Transcript
PD - 96304
IRG6B330UDPbF PDP TRENCH IGBT Features l Advanced Trench IGBT Technology l Optimized for Sustain and Energy Recovery Circuits in PDP Applications TM) l Low VCE(on) and Energy per Pulse (EPULSE for Improved Panel Efficiency l High Repetitive Peak Current Capability l Lead Free Package
Key Parameters VCE min VCE(ON) typ. @ IC = 70A IRP max @ TC= 25°C TJ max
330 1.69 250 150
c
V V A °C
C
G
G
C
E
E
n-channel G G ate
TO-220AB
C C ollector
E E m itter
Description This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP applications.
Absolute Maximum Ratings Parameter VGE IC @ TC = 25°C
Max.
Units
±30
V
70
A
Gate-to-Emitter Voltage Continuous Collector Current, VGE @ 15V
IC @ TC = 100°C
Continuous Collector, VGE @ 15V
40
IRP @ TC = 25°C
Repetitive Peak Current
250
PD @TC = 25°C
Power Dissipation
PD @TC = 100°C
Power Dissipation Linear Derating Factor
1.3
W/°C
TJ
Operating Junction and
-40 to + 150
°C
TSTG
Storage Temperature Range
c
160
W
63
Soldering Temperature for 10 seconds
x
300
x
10lb in (1.1N m)
Mounting Torque, 6-32 or M3 Screw
N
Thermal Resistance Parameter RθJC (IGBT) RθJC (Diode) RθCS RθJA
www.irf.com
d d
Thermal Resistance Junction-to-Case-(each IGBT) Thermal Resistance Junction-to-Case-(each Diode) Case-to-Sink (flat, greased surface) Junction-to-Ambient (typical socket mount) Weight
d
Typ.
Max.
Units
––– 1.6 0.24 ––– 6.0 (0.21)
0.80 2.4 ––– 40 –––
°C/W g (oz)
1 4/20/10
IRG6B330UDPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter BVCES ∆ΒVCES/∆TJ
Collector-to-Emitter Breakdown Voltage Breakdown Voltage Temp. Coefficient
VCE(on)
Static Collector-to-Emitter Voltage
VGE(th) ∆VGE(th)/∆TJ ICES
Gate Threshold Voltage Gate Threshold Voltage Coefficient Collector-to-Emitter Leakage Current
IGES gfe Qg Qgc td(on) tr td(off) tf td(on) tr td(off) tf tst
Gate-to-Emitter Forward Leakage Gate-to-Emitter Reverse Leakage Forward Transconductance Total Gate Charge Gate-to-Collector Charge Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On delay time Rise time Turn-Off delay time Fall time Shoot Through Blocking Time
EPULSE
Energy per Pulse
Min.
Conditions
Typ. Max. Units
330 ––– ––– ––– ––– ––– ––– 2.6 ––– ––– ––– ––– ––– ––– ––– ––– ––– — — — — — — — — 100
––– 0.34 1.18 1.36 1.69 2.26 1.93 ––– -11 2.0 5.0 100 ––– ––– 50 85 31 47 37 176 99 45 38 228 183 –––
––– ––– 1.48 1.68 2.09 2.76 ––– 5.0 ––– 25 ––– ––– 100 -100 ––– ––– ––– — — — — — — — — –––
–––
834
–––
–––
985
–––
Ciss Coss Crss LC
Input Capacitance Output Capacitance Reverse Transfer Capacitance Internal Collector Inductance
––– ––– ––– –––
2297 141 74 5.0
––– ––– ––– –––
LE
Internal Emitter Inductance
–––
13
–––
V V/°C
V
VGE = 0V, ICE = 1 mA Reference to 25°C, ICE = 1mA VGE = 15V, ICE = 25A VGE = 15V, ICE = 40A VGE = 15V, ICE = 70A VGE = 15V, ICE = 120A VGE = 15V, ICE = 70A, TJ = 150°C VCE = VGE, ICE = 500µA
e e e e
V mV/°C µA VCE = 330V, VGE = 0V VCE = 330V, VGE = 0V, TJ = 100°C VCE = 330V, VGE = 0V, TJ = 150°C nA VGE = 30V VGE = -30V VCE = 25V, ICE = 25A S nC VCE = 200V, IC = 25A, VGE = 15V
e
ns
IC = 25A, VCC = 196V RG = 10Ω, L=200µH, LS= 200nH TJ = 25°C
ns
IC = 25A, VCC = 196V RG = 10Ω, L=200µH, LS= 200nH TJ = 150°C
ns µJ
pF
nH
VCC = 240V, VGE = 15V, RG= 5.1Ω L = 220nH, C= 0.40µF, VGE = 15V VCC = 240V, RG= 5.1Ω, TJ = 25°C L = 220nH, C= 0.40µF, VGE = 15V VCC = 240V, RG= 5.1Ω, TJ = 100°C VGE = 0V VCE = 30V ƒ = 1.0MHz, See Fig.13 Between lead, 6mm (0.25in.) from package and center of die contact
Diode Characteristics @ TJ = 25°C (unless otherwise specified) Parameter IF(AV) IFSM VF
Average Forward Current at TC=155°C Non Repetitive Peak Surge Current Forward Voltage
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
Irr
Peak Recovery Current
Notes: Half sine wave with duty cycle = 0.1, ton=2µsec. Rθ is measured at TJ of approximately 90°C.
2
Min.
Typ. Max. Units
–––
–––
8.0
A
––– ––– ––– ––– ––– ––– ––– ––– ––– –––
––– 1.19 0.94 35 43 67 60 210 2.8 6.3
100 1.3 1.0 60 ––– ––– ––– ––– ––– –––
A V ns
nC A
Conditions TJ = 155°C, PW = 6.0ms half sine wave IF = 8A IF = 8A, TJ = 150°C IF = 1A, di/dt = -50A/µs, VR =30V TJ = 25°C IF = 8A TJ = 125°C TJ = 25°C di/dt = 200A/µs VR = 200V TJ = 125°C TJ = 25°C TJ = 125°C
Pulse width ≤ 400µs; duty cycle ≤ 2%.
www.irf.com
IRG6B330UDPbF 200
200 VGE = 18V
VGE = 18V
160
VGE = 15V
160
VGE = 15V
VGE = 12V
VGE = 10V
120
ICE (A)
ICE (A)
VGE = 12V VGE = 8.0V VGE = 6.0V
80
40
VGE = 10V
120
VGE = 8.0V VGE = 6.0V
80
40
0
0 0
4
8
12
16
0
4
VCE (V)
8
12
VCE (V)
Fig 1. Typical Output Characteristics @ 25°C
Fig 2. Typical Output Characteristics @ 75°C
200
200 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V
VGE = 18V
VGE = 15V
160
160
VGE = 12V VGE = 10V
120
VGE = 8.0V
ICE (A)
ICE (A)
16
VGE = 6.0V 80
40
120
80
40
0
0 0
4
8
12
16
0
4
VCE (V)
8
12
16
V CE (V)
Fig 3. Typical Output Characteristics @ 125°C
Fig 4. Typical Output Characteristics @ 150°C
300
14
250
12
IC = 25A
10 VCE (V)
ICE (A)
200 150 100
T J = 25°C
TJ = 25°C TJ = 150°C
8 6 4
T J = 150°C 50
2
0
0
2
4
6
8
10
12
14
VGE (V)
Fig 5. Typical Transfer Characteristics
www.irf.com
16
0
5
10
15
20
V GE (V)
Fig 6. VCE(ON) vs. Gate Voltage
3
IRG6B330UDPbF 80
300
Repetitive Peak Current (A)
IC, Collector Current (A)
70 60 50 40 30 20
200
100 ton= 2µs Duty cycle = 0.1 Half Sine Wave
10 0
0 0
25
50
75
100
125
25
150
T C, Case Temperature (°C)
Fig 7. Maximum Collector Current vs. Case Temperature
75
100
125
150
Case Temperature (°C)
Fig 8. Typical Repetitive Peak Current vs. Case Temperature
1000
1000 VCC = 240V L = 220nH C = variable
L = 220nH C = 0.4µF
900 100°C
100°C
Energy per Pulse (µJ)
900
Energy per Pulse (µJ)
50
800 700 25°C 600
800 700
25°C
600
500
500
400
400 170
180
190
200
210
220
230
240
180
IC, Peak Collector Current (A)
190
200
210
220
230
240
VCE, Collector-to-Emitter Voltage (V)
Fig 9. Typical EPULSE vs. Collector Current 1400
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage 1000
VCC = 240V L = 220nH t = 1µs half sine
C= 0.4µF
100 µs
100
1000
IC (A)
Energy per Pulse (µJ)
1200
C= 0.3µF
800
10 µs
1ms 10
600
C= 0.2µF
400
1
200 25
50
75
100
125
TJ, Temperature (ºC)
Fig 11. EPULSE vs. Temperature
4
150
1
10
100
1000
VCE (V)
Fig 12. Forward Bias Safe Operating Area
www.irf.com
IRG6B330UDPbF 25 VGE, Gate-to-Source Voltage (V)
10000
Capacitance (pF)
Cies 1000
100
Coes Cres
ID= 25A VDS= 240V
20
VDS= 200V VDS= 150V
15
10
5
0
10 0
100
200
0
300
20
40
60
80
100
120
QG Total Gate Charge (nC)
VCE (V)
Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage 1
Thermal Response ( Z thJC )
D = 0.50 0.20 0.1
0.10 R1 R1
0.05 τJ
0.02 0.01
0.01
τJ τ1
R2 R2 τ2
τ1
R3 R3 τ3
τ2
τC τ
Ri (°C/W) τi (sec) 0.146 0.000131 0.382 0.271
τ3
Ci= τi/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-006
1E-005
0.0001
0.001707 0.014532
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case (IGBT)
Thermal Response ( ZthJC )
10
D = 0.50
1
0.20 0.10 0.05 0.02 0.01
0.1
τJ
R1 R1 τJ τ1
τ1
R2 R2 τ2
R3 R3
τC τ τ3
τ2
Ci= τi/Ri Ci i/Ri
0.01
R4 R4
τ3
τ4
τ4
Ri (°C/W) 0.07854 0.829201 1.002895 0.490875
τι (sec) 0.000637 0.000532 0.003412 0.055432
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 16. Maximum Effective Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
5
IRG6B330UDPbF 90 80 70
10 trr - (ns)
IF, Instantaneous Forward Current (A)
100
1
Tj = 150°C Tj = 25°C
IF = 8.0A, T J =125°C
60 50 40
IF = 8.0A, T J =25°C
30
0.1 0.0
0.5
1.0
1.5
2.0
20
2.5
100
VFM, Forward Voltage Drop (V)
1000
dif / dt - (A / µs)
Fig. 18 - Typical Reverse Recovery vs. di F /dt
Fig. 17 - Typical Forward Voltage Drop Characteristics 400
IF = 8.0A, T J =125°C
Qrr - (ns)
300
200
Fig.20 - Switching Loss Circuit
100 A
IF = 8.0A, T J =25°C
RG
100
L
1000
dif / dt - (A / µs)
VCC
Fig. 19- Typical Stored Charge vs. di F /dt VCE
C
DRIVER
0
B
RG
Ipulse DUT
Energy IC Current
Fig 21a. tst and EPULSE Test Circuit
Fig 21b. tst Test Waveforms PULSE A
L 0
PULSE B
1K
tST
Fig 21c. EPULSE Test Waveforms
6
VCC
DUT
Fig. 22 - Gate Charge Circuit (turn-off)
www.irf.com
IRG6B330UDPbF TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information (;$03/( 7+,6,6$1,5) /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(& 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH
,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'(
3$57180%(5
'$7(&2'( <($5 :((. /,1(&
TO-220AB packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkigbt.html
Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.04/2010
www.irf.com
7