Preview only show first 10 pages with watermark. For full document please download

Irfs4010

   EMBED


Share

Transcript

PD - 97343 IRFS4010-7PPbF HEXFET® Power MOSFET Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits D G S VDSS RDS(on) typ. max. ID Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free 100V 3.3mΩ 4.0mΩ 190A D S G S S S S D2Pak 7 Pin G D S Gate Drain Source Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG Parameter Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current c Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery e Operating Junction and Storage Temperature Range Max. Units 190 130 740 A W 380 2.5 ± 20 W/°C V 26 -55 to + 175 V/ns °C 300 Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw 10lbxin (1.1Nxm) Avalanche Characteristics EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy d Avalanche Current c Repetitive Avalanche Energy f 330 See Fig. 14, 15, 22a, 22b, mJ A mJ Thermal Resistance Symbol RθJC RθJA www.irf.com Parameter Typ. Max. Units Junction-to-Case jk ––– °C/W Junction-to-Ambient (PCB Mount) ij ––– 0.40 40 1 10/07/08 IRFS4010-7PPbF Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current IGSS RG(int) Min. Typ. Max. Units Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage 100 ––– ––– 2.0 ––– ––– ––– ––– ––– 0.11 3.3 ––– ––– ––– ––– ––– ––– ––– 4.0 4.0 20 250 100 -100 Internal Gate Resistance ––– 2.1 ––– Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 5mAc mΩ VGS = 10V, ID = 110A f V VDS = VGS, ID = 250µA µA VDS = 100V, VGS = 0V VDS = 100V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Ω Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Min. Typ. Max. Units Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance 210 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Effective Output Capacitance (Energy Related)h ––– ––– Effective Output Capacitance (Time Related)g ––– 150 36 48 102 19 56 100 48 9830 650 260 730 740 ––– 230 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC ns pF Conditions VDS = 25V, ID = 110A ID = 110A VDS = 50V VGS = 10V f ID = 110A, VDS =0V, VGS = 10V VDD = 65V ID = 110A RG = 2.7Ω VGS = 10V f VGS = 0V VDS = 50V ƒ = 1.0MHz VGS = 0V, VDS = 0V to 80V h VGS = 0V, VDS = 0V to 80V g Diode Characteristics Symbol IS Parameter Continuous Source Current VSD trr (Body Diode) Pulsed Source Current (Body Diode)c Diode Forward Voltage Reverse Recovery Time Qrr Reverse Recovery Charge IRRM ton Reverse Recovery Current Forward Turn-On Time ISM Notes:  Repetitive rating; pulse width limited by max. junction temperature. ‚ Limited by TJmax, starting TJ = 25°C, L = 0.052mH RG = 25Ω, IAS = 110A, VGS =10V. Part not recommended for use above this value . ƒ ISD ≤ 110A, di/dt ≤ 1310A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. „ Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 Min. Typ. Max. Units ––– ––– 186 ––– ––– 740 A Conditions MOSFET symbol showing the integral reverse D G p-n junction diode. TJ = 25°C, IS = 110A, VGS = 0V f TJ = 25°C VR = 85V, TJ = 125°C IF = 110A di/dt = 100A/µs f TJ = 25°C S ––– ––– 1.3 V ––– 60 ––– ns ––– 67 ––– ––– 150 ––– nC TJ = 125°C ––– 180 ––– ––– 4.7 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) … Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. † Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. ‡ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom mended footprint and soldering techniques refer to application note #AN-994. ˆ Rθ is measured at TJ approximately 90°C. ‰ RθJC value shown is at time zero. www.irf.com IRFS4010-7PPbF 1000 1000 VGS 15V 10V 8.0V 7.0V 5.0V 4.5V 4.3V 4.0V 100 BOTTOM 10 BOTTOM 100 1 ≤60µs PULSE WIDTH Tj = 25°C 4.0V 4.0V 0.1 Tj = 175°C 1 10 100 0.1 V DS, Drain-to-Source Voltage (V) 1 10 100 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 100 T J = 175°C T J = 25°C 10 1 VDS = 50V ≤60µs PULSE WIDTH 0.1 ID = 110A VGS = 10V 2.0 (Normalized) RDS(on) , Drain-to-Source On Resistance 2.5 1.5 1.0 0.5 2 3 4 5 6 7 -60 -40 -20 0 20 40 60 80 100120140160180 VGS , Gate-to-Source Voltage (V) T J , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature 100000 14.0 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, C ds SHORTED Crss = Cgd ID= 110A VGS, Gate-to-Source Voltage (V) ID, Drain-to-Source Current (A) ≤60µs PULSE WIDTH 10 0.1 Coss = Cds + Cgd C, Capacitance (pF) VGS 15V 10V 8.0V 7.0V 5.0V 4.5V 4.3V 4.0V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP Ciss 10000 Coss 1000 Crss 12.0 VDS= 80V VDS= 50V 10.0 8.0 6.0 4.0 2.0 0.0 100 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage www.irf.com 0 25 50 75 100 125 150 175 200 225 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 3 IRFS4010-7PPbF 10000 100 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 T J = 175°C 10 T J = 25°C 1 OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 100µsec 100 10msec 1msec 10 DC 1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 0.1 0.1 0.0 0.5 1.0 1.5 1 VSD, Source-to-Drain Voltage (V) 180 ID, Drain Current (A) 160 140 120 100 80 60 40 20 0 75 100 125 150 175 V(BR)DSS , Drain-to-Source Breakdown Voltage (V) 200 50 6.0 Id = 5mA 120 115 110 105 100 95 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Temperature ( °C ) Fig 10. Drain-to-Source Breakdown Voltage EAS , Single Pulse Avalanche Energy (mJ) 1400 ID 21A 38A BOTTOM 110A TOP 1200 5.0 1000 4.0 Energy (µJ) 1000 125 T C , Case Temperature (°C) Fig 9. Maximum Drain Current vs. Case Temperature 3.0 2.0 1.0 0.0 800 600 400 200 0 0 10 20 30 40 50 60 70 80 90 100 110 VDS, Drain-to-Source Voltage (V) Fig 11. Typical COSS Stored Energy 4 100 Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 25 10 VDS, Drain-to-Source Voltage (V) 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 12. Maximum Avalanche Energy vs. DrainCurrent www.irf.com IRFS4010-7PPbF Thermal Response ( Z thJC ) °C/W 1 D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 0.01 τJ R1 R1 τJ τ1 τ1 R2 R2 τ2 R3 R3 τC τ τ2 τ3 τ3 τ4 τ4 Ci= τi/Ri Ci i/Ri 0.001 SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 Ri (°C/W) R4 R4 τi (sec) 0.02001 0.000025 0.05145 0.000094 0.19436 0.002047 0.13433 0.012818 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Avalanche Current (A) Duty Cycle = Single Pulse 100 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse) 0.01 0.05 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth 400 350 EAR , Avalanche Energy (mJ) Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 110A 300 250 200 150 100 50 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRFS4010-7PPbF 30 4.0 3.5 3.0 IRR (A) VGS(th) , Gate threshold Voltage (V) 4.5 ID = 250µA 2.5 ID = 1.0mA ID = 1.0A 2.0 25 IF = 74A V R = 85V 20 TJ = 25°C TJ = 125°C 15 10 5 1.5 1.0 0 -75 -50 -25 0 25 50 75 100 125 150 175 0 200 T J , Temperature ( °C ) 600 800 1000 Fig. 17 - Typical Recovery Current vs. dif/dt Fig 16. Threshold Voltage vs. Temperature 30 1000 25 IF = 110A V R = 85V 20 TJ = 25°C TJ = 125°C IF = 74A V R = 85V 900 800 TJ = 25°C TJ = 125°C 700 Q RR (A) IRR (A) 400 diF /dt (A/µs) 15 10 600 500 400 300 5 200 0 100 0 200 400 600 800 1000 0 200 diF /dt (A/µs) 400 600 800 1000 diF /dt (A/µs) Fig. 18 - Typical Recovery Current vs. dif/dt Fig. 19 - Typical Stored Charge vs. dif/dt 1000 IF = 110A V R = 85V 900 TJ = 25°C TJ = 125°C 800 Q RR (A) 700 600 500 400 300 200 0 200 400 600 800 1000 diF /dt (A/µs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFS4010-7PPbF Driver Gate Drive D.U.T ƒ - ‚ - - „ * D.U.T. ISD Waveform Reverse Recovery Current +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG + V - DD IAS VGS 20V A 0.01Ω tp I AS Fig 22a. Unclamped Inductive Test Circuit RD VDS Fig 22b. Unclamped Inductive Waveforms VDS 90% VGS D.U.T. RG + - VDD V10V GS 10% VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % td(on) Fig 23a. Switching Time Test Circuit tr t d(off) Fig 23b. Switching Time Waveforms Id Current Regulator Same Type as D.U.T. Vds Vgs 50KΩ 12V tf .2µF .3µF D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Current Sampling Resistors Fig 24a. Gate Charge Test Circuit www.irf.com Qgs1 Qgs2 Qgd Qgodr Fig 24b. Gate Charge Waveform 7 IRFS4010-7PPbF D2Pak - 7 Pin Package Outline Dimensions are shown in millimeters (inches) Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 www.irf.com IRFS4010-7PPbF D2Pak - 7 Pin Part Marking Information 14 D2Pak - 7 Pin Tape and Reel Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. www.irf.com IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/08 9