU540Z
Features
HEXFET® Power MOSFET
Advanced Process Technology Ultra Low On-Resistance l175°C Operating Temperature lFast Switching lRepetitive Avalanche Allowed up to Tjmax l l
D
VDSS = 100V RDS(on) = 28.5mΩ
G
Description Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.
ID = 35A
S
D-Pak IRFR540Z
Absolute Maximum Ratings Parameter
Max.
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
35
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited) Pulsed Drain Current
140
PD @TC = 25°C Power Dissipation VGS
Linear Derating Factor Gate-to-Source Voltage
d
EAS (Thermally limited) Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value EAS (Tested )
c
IAR
Avalanche Current
EAR TJ
Repetitive Avalanche Energy
TSTG
Storage Temperature Range
h
Parameter
RθJA
Junction-to-Ambient
j
mJ A
°C
Mounting Torque, 6-32 or M3 screw
Junction-to-Ambient (PCB mount)
39
-55 to + 175
y
ij
300
y
10 lbf in (1.1N m)
Thermal Resistance
RθJA
W W/°C V
mJ
Reflow Soldering Temperature, for 10 seconds
j
91 0.61 ± 20 75
Operating Junction and
Junction-to-Case
A
See Fig.12a, 12b, 15, 16
g
RθJC
Units
25
c
IDM
I-Pak IRFU540Z
Typ.
Max.
–––
1.64
–––
40
–––
110
Units °C/W
HEXFET® is a registered trademark of International Rectifier.
www.irf.com
1 2/3/05
IRFR/U540Z Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter
Min. Typ. Max. Units –––
V
Conditions
V(BR)DSS
Drain-to-Source Breakdown Voltage
100
–––
VGS = 0V, ID = 250µA
∆V(BR)DSS/∆TJ
Breakdown Voltage Temp. Coefficient
–––
0.092
–––
V/°C Reference to 25°C, ID = 1mA
RDS(on)
Static Drain-to-Source On-Resistance
–––
22.5
28.5
mΩ
VGS = 10V, ID = 21A
VGS(th)
Gate Threshold Voltage
2.0
–––
4.0
V
VDS = VGS, ID = 50µA
gfs
Forward Transconductance
28
–––
–––
S
VDS = 25V, ID = 21A
IDSS
Drain-to-Source Leakage Current
µA
VDS = 100V, VGS = 0V
–––
–––
20
–––
–––
250
Gate-to-Source Forward Leakage
–––
–––
200
Gate-to-Source Reverse Leakage
–––
–––
-200
Qg
Total Gate Charge
–––
39
59
Qgs
Gate-to-Source Charge
–––
11
–––
Qgd
Gate-to-Drain ("Miller") Charge
–––
12
–––
VGS = 10V
td(on)
Turn-On Delay Time
–––
14
–––
VDD = 50V
tr
Rise Time
–––
42
–––
ID = 21A
td(off)
Turn-Off Delay Time
–––
43
–––
tf
Fall Time
–––
34
–––
VGS = 10V
LD
Internal Drain Inductance
–––
4.5
–––
Between lead,
IGSS
VDS = 100V, VGS = 0V, TJ = 125°C nA
Internal Source Inductance
–––
7.5
VGS = 20V VGS = -20V ID = 21A
nC
ns
nH LS
e
–––
VDS = 50V
RG = 13 Ω
e e
D
6mm (0.25in.) G
from package and center of die contact
S
Ciss
Input Capacitance
–––
1690
–––
VGS = 0V
Coss
Output Capacitance
–––
180
–––
VDS = 25V
Crss
Reverse Transfer Capacitance
–––
100
–––
Coss
Output Capacitance
–––
720
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Coss
Output Capacitance
–––
110
–––
VGS = 0V, VDS = 80V, ƒ = 1.0MHz
Coss eff.
Effective Output Capacitance
–––
190
–––
VGS = 0V, VDS = 0V to 80V
pF
ƒ = 1.0MHz
f
Source-Drain Ratings and Characteristics Parameter
Min. Typ. Max. Units
Conditions
IS
Continuous Source Current
–––
–––
35
ISM
(Body Diode) Pulsed Source Current
–––
–––
140
VSD
(Body Diode) Diode Forward Voltage
–––
–––
1.3
V
p-n junction diode. TJ = 25°C, IS = 21A, VGS = 0V
trr
Reverse Recovery Time
–––
32
48
ns
TJ = 25°C, IF = 21A, VDD = 50V
Qrr
Reverse Recovery Charge
–––
40
60
nC
di/dt = 100A/µs
ton
Forward Turn-On Time
2
c
MOSFET symbol A
showing the integral reverse
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRFR/U540Z 1000
100
BOTTOM
1000
≤60µs PULSE WIDTH
TOP
Tj = 25°C
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V
10
100
BOTTOM
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V
4.5V
10
≤60µs PULSE WIDTH Tj = 175°C
4.5V 1
1 0.1
1
10
100
0.1
10
100
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
70 Gfs , Forward Transconductance (S)
ID, Drain-to-Source Current(Α)
1
100
TJ = 175°C
10
TJ = 25°C
1
VDS = 25V 2
3
4
5
6
7
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
50 40 TJ = 175°C
30 20
VDS = 10V
10
380µs PULSE WIDTH
≤60µs PULSE WIDTH
0.1
TJ = 25°C
60
0
8
0
10
20
30
40
50
ID,Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance vs. Drain Current
3
IRFR/U540Z 3000
20
2500
VGS, Gate-to-Source Voltage (V)
VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd
C, Capacitance(pF)
Coss = Cds + Cgd 2000
Ciss
1500
1000
500
Coss Crss
0
ID= 21A VDS = 80V
16
VDS= 50V VDS= 20V
12
8
4
0
1
10
0
100
1000.0
ID, Drain-to-Source Current (A)
1000
100.0 TJ = 175°C 10.0 TJ = 25°C 1.0
VGS = 0V
0.1 0.2
0.4
0.6
0.8
1.0
30
40
50
60
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
ISD , Reverse Drain Current (A)
20
QG Total Gate Charge (nC)
VDS , Drain-to-Source Voltage (V)
1.2
VSD , Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
4
10
1.4
OPERATION IN THIS AREA LIMITED BY R DS (on)
100
100µsec 1msec
10
10msec
1 Tc = 25°C Tj = 175°C Single Pulse
DC
0.1 0
1
10
100
1000
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRFR/U540Z 2.5
ID = 21A
RDS(on) , Drain-to-Source On Resistance
30
VGS = 10V 2.0
(Normalized)
ID , Drain Current (A)
40
20
10
1.5
1.0
0.5
0 25
50
75
100
125
150
-60 -40 -20
175
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
TC , CaseTemperature (°C)
Fig 10. Normalized On-Resistance vs. Temperature
Fig 9. Maximum Drain Current vs. Case Temperature
Thermal Response ( Z thJC )
10
1
D = 0.50 0.20 0.10
0.1
0.05
τJ
0.02 0.01
R1 R1 τJ τ1
R2 R2 τ2
τ1
τ2
Ci= τi/Ri Ci τi/Ri
0.01
SINGLE PULSE ( THERMAL RESPONSE )
R3 R3 τ3
τC τ τ3
Ri (°C/W) τi (sec) 2.626 0.000052 0.6611
0.001297
0.7154
0.01832
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.001 1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFR/U540Z
D.U.T
RG VGS 20V
DRIVER
L
VDS
+ V - DD
IAS tp
A
0.01Ω
Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp
EAS, Single Pulse Avalanche Energy (mJ)
160
15V
ID 6.5A 9.4A BOTTOM 21A TOP
120
80
40
0 25
50
75
100
125
150
175
Starting TJ, Junction Temperature (°C) I AS
Fig 12c. Maximum Avalanche Energy vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms QG QGS
QGD
4.5
ID = 1.0mA
VG
Charge
Fig 13a. Basic Gate Charge Waveform
L DUT
0
1K
VGS(th) Gate threshold Voltage (V)
10 V
ID = 250µA ID = 50µA
4.0 3.5 3.0 2.5 2.0 1.5
VCC 1.0 -75
-50
-25
0
25
50
75
100 125 150 175
TJ , Temperature ( °C )
Fig 13b. Gate Charge Test Circuit
6
Fig 14. Threshold Voltage vs. Temperature
www.irf.com
IRFR/U540Z 100
Avalanche Current (A)
Duty Cycle = Single Pulse 10
Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆Tj = 25°C due to avalanche losses
0.01 0.05 0.10
1
0.1 1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
40
TOP Single Pulse BOTTOM 1% Duty Cycle ID = 21A
30
20
10
0 25
50
75
100
125
150
Starting TJ , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy vs. Temperature
www.irf.com
Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav
7
IRFR/U540Z
D.U.T
Driver Gate Drive
+
*
D.U.T. ISD Waveform Reverse Recovery Current
+
RG
• • • •
dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test
P.W. Period VGS=10V
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
-
-
D=
Period
P.W.
+
VDD
+
Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
Re-Applied Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
VDS VGS RG
RD
D.U.T. +
-VDD
10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit VDS 90%
10% VGS td(on)
tr
t d(off)
tf
Fig 18b. Switching Time Waveforms
8
www.irf.com
IRFR/U540Z D-Pak (TO-252AA) Package Outline
D-Pak (TO-252AA) Part Marking Information EXAMPLE: T HIS IS AN IRFR120 WIT H AS S EMBLY LOT CODE 1234 AS S EMBLED ON WW 16, 1999 IN THE AS S EMBLY LINE "A" N ote: "P" in as s embly line pos ition indicates "Lead-Free"
OR
INT ERNATIONAL RECT IFIER LOGO
PART NUMBER IRFR120 916A 12
INT ERNAT IONAL RECT IFIER LOGO
PART NUMBER IRFR120 P916A 12
AS S EMBLY LOT CODE
www.irf.com
34
AS S EMBLY LOT CODE
DAT E CODE YEAR 9 = 1999 WEEK 16 LINE A
34
DAT E CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPT IONAL) YEAR 9 = 1999 WEEK 16 A = AS S EMBLY S IT E CODE
9
IRFR/U540Z I-Pak (TO-251AA) Package Outline
I-Pak (TO-251AA) Part Marking Information EXAMPLE: T HIS IS AN IRFU120 WIT H AS SEMBLY LOT CODE 5678 ASS EMBLED ON WW 19, 1999 IN T HE AS SEMBLY LINE "A" Note: "P" in as sembly line pos ition indicates "Lead-Free"
OR
INT ERNAT IONAL RECT IFIER LOGO
PART NUMBER IRFU120 919A 56
INT ERNAT IONAL RECT IFIER LOGO
PART NUMBER IRFU120 56
AS SEMBLY LOT CODE
10
78
ASSEMBLY LOT CODE
DAT E CODE YEAR 9 = 1999 WEEK 19 LINE A
78
DAT E CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPT IONAL) YEAR 9 = 1999 WEEK 19 A = AS SEMBLY SIT E CODE
www.irf.com
IRFR/U540Z D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR
TRR
16.3 ( .641 ) 15.7 ( .619 )
12.1 ( .476 ) 11.9 ( .469 )
FEED DIRECTION
TRL
16.3 ( .641 ) 15.7 ( .619 )
8.1 ( .318 ) 7.9 ( .312 )
FEED DIRECTION
NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481.
Notes:
Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25°C, L = 0.17mH
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive RG = 25Ω, IAS = 21A, VGS =10V. Part not avalanche performance. recommended for use above this value. This value determined from sample failure population. 100% Pulse width ≤ 1.0ms; duty cycle ≤ 2%. tested to this value in production. When mounted on 1" square PCB (FR-4 or G-10 Material) . Rθ is measured at TJ approximately 90°C
Repetitive rating; pulse width limited by
Data and specifications subject to change without notice. This product has been designed for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.2/05
www.irf.com
11