Preview only show first 10 pages with watermark. For full document please download

Irg4bc30fd1pbf Fast Copack Igbt V = 600v

   EMBED


Share

Transcript

PD - 95614A IRG4BC30FD1PbF Fast CoPack IGBT INSULATED GATE BIPOLAR TRANSISTOR WITH HYPERFAST DIODE C VCES = 600V Features • Fast: optimized for medium operating frequencies (1-5 kHz in hard switching, >20kHz in resonant mode). • Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than Generation 3. • IGBT co-packaged with Hyperfast FRED diodes for ultra low recovery characteristics. • Industry standard TO-220AB package. • Lead-Free VCE(on) typ. = 1.59V G @VGE = 15V, IC = 17A E n-channel Benefits • Generation 4 IGBT's offer highest efficiency available. • IGBT's optimized for specific application conditions. • FRED diodes optimized for performance with IGBT's. Minimized recovery characteristics require less / no snubbing. TO-220AB Absolute Maximum Ratings Max. Units VCES Collector-to-Emitter Voltage Parameter 600 V IC @ TC = 25°C Continuous Collector Current 31 IC @ TC = 100°C ICM Continuous Collector Current Pulse Collector Current (Ref.Fig.C.T.5) ILM Clamped Inductive Load current IF @ TC = 100°C Diode Continuous Forward Current 8 IFM Diode Maximum Forward Current 16 VGE Gate-to-Emitter Voltage ±20 V PD @ TC = 25°C Maximum Power Dissipation 100 W d 17 c 124 PD @ TC = 100°C Maximum Power Dissipation Operating Junction and TJ TSTG A 124 42 -55 to +150 Storage Temperature Range Storage Temperature Range, for 10 sec. °C 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal / Mechanical Characteristics Min. Typ. Max. Units RθJC Junction-to-Case- IGBT Parameter ––– ––– 1.2 °C/W RθJC Junction-to-Case- Diode ––– ––– 2.0 RθCS Case-to-Sink, flat, greased surface ––– 0.50 ––– RθJA Junction-to-Ambient, typical socket mount ––– ––– 80 Wt Weight ––– 2.0 (0.07) ––– www.irf.com g (oz.) 1 01/27/10 IRG4BC30FD1PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter e V(BR)CES Collector-to-Emitter Breakdown Voltage ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage VCE(on) Collector-to-Emitter Voltage Min. Typ. Max. Units 600 — — — 0.69 — — 1.59 1.8 — 1.99 — — 1.7 — VGE(th) Gate Threshold Voltage 3.0 — 6.0 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -11 — gfe ICES Forward Transconductance Zero Gate Voltage Collector Current 6.1 10 — — — 250 — — 2500 — 2.0 2.4 — 1.3 1.8 — — ±100 VFM f Diode Forward Voltage Drop IGES Gate-to-Emitter Leakage Current V Conditions VGE = 0V, IC = 250µA V/°C VGE = 0V, IC = 1mA IC = 17A V VGE = 15V IC = 31A See Fig. 2, 5 IC = 17A, TJ = 150°C V VCE = VGE, IC = 250µA mV/°C VCE = VGE, IC = 250µA S VCE = 100V, IC = 17A µA VGE = 0V, VCE = 600V V IF = 8.0A VGE = 0V, VCE = 600V, TJ = 150°C See Fig. 13 IF = 8.0A, TJ = 150°C nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Qg Total Gate Charge (turn-on) Conditions Min. Typ. Max. Units — 57 IC = 17A 62 VCC = 400V Qge Gate-to-Emitter Charge (turn-on) — 10 12 Qgc Gate-to-Collector Charge (turn-on) — 21 24 td(on) Turn-On delay time — 22 — tr Rise time — 24 — td(off) Turn-Off delay time — 250 320 VGE = 15V, RG = 23Ω tf Fall time — 160 210 Energy losses inlcude "tail" and Eon Turn-On Switching Loss — 370 — Eoff Turn-Off Switching Loss — 1420 — Ets Total Switching Loss — 1800 2290 td(on) Turn-On delay time — 21 — tr Rise time — 25 — td(off) Turn-Off delay time — 400 — tf Fall time — 340 — Ets Total Switching Loss — 3280 — µJ diode reverse recovery. LE Internal Emitter Inductance — 7.5 — nH Cies Input Capacitance — 1170 — Measured 5mm from package VGE = 0V Coes Output Capacitance — 100 — pF VCC = 30V Cres Reverse Transfer Capacitance — 11 — trr Diode Reverse Recovery Time — 46 61 — 85 93 4.8 6.5 Irr Diode Peak Reverse Recovery Current — — 8.5 10 Qrr Diode Reverse Recovery Charge — 110 190 410 550 di(rec)M/dt 2 Diode Peak Rate of Fall of Recovery — 260 — During tb — 270 — nC See Fig. 8 VGE = 15V TJ = 25°C ns IC = 17A, VCC = 480V diode reverse recovery. µJ See Fig. 9, 10, 11, 18 TJ = 150°C ns See Fig. 9,10,11,18 IC = 17A, VCC = 480V VGE = 15V, RG = 23Ω Energy losses inlcude "tail" and See Fig. 7 f = 1.0MHz ns TJ = 25°C TJ = 125°C A TJ = 25°C nC TJ = 25°C TJ = 125°C TJ = 125°C A/µs TJ = 25°C TJ = 125°C See Fig. 14 IF = 12A See Fig. 15 VR = 200V See Fig. 16 di/dt 200A/µs See Fig. 17 www.irf.com IRG4BC30FD1PbF Fig. 1 - Typical Load Current vs. Frequency (For square wave, I=IRMS of fundamental; for triangular wave, I=IPK) IC , Collector-to-Emitter Current (A) TJ = 25°C 100 TJ = 150°C 10 V GE = 15V 20µs PULSE WIDTH A 1 1 10 IC , Collector-to-Emitter Current (A) 1000 1000 100 TJ = 150°C TJ = 25°C 10 V CC = 50V 5µs PULSE WIDTH A 1 5 6 7 8 9 10 11 12 VCE , Collector-to-Emitter Voltage (V) VGE, Gate-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics Fig. 3 - Typical Transfer Characteristics www.irf.com 13 3 IRG4BC30FD1PbF 2.5 VGE = 15V VCE , Collector-to-Emitter Voltage (V) Maximum DC Collector Current (A) 40 30 20 10 0 25 50 75 100 125 I C = 34A 2.0 I C = 17A 1.5 I C = 8.5A A 1.0 150 -60 TC , Case Temperature (°C) Fig. 4 - Maximum Collector Current vs. Case Temperature VGE = 15V 80µs PULSE WIDTH -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature (°C) Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 10 1 D = 0.50 0.20 PDM 0.10 0.1 0.01 0.00001 t 0.05 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE) Notes: 1. Duty factor D = t 1 /t 1 t2 2 2. Peak TJ = PDM x Z thJC + T C 0.0001 0.001 0.01 0.1 1 10 t 1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4BC30FD1PbF 2000 1600 VGE, Gate-to-Emitter Voltage (V) 1800 Capacitance (pF) 14 VGS = 0V, f = 1 MHZ C ies = C ge + C gd, C ce SHORTED C res = C gc C oes = C ce + C gc 1400 Cies 1200 1000 800 Coes 600 400 VCC = 400V I = 17A C 12 10 8 6 4 2 Cres 200 0 0 0 1 10 100 10 1000 Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 40 50 60 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 9000 2000 VCE = 480V VGE = 15V 8000 TJ = 25°C I C = 17A Total Swiching Losses (mJ) Total Swiching Losses (mJ) 30 Q G, Total Gate Charge (nC) VCE, Collector-toEmitter-Voltage(V) 1900 20 1800 1700 7000  R G = 22Ω VGE = 15V VCC = 480V IC = 34A 6000 5000 4000 IC = 17A 3000 2000 IC = 8.5A 1000 0 1600 0 10 20 30 40 RG, Gate Resistance (Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 50 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J, Juntion Temperature (°C) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4BC30FD1PbF 8000 1000 TJ = 150°C VCE= 480V VGE = 15V 7000 6000 5000 4000 3000 2000 1000 0 10 20 30 VGE = 20V GE TJ = 125°C 100 SAFE OPERATING AREA 10 1 40 1 10 100 1000 VCE , Collector-to-Emitter Voltage (V) IC, Collecto-to-Emitter (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA 100 Instantaneous Forward Current - I F (A) Total Swiching Losses (mJ) I C , Collector-to-Emitter Current (A) R G = 22Ω 10 T = 175˚C J T = 150˚C J T = 25˚C J 1 0.1 0 1 2 3 4 Forward Voltage Drop - VFM (V) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com IRG4BC30FD1PbF 200 175 20 V = 390V R T = 25°C _____ J TJ = 125°C ---------- V = 390V R TJ = 25°C _____ TJ = 125°C ---------- 150 15 IF = 125 16A trr (ns) IRRM (A) IF = 8A 100 10 75 50 IF = 5 16A IF = 8A 25 0 0 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 diF /dt (A/µs) diF /dt (A/µs) Fig. 14 - Typical Reverse Recovery vs. dif/dt Fig. 15 - Typical Recovery Current vs. dif/dt 1000 900 1400 VR = 390V TJ = 25°C _____ IF = 16A IF = 8A T = 125°C ---------J 1200 V = 390V R T = 25°C _____ J TJ = 125°C ---------- 800 1000 di(rec)M / dt (A/µs) 700 Qrr (nC) 600 500 400 300 IF = 8A 800 600 400 IF 200 = 16A 200 100 0 0 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 diF/dt (A/µs) diF/dt (A/µs) Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com Fig. 17 - Typical di(rec)M/dt vs. dif/dt 7 IRG4BC30FD1PbF 90% Vge Same type device as D.U.T. +Vge Vce 430µF 80% of Vce D.U.T. Ic 90% Ic 10% Vce Ic 5% Ic td(off) tf Eoff = Fig. 18a - Test Circuit for Measurement of ∫ t1+5µS Vce icIcdtdt Vce t1 ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t1 t2 Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf GATE VOLTAGE D.U.T. 10% +Vg trr Ic Qrr = tx DUT VOLTAGE AND CURRENT Vce 10% Ic 90% Ic tr td(on) 10% Irr Ipk Vpk Vcc Irr Ic DIODE RECOVERY WAVEFORMS 5% Vce t1 ∫ t2 VceieIcdt dt Eon = Vce t1 t2 DIODE REVERSE RECOVERY ENERGY t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 ∫ +Vg 10% Vcc Vcc trr id Ic dtdt tx ∫ t4 Erec = Vd VdidIcdt dt t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com IRG4BC30FD1PbF Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T. VOLTAGE IN D.U.T. CURRENT IN D1 t0 t1 t2 Fig.18e - Macro Waveforms for Figure 18a's Test Circuit RL = VCC ICM D.U.T. L 1000V Vc* 50V 6000µF 100V 0 - VCC 480µF Pulsed Collector Current Test Circuit Fig. 19 - Clamped Inductive Load Test Circuit www.irf.com Fig. 20 - Pulsed Collector Current Test Circuit 9 IRG4BC30FD1PbF TO-220AB Package Outline (Dimensions are shown in millimeters (inches)) TO-220AB Part Marking Information (;$03/( 7+,6,6$1,5) /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(& Note: "P" in assembly line position indicates "Lead-Free" ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 '$7(&2'( <($5  :((. /,1(& Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Notes:  Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20). ‚ VCC=80%(VCES), VGE=20V, L=10µH, RG = 23Ω (figure 19). ƒ Pulse width ≤ 80µs; duty factor ≤ 0.1%. „ Pulse width 5.0µs, single shot. … Energy losses include "tail" and diode reverse recovery, using Diode FD100H06A5. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 01/2010 10 www.irf.com