Transcript
PD - 96177
IRFS4127PbF IRFSL4127PbF Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits
HEXFET® Power MOSFET D
G S
Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free
VDSS RDS(on) typ. max. ID
200V 18.6m: 22m: 72A
D
D
S
G
G
D2Pak IRFS4127PbF
D
S
TO-262 IRFSL4127PbF
G
D
S
Gate
Drain
Source
Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS
Parameter
Max.
Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V
c
Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw
e
dv/dt TJ TSTG
Avalanche Characteristics EAS (Thermally limited) IAR EAR
Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy
c
f
d
Units
72 51 300 375 2.5 ± 20 57 -55 to + 175
A W W/°C V V/ns °C
300
x
x
10lb in (1.1N m) 250 See Fig. 14, 15, 22a, 22b,
mJ A mJ
Thermal Resistance Symbol RθJC RθJA
www.irf.com
Parameter
jk ij
Junction-to-Case Junction-to-Ambient
Typ.
Max.
Units
––– –––
0.4 40
°C/W
1 09/16/08
IRFS/SL4127PbF Static @ TJ = 25°C (unless otherwise specified) Symbol
Parameter
V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS
Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current
IGSS RG(int)
Min. Typ. Max. Units
Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage
200 ––– ––– 3.0 ––– ––– ––– –––
––– 0.23 18.6 ––– ––– ––– ––– –––
Internal Gate Resistance
–––
3.0
Conditions
––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 5mA 22 mΩ VGS = 10V, ID = 44A 5.0 V VDS = VGS, ID = 250µA VDS = 200V, VGS = 0V 20 µA 250 VDS = 200V, VGS = 0V, TJ = 125°C 100 VGS = 20V nA VGS = -20V -100
c
f
–––
Ω
Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR)
Parameter
Min. Typ. Max. Units
Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
h
Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related)
g
79 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– –––
––– 100 30 31 69 17 18 56 22 5380 410 86 360 590
––– 150 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– –––
Conditions
S
VDS = 50V, ID = 44A ID = 44A VDS = 100V nC VGS = 10V ID = 44A, VDS =0V, VGS = 10V VDD = 130V ID = 44A ns RG = 2.7Ω VGS = 10V VGS = 0V VDS = 50V pF ƒ = 1.0MHz (See Fig.5) VGS = 0V, VDS = 0V to 160V (See Fig.11) VGS = 0V, VDS = 0V to 160V
f
f
h g
Diode Characteristics Symbol IS
Parameter Continuous Source Current
VSD trr
(Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM ton
Reverse Recovery Current Forward Turn-On Time
ISM
c
Notes: Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.26mH RG = 25Ω, IAS = 44A, VGS =10V. Part not recommended for use above this value . ISD ≤ 44A, di/dt ≤ 760A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
Min. Typ. Max. Units ––– –––
––– –––
Conditions
76
MOSFET symbol
300
showing the integral reverse
A
D
G
p-n junction diode. S ––– ––– 1.3 V TJ = 25°C, IS = 44A, VGS = 0V TJ = 25°C VR = 100V, ––– 136 ––– ns T = 125°C I ––– 139 ––– J F = 44A di/dt = 100A/µs TJ = 25°C ––– 458 ––– nC TJ = 125°C ––– 688 ––– ––– 8.3 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
f
f
Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS .
Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS.
When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application note #AN-994.
Rθ is measured at TJ approximately 90°C
RθJC value shown is at time zero
www.irf.com
IRFS/SL4127PbF 1000
1000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V
100
10
BOTTOM
1
0.1
100 BOTTOM
10
4.5V 1
≤ 60µs PULSE WIDTH Tj = 175°C
≤ 60µs PULSE WIDTH Tj = 25°C
4.5V 0.01
0.1 0.1
1
10
100
0.1
VDS , Drain-to-Source Voltage (V)
10
100
Fig 2. Typical Output Characteristics 3.5
RDS(on) , Drain-to-Source On Resistance (Normalized)
1000
VDS = 50V
ID, Drain-to-Source Current(Α)
1
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
≤ 60µs PULSE WIDTH 100
TJ = 175°C 10
TJ = 25°C 1
0.1 3.0
4.0
5.0
6.0
7.0
ID = 44A
VGS = 10V
3.0
2.5
2.0
1.5
1.0
0.5
8.0
-60 -40 -20 0
VGS, Gate-to-Source Voltage (V)
8000
VGS, Gate-to-Source Voltage (V)
Coss = Cds + Cgd
Ciss 4000
2000 Coss Crss
0 1
ID= 44A 12
VDS = 160V VDS = 100V VDS = 40V
8
4
0 10
100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
Fig 4. Normalized On-Resistance vs. Temperature 16
VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd
6000
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
C, Capacitance (pF)
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
0
20
40
60
80
100
120
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3
IRFS/SL4127PbF 1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
TJ = 175°C
100
10
TJ = 25°C
1
OPERATION IN THIS AREA LIMITED BY R DS(on) 100µsec
100
1msec 10 10msec 1 Tc = 25°C Tj = 175°C Single Pulse
VGS = 0V 0.0
0.2
0.4
0.6
0.8
1.0
1.2
1
1.4
60
40
20
0 75
100
125
150
175
V(BR)DSS, Drain-to-Source Breakdown Voltage (V)
ID, Drain Current (A)
80
50
1000
260 Id = 5mA
240
220
200
180 -60 -40 -20 0 20 40 60 80 100120140160180 TJ , Temperature ( °C )
T C , Case Temperature (°C)
Fig 9. Maximum Drain Current vs. Case Temperature
Fig 10. Drain-to-Source Breakdown Voltage EAS, Single Pulse Avalanche Energy (mJ)
8.0
6.0
Energy (µJ)
100
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode Forward Voltage
25
10
VDS , Drain-toSource Voltage (V)
VSD , Source-to-Drain Voltage (V)
4.0
2.0
0.0
1000
I D 8.2A 13A BOTTOM 44A TOP
800
600
400
200
0 0
40
80
120
160
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
4
DC
0.1
0.1
200
25
50
75
100
125
150
175
Starting TJ, Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent
www.irf.com
IRFS/SL4127PbF
Thermal Response ( ZthJC )
1
D = 0.50 0.1
0.20 0.10 τJ
0.05 0.02 0.01
0.01
R1 R1 τJ τ1
R2 R2 τ2
τ1
R3 R3
R4 R4 τC τ
τ3
τ2
τ4
τ3
Ci= τi/Ri Ci i/Ri
τ4
Ri (°C/W) 0.02 0.083333 0.181667 0.113333
τι (sec) 0.000019 0.000078 0.001716 0.008764
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 100
Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse)
Avalanche Current (A)
Duty Cycle = Single Pulse 0.01 10
0.05 0.10
1
Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C.
0.1 1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
250
Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP Single Pulse BOTTOM 1% Duty Cycle ID = 44A
200
150
100
50
0 25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
IRFS/SL4127PbF 50
ID = 1.0A
ID = 1.0mA
5.0
40
ID = 250µA
4.0
IRRM - (A)
VGS(th) Gate threshold Voltage (V)
6.0
3.0
2.0
30
20 IF = 29A VR = 100V
10
TJ = 125°C
1.0
TJ = 25°C
0
-75 -50 -25
0
25
50
75
100 125 150 175
100 200 300 400 500 600 700 800 900 1000
TJ , Temperature ( °C )
dif / dt - (A / µs)
Fig. 17 - Typical Recovery Current vs. dif/dt
60
3000
50
2500
40
2000
QRR - (nC)
IRRM - (A)
Fig 16. Threshold Voltage Vs. Temperature
30
20
10
0
1500
1000
IF = 44A VR = 100V
IF = 29A VR = 100V
500
TJ = 125°C
TJ = 125°C
TJ = 25°C
TJ = 25°C
0 100 200 300 400 500 600 700 800 900 1000
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
dif / dt - (A / µs)
Fig. 19 - Typical Stored Charge vs. dif/dt
Fig. 18 - Typical Recovery Current vs. dif/dt 3000
2500
QRR - (nC)
2000
1500
1000
500
0
IF = 44A VR = 100V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRFS/SL4127PbF Driver Gate Drive
D.U.T
-
-
-
*
D.U.T. ISD Waveform Reverse Recovery Current
+
RG
• • • •
dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test
VDD
P.W. Period VGS=10V
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
+
D=
Period
P.W.
+
+ -
Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
Re-Applied Voltage
Body Diode
VDD
Forward Drop
Inductor Current Inductor Curent ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V
DRIVER
L
VDS
tp
D.U.T
RG VGS 20V
+ V - DD
IAS
A
0.01Ω
tp
I AS
Fig 22a. Unclamped Inductive Test Circuit RD
VDS
Fig 22b. Unclamped Inductive Waveforms VDS 90%
VGS
D.U.T.
RG
+
- VDD
V10V GS
10% VGS
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
td(on)
Fig 23a. Switching Time Test Circuit
tr
t d(off)
Fig 23b. Switching Time Waveforms Id
Current Regulator Same Type as D.U.T.
Vds Vgs
50KΩ 12V
tf
.2µF .3µF
D.U.T.
+ V - DS
Vgs(th) VGS 3mA
IG
ID
Current Sampling Resistors
Fig 24a. Gate Charge Test Circuit
www.irf.com
Qgs1 Qgs2
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
7
IRFS/SL4127PbF D2Pak (TO-263AB) Package Outline
Dimensions are shown in millimeters (inches)
D2Pak (TO-263AB) Part Marking Information 7+,6,6$1,5)6:,7+ /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(/
,17(51$7,21$/ 5(&7,),(5 /2*2
3$57180%(5 )6 '$7(&2'( <($5 :((. /,1(/
$66(0%/< /27&2'(
25 ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'(
3$57180%(5 )6
'$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7237,21$/ <($5 :((. $ $66(0%/<6,7(&2'(
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
8
www.irf.com
IRFS/SL4127PbF TO-262 Package Outline Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information (;$03/( 7+,6,6$1,5// /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(&
3$57180%(5
,17(51$7,21$/ 5(&7,),(5 /2*2
'$7(&2'( <($5 :((. /,1(&
$66(0%/< /27&2'(
25 ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'(
3$57180%(5
'$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7237,21$/ <($5 :((. $ $66(0%/<6,7(&2'(
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
9
IRFS/SL4127PbF D2Pak (TO-263AB) Tape & Reel Information Dimensions are shown in millimeters (inches)
TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.60 (.063) 1.50 (.059)
11.60 (.457) 11.40 (.449)
1.65 (.065)
0.368 (.0145) 0.342 (.0135)
15.42 (.609) 15.22 (.601)
24.30 (.957) 23.90 (.941)
TRL 1.75 (.069) 1.25 (.049)
10.90 (.429) 10.70 (.421)
4.72 (.136) 4.52 (.178)
16.10 (.634) 15.90 (.626)
FEED DIRECTION
13.50 (.532) 12.80 (.504)
27.40 (1.079) 23.90 (.941) 4
330.00 (14.173) MAX.
60.00 (2.362) MIN.
NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039) 24.40 (.961) 3
30.40 (1.197) MAX. 4
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 09/2008
10
www.irf.com