Transcript
PD - 95614A
IRG4BC30FD1PbF Fast CoPack IGBT INSULATED GATE BIPOLAR TRANSISTOR WITH HYPERFAST DIODE
C
VCES = 600V
Features
Fast: optimized for medium operating frequencies (1-5 kHz in hard switching, >20kHz in resonant mode). Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than Generation 3. IGBT co-packaged with Hyperfast FRED diodes for ultra low recovery characteristics. Industry standard TO-220AB package. Lead-Free
VCE(on) typ. = 1.59V
G
@VGE = 15V, IC = 17A
E
n-channel
Benefits
Generation 4 IGBT's offer highest efficiency available. IGBT's optimized for specific application conditions. FRED diodes optimized for performance with IGBT's. Minimized recovery characteristics require less / no snubbing.
TO-220AB
Absolute Maximum Ratings Max.
Units
VCES
Collector-to-Emitter Voltage
Parameter
600
V
IC @ TC = 25°C
Continuous Collector Current
31
IC @ TC = 100°C ICM
Continuous Collector Current Pulse Collector Current (Ref.Fig.C.T.5)
ILM
Clamped Inductive Load current
IF @ TC = 100°C
Diode Continuous Forward Current
8
IFM
Diode Maximum Forward Current
16
VGE
Gate-to-Emitter Voltage
±20
V
PD @ TC = 25°C
Maximum Power Dissipation
100
W
d
17
c
124
PD @ TC = 100°C Maximum Power Dissipation Operating Junction and TJ TSTG
A
124
42 -55 to +150
Storage Temperature Range Storage Temperature Range, for 10 sec.
°C 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal / Mechanical Characteristics Min.
Typ.
Max.
Units
RθJC
Junction-to-Case- IGBT
Parameter
–––
–––
1.2
°C/W
RθJC
Junction-to-Case- Diode
–––
–––
2.0
RθCS
Case-to-Sink, flat, greased surface
–––
0.50
–––
RθJA
Junction-to-Ambient, typical socket mount
–––
–––
80
Wt
Weight
–––
2.0 (0.07)
–––
www.irf.com
g (oz.)
1 01/27/10
IRG4BC30FD1PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter
e
V(BR)CES Collector-to-Emitter Breakdown Voltage ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage VCE(on)
Collector-to-Emitter Voltage
Min. Typ. Max. Units 600
—
—
—
0.69
—
—
1.59
1.8
—
1.99
—
—
1.7
—
VGE(th)
Gate Threshold Voltage
3.0
—
6.0
∆VGE(th)/∆TJ
Threshold Voltage temp. coefficient
—
-11
—
gfe ICES
Forward Transconductance Zero Gate Voltage Collector Current
6.1
10
—
—
—
250
—
—
2500
—
2.0
2.4
—
1.3
1.8
—
—
±100
VFM
f
Diode Forward Voltage Drop
IGES
Gate-to-Emitter Leakage Current
V
Conditions VGE = 0V, IC = 250µA
V/°C VGE = 0V, IC = 1mA IC = 17A V
VGE = 15V
IC = 31A
See Fig. 2, 5
IC = 17A, TJ = 150°C V
VCE = VGE, IC = 250µA
mV/°C VCE = VGE, IC = 250µA S VCE = 100V, IC = 17A µA
VGE = 0V, VCE = 600V
V
IF = 8.0A
VGE = 0V, VCE = 600V, TJ = 150°C See Fig. 13
IF = 8.0A, TJ = 150°C nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Qg
Total Gate Charge (turn-on)
Conditions
Min. Typ. Max. Units —
57
IC = 17A
62
VCC = 400V
Qge
Gate-to-Emitter Charge (turn-on)
—
10
12
Qgc
Gate-to-Collector Charge (turn-on)
—
21
24
td(on)
Turn-On delay time
—
22
—
tr
Rise time
—
24
—
td(off)
Turn-Off delay time
—
250
320
VGE = 15V, RG = 23Ω
tf
Fall time
—
160
210
Energy losses inlcude "tail" and
Eon
Turn-On Switching Loss
—
370
—
Eoff
Turn-Off Switching Loss
—
1420
—
Ets
Total Switching Loss
—
1800
2290
td(on)
Turn-On delay time
—
21
—
tr
Rise time
—
25
—
td(off)
Turn-Off delay time
—
400
—
tf
Fall time
—
340
—
Ets
Total Switching Loss
—
3280
—
µJ
diode reverse recovery.
LE
Internal Emitter Inductance
—
7.5
—
nH
Cies
Input Capacitance
—
1170
—
Measured 5mm from package VGE = 0V
Coes
Output Capacitance
—
100
—
pF
VCC = 30V
Cres
Reverse Transfer Capacitance
—
11
—
trr
Diode Reverse Recovery Time
—
46
61
—
85
93
4.8
6.5
Irr
Diode Peak Reverse Recovery Current
— —
8.5
10
Qrr
Diode Reverse Recovery Charge
—
110
190
410
550
di(rec)M/dt
2
Diode Peak Rate of Fall of Recovery
—
260
—
During tb
—
270
—
nC
See Fig. 8
VGE = 15V TJ = 25°C ns
IC = 17A, VCC = 480V
diode reverse recovery. µJ
See Fig. 9, 10, 11, 18 TJ = 150°C
ns
See Fig. 9,10,11,18 IC = 17A, VCC = 480V VGE = 15V, RG = 23Ω Energy losses inlcude "tail" and
See Fig. 7
f = 1.0MHz ns
TJ = 25°C TJ = 125°C
A
TJ = 25°C
nC
TJ = 25°C
TJ = 125°C TJ = 125°C A/µs TJ = 25°C TJ = 125°C
See Fig. 14
IF = 12A
See Fig. 15
VR = 200V
See Fig. 16
di/dt 200A/µs
See Fig. 17
www.irf.com
IRG4BC30FD1PbF
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK)
IC , Collector-to-Emitter Current (A)
TJ = 25°C
100
TJ = 150°C
10
V GE = 15V 20µs PULSE WIDTH A
1 1
10
IC , Collector-to-Emitter Current (A)
1000
1000
100
TJ = 150°C TJ = 25°C
10
V CC = 50V 5µs PULSE WIDTH A
1 5
6
7
8
9
10
11
12
VCE , Collector-to-Emitter Voltage (V)
VGE, Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
www.irf.com
13
3
IRG4BC30FD1PbF 2.5
VGE = 15V
VCE , Collector-to-Emitter Voltage (V)
Maximum DC Collector Current (A)
40
30
20
10
0 25
50
75
100
125
I C = 34A
2.0
I C = 17A 1.5
I C = 8.5A A
1.0
150
-60
TC , Case Temperature (°C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
VGE = 15V 80µs PULSE WIDTH
-40
-20
0
20
40
60
80
100 120 140 160
TJ , Junction Temperature (°C)
Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
Thermal Response (Z thJC )
10
1 D = 0.50 0.20 PDM
0.10
0.1
0.01 0.00001
t
0.05 0.02 0.01
SINGLE PULSE (THERMAL RESPONSE)
Notes: 1. Duty factor D = t
1
/t
1 t2
2
2. Peak TJ = PDM x Z thJC + T C
0.0001
0.001
0.01
0.1
1
10
t 1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4
www.irf.com
IRG4BC30FD1PbF 2000
1600
VGE, Gate-to-Emitter Voltage (V)
1800
Capacitance (pF)
14
VGS = 0V, f = 1 MHZ C ies = C ge + C gd, C ce SHORTED C res = C gc C oes = C ce + C gc
1400
Cies
1200 1000 800
Coes
600 400
VCC = 400V I = 17A C
12 10 8 6 4 2
Cres
200
0
0
0 1
10
100
10
1000
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
40
50
60
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
9000
2000 VCE = 480V VGE = 15V
8000
TJ = 25°C I C = 17A
Total Swiching Losses (mJ)
Total Swiching Losses (mJ)
30
Q G, Total Gate Charge (nC)
VCE, Collector-toEmitter-Voltage(V)
1900
20
1800
1700
7000
R G = 22Ω
VGE = 15V VCC = 480V
IC = 34A
6000 5000 4000
IC = 17A
3000 2000
IC = 8.5A
1000 0
1600 0
10
20
30
40
RG, Gate Resistance (Ω)
Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com
50
-60 -40 -20
0
20
40
60
80 100 120 140 160
T J, Juntion Temperature (°C)
Fig. 10 - Typical Switching Losses vs. Junction Temperature 5
IRG4BC30FD1PbF 8000
1000
TJ = 150°C VCE= 480V VGE = 15V
7000 6000 5000 4000 3000 2000 1000 0
10
20
30
VGE = 20V GE TJ = 125°C
100
SAFE OPERATING AREA
10
1
40
1
10
100
1000
VCE , Collector-to-Emitter Voltage (V)
IC, Collecto-to-Emitter (A)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
100
Instantaneous Forward Current - I F (A)
Total Swiching Losses (mJ)
I C , Collector-to-Emitter Current (A)
R G = 22Ω
10 T = 175˚C J T = 150˚C J T = 25˚C J
1
0.1
0
1
2
3
4
Forward Voltage Drop - VFM (V) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 6
www.irf.com
IRG4BC30FD1PbF 200 175
20 V = 390V R T = 25°C _____ J TJ = 125°C ----------
V = 390V R TJ = 25°C _____ TJ = 125°C ----------
150
15 IF =
125
16A
trr (ns)
IRRM (A)
IF = 8A
100
10
75 50
IF =
5
16A
IF = 8A 25 0
0 100 200 300 400 500 600 700 800 900 1000
100 200 300 400 500 600 700 800 900 1000
diF /dt (A/µs)
diF /dt (A/µs)
Fig. 14 - Typical Reverse Recovery vs. dif/dt
Fig. 15 - Typical Recovery Current vs. dif/dt
1000 900
1400 VR = 390V TJ = 25°C _____
IF
= 16A
IF = 8A
T = 125°C ---------J
1200
V = 390V R T = 25°C _____ J TJ = 125°C ----------
800
1000
di(rec)M / dt (A/µs)
700
Qrr (nC)
600 500 400 300
IF = 8A
800
600
400 IF
200
= 16A
200
100 0
0 100 200 300 400 500 600 700 800 900 1000
100 200 300 400 500 600 700 800 900 1000
diF/dt (A/µs)
diF/dt (A/µs)
Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com
Fig. 17 - Typical di(rec)M/dt vs. dif/dt 7
IRG4BC30FD1PbF 90% Vge
Same type device as D.U.T.
+Vge
Vce
430µF
80% of Vce
D.U.T.
Ic
90% Ic
10% Vce
Ic 5% Ic
td(off)
tf
Eoff =
Fig. 18a - Test Circuit for Measurement of
∫
t1+5µS Vce icIcdtdt Vce
t1
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf
GATE VOLTAGE D.U.T. 10% +Vg
trr
Ic
Qrr =
tx
DUT VOLTAGE AND CURRENT
Vce 10% Ic 90% Ic
tr
td(on)
10% Irr
Ipk
Vpk
Vcc
Irr
Ic DIODE RECOVERY WAVEFORMS
5% Vce
t1
∫
t2 VceieIcdt dt Eon = Vce t1 t2
DIODE REVERSE RECOVERY ENERGY t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr
8
∫
+Vg 10% Vcc
Vcc
trr id Ic dtdt tx
∫
t4 Erec = Vd VdidIcdt dt t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr
www.irf.com
IRG4BC30FD1PbF Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Fig.18e - Macro Waveforms for Figure 18a's Test Circuit
RL = VCC ICM D.U.T.
L 1000V
Vc*
50V 6000µF 100V
0 - VCC
480µF
Pulsed Collector Current Test Circuit
Fig. 19 - Clamped Inductive Load Test Circuit
www.irf.com
Fig. 20 - Pulsed Collector Current Test Circuit
9
IRG4BC30FD1PbF TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information (;$03/( 7+,6,6$1,5) /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(& Note: "P" in assembly line position indicates "Lead-Free"
,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'(
3$57180%(5 '$7(&2'( <($5 :((. /,1(&
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Notes:
Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20). VCC=80%(VCES), VGE=20V, L=10µH, RG = 23Ω (figure 19). Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot.
Energy losses include "tail" and diode reverse recovery, using Diode FD100H06A5. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 01/2010
10
www.irf.com