Transcript
PD - 97310
IRFB3806PbF IRFS3806PbF IRFSL3806PbF
Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits
HEXFET® Power MOSFET D
G
Benefits l Improved Gate, Avalanche and Dynamic dv/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability
S
VDSS RDS(on) typ. max. ID
D
60V 12.6mΩ 15.8mΩ 43A D
D
S G
S
S
D
G
G
D2Pak IRFS3806PbF
TO-220AB IRFB3806PbF
D
TO-262 IRFSL3806PbF
G
D
S
Gate
Drain
Source
Absolute Maximum Ratings Symbol
Parameter
Max.
Units
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V
43
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V
31
IDM
Pulsed Drain Current c
170
PD @TC = 25°C
Maximum Power Dissipation
71
W W/°C V
Linear Derating Factor
0.47
VGS
Gate-to-Source Voltage
± 20
dv/dt TJ
Peak Diode Recovery e
24
Operating Junction and
-55 to + 175
TSTG
Storage Temperature Range
A
V/ns °C
300
Soldering Temperature, for 10 seconds (1.6mm from case)
10lbxin (1.1Nxm)
Mounting torque, 6-32 or M3 screw
Avalanche Characteristics EAS (Thermally limited)
Single Pulse Avalanche Energy d
IAR
Avalanche Current c
25
A
EAR
Repetitive Avalanche Energy f
7.1
mJ
mJ
73
Thermal Resistance Symbol
Parameter
Typ.
Max.
RθJC
Junction-to-Case j
–––
2.12
RθCS
Case-to-Sink, Flat Greased Surface, TO-220
0.50
–––
RθJA RθJA
Junction-to-Ambient, TO-220 ij
––– –––
62 40
www.irf.com
2
Junction-to-Ambient (PCB Mount) , D Pak ij
Units °C/W
1 02/29/08
IRFB/S/SL3806PbF Static @ TJ = 25°C (unless otherwise specified) Symbol
Parameter
V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS
Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage
Min. Typ. Max. Units 60 ––– ––– ––– 0.075 ––– ––– 12.6 15.8 2.0 ––– 4.0 ––– ––– 20 ––– ––– 250 ––– ––– 100 ––– ––– -100
Conditions
V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 5mAc mΩ VGS = 10V, ID = 25A f V VDS = VGS, ID = 50µA µA VDS = 60V, VGS = 0V VDS = 48V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V
Dynamic @ TJ = 25°C (unless otherwise specified) Symbol
Parameter
Min. Typ. Max. Units
gfs Qg Qgs Qgd Qsync
Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd)
41 ––– ––– ––– –––
––– 22 5.0 6.3 28.3
––– 30 ––– ––– –––
S nC
RG(int) td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR)
Internal Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
–––
0.79 6.3 40 49 47 1150 130 67 190 230
––– ––– ––– ––– ––– ––– ––– ––– ––– –––
Ω
––– ––– ––– ––– ––– ––– ––– Effective Output Capacitance (Energy Related)h ––– ––– Effective Output Capacitance (Time Related)g
Conditions VDS = 10V, ID = 25A ID = 25A VDS = 30V VGS = 10V f ID = 25A, VDS =0V, VGS = 10V
ns
pF
VDD = 39V ID = 25A RG = 20Ω VGS = 10V f VGS = 0V VDS = 50V ƒ = 1.0MHz VGS = 0V, VDS = 0V to 60V h VGS = 0V, VDS = 0V to 60V g
Diode Characteristics Symbol
Parameter
Min. Typ. Max. Units
IS
Continuous Source Current
–––
–––
43
ISM
(Body Diode) Pulsed Source Current
–––
–––
170
VSD trr
(Body Diode)c Diode Forward Voltage Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM ton
Reverse Recovery Current Forward Turn-On Time
Notes: Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.23mH RG = 25Ω, IAS = 25A, VGS =10V. Part not recommended for use above this value. ISD ≤ 25A, di/dt ≤ 1580A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
A
Conditions MOSFET symbol showing the integral reverse
D
G
p-n junction diode. TJ = 25°C, IS = 25A, VGS = 0V f VR = 51V, TJ = 25°C IF = 25A TJ = 125°C di/dt = 100A/µs f TJ = 25°C
S
––– ––– 1.3 V ––– 22 33 ns ––– 26 39 ––– 17 26 nC TJ = 125°C ––– 24 36 ––– 1.4 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS.
When mounted on 1" square PCB (FR-4 or G-10 Material). For recom mended footprint and soldering techniques refer to application note #AN-994.
Rθ is measured at TJ approximately 90°C.
www.irf.com
IRFB/S/SL3806PbF 1000
1000
100 BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V
100
10 4.5V
BOTTOM
VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V
4.5V 10
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 175°C
Tj = 25°C 1
1 0.1
1
10
0.1
100
Fig 1. Typical Output Characteristics
100
2.5
100
T J = 175°C 10 T J = 25°C 1 VDS = 25V ≤60µs PULSE WIDTH 0.1
ID = 25A VGS = 10V 2.0 (Normalized)
RDS(on) , Drain-to-Source On Resistance
ID, Drain-to-Source Current (A)
10
Fig 2. Typical Output Characteristics
1000
1.5
1.0
0.5
2
3
4
5
6
7
8
9
-60 -40 -20 0 20 40 60 80 100120140160180
VGS , Gate-to-Source Voltage (V)
T J , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance vs. Temperature
10000
12.0
VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, C ds SHORTED Crss = Cgd
VGS , Gate-to-Source Voltage (V)
ID= 25A
Coss = Cds + Cgd
C, Capacitance (pF)
1
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
Ciss
1000
Coss Crss 100
VDS= 48V VDS= 30V
10.0
VDS= 12V
8.0
6.0
4.0
2.0
0.0
10 1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
0
5
10
15
20
25
Q G , Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3
IRFB/S/SL3806PbF 1000
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED BY R DS(on) 100 T J = 175°C 10 T J = 25°C
1
100
100µsec 1msec
10 10msec
1 Tc = 25°C Tj = 175°C Single Pulse
VGS = 0V 0.1
0.1 0.0
0.5
1.0
1.5
1
2.0
40
ID, Drain Current (A)
35 30 25 20 15 10 5 0 75
100
125
150
175
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
45
50
80 Id = 5mA
75
70
65
60 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 10. Drain-to-Source Breakdown Voltage
Fig 9. Maximum Drain Current vs. Case Temperature 0.4
EAS , Single Pulse Avalanche Energy (mJ)
300
0.3 0.3 Energy (µJ)
100
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode Forward Voltage
25
10 VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
0.2 0.2 0.1 0.1 0.0
ID 2.8A 5.1A BOTTOM 25A TOP
250
200
150
100
50
0 -10
0
10
20
30
40
50
60
70
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
4
DC
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
www.irf.com
IRFB/S/SL3806PbF Thermal Response ( Z thJC ) °C/W
10
1
D = 0.50
0.1
0.20 0.10 0.05 τJ
0.02 0.01
R1 R1 τJ τ1
R2 R2 τ2
τ1
τ2
R3 R3 τ3
τC τ τ3
Ci= τi/Ri Ci τi/Ri
0.01
1E-005
0.9926
0.001228
0.5203
0.00812
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-006
Ri (°C/W) τi (sec) 0.6086 0.00026
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 100 Duty Cycle = Single Pulse
Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse)
Avalanche Current (A)
0.01 10 0.05 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τj = 25°C and Tstart = 150°C. 0.1 1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
80
Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 25A 60
40
20
0 25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
4.0
14
3.5
12
IF = 17A V R = 51V TJ = 25°C TJ = 125°C
10 3.0
2.5
8
IRR (A)
VGS(th) , Gate threshold Voltage (V)
IRFB/S/SL3806PbF
ID = 50µA ID = 250µA
6
ID = 1.0mA
2.0
4
ID = 1.0A 1.5
2
1.0
0 -75 -50 -25 0
25 50 75 100 125 150 175 200
0
200
T J , Temperature ( °C )
600
800
1000
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage vs. Temperature 14
260 IF = 25A V R = 51V
12
IF = 17A V R = 51V
210
TJ = 25°C TJ = 125°C Q RR (A)
10 IRR (A)
400
diF /dt (A/µs)
8 6
TJ = 25°C TJ = 125°C
160
110
4 60 2 0
10 0
200
400
600
800
1000
0
200
diF /dt (A/µs)
400
600
800
1000
diF /dt (A/µs)
Fig. 18 - Typical Recovery Current vs. dif/dt
Fig. 19 - Typical Stored Charge vs. dif/dt
260 IF = 25A V R = 51V
Q RR (A)
210
TJ = 25°C TJ = 125°C
160
110
60
10 0
200
400
600
800
1000
diF /dt (A/µs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRFB/S/SL3806PbF D.U.T
Driver Gate Drive
-
-
-
*
D.U.T. ISD Waveform Reverse Recovery Current
+
RG
• • • •
dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test
VDD
P.W. Period VGS=10V
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
+
D=
Period
P.W.
+
+ -
Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
Re-Applied Voltage
Body Diode
VDD
Forward Drop
Inductor Current Inductor Curent ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V
DRIVER
L
VDS
tp
D.U.T
RG
+ V - DD
IAS VGS 20V
tp
A
0.01Ω
I AS
Fig 21a. Unclamped Inductive Test Circuit LD
Fig 21b. Unclamped Inductive Waveforms
VDS
VDS
90% + VDD -
10%
D.U.T
VGS
VGS Pulse Width < 1µs Duty Factor < 0.1%
td(on)
Fig 22a. Switching Time Test Circuit
tr
td(off)
tf
Fig 22b. Switching Time Waveforms Id Vds Vgs
L VCC DUT
0
Vgs(th)
1K
Qgs1 Qgs2
Fig 23a. Gate Charge Test Circuit
www.irf.com
Qgd
Qgodr
Fig 23b. Gate Charge Waveform
7
IRFB/S/SL3806PbF TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information (;$03/( 7+,6,6$1,5) /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(& Note: "P" in assembly line position indicates "Lead-Free"
,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'(
3$57180%(5 '$7(&2'( <($5 :((. /,1(&
TO-220AB packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
8
www.irf.com
IRFB/S/SL3806PbF D2Pak (TO-263AB) Package Outline Dimensions are shown in millimeters (inches)
D2Pak (TO-263AB) Part Marking Information 7+,6,6$1,5)6:,7+ /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(/
,17(51$7,21$/ 5(&7,),(5 /2*2
3$57180%(5 )6 '$7(&2'( <($5 :((. /,1(/
$66(0%/< /27&2'(
25 ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'(
3$57180%(5 )6
'$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7237,21$/ <($5 :((. $ $66(0%/<6,7(&2'(
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
9
IRFB/S/SL3806PbF TO-262 Package Outline Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information (;$03/( 7+,6,6$1,5// /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(&
3$57180%(5
,17(51$7,21$/ 5(&7,),(5 /2*2
'$7(&2'( <($5 :((. /,1(&
$66(0%/< /27&2'(
25 ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'(
3$57180%(5
'$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7237,21$/ <($5 :((. $ $66(0%/<6,7(&2'(
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
10
www.irf.com
IRFB/S/SL3806PbF D2Pak (TO-263AB) Tape & Reel Information Dimensions are shown in millimeters (inches)
TRR 1.60 (.063) 1.50 (.059) 1.60 (.063) 1.50 (.059)
4.10 (.161) 3.90 (.153)
FEED DIRECTION 1.85 (.073)
11.60 (.457) 11.40 (.449)
1.65 (.065)
0.368 (.0145) 0.342 (.0135)
15.42 (.609) 15.22 (.601)
24.30 (.957) 23.90 (.941)
TRL 1.75 (.069) 1.25 (.049)
10.90 (.429) 10.70 (.421)
4.72 (.136) 4.52 (.178)
16.10 (.634) 15.90 (.626)
FEED DIRECTION
13.50 (.532) 12.80 (.504)
27.40 (1.079) 23.90 (.941) 4
330.00 (14.173) MAX.
60.00 (2.362) MIN.
NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039) 24.40 (.961) 3
30.40 (1.197) MAX. 4
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 02/08
www.irf.com
11