Preview only show first 10 pages with watermark. For full document please download

Irgb4064dpbf Pd - 97113 Insulated Gate Bipolar Transistor With Ultrafast Soft Recovery Diode

   EMBED


Share

Transcript

PD - 97113 IRGB4064DPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C VCES = 600V Features • • • • • • • • • • Low VCE (on) Trench IGBT Technology Low Switching Losses Maximum Junction temperature 175 °C 5µs SCSOA Square RBSOA 100% of The Parts Tested for ILM Positive VCE (on) Temperature Coefficient. Ultra Fast Soft Recovery Co-pak Diode Tighter Distribution of Parameters Lead-Free Package IC = 10A, TC = 100°C G tsc > 5µs, Tjmax = 175°C E VCE(on) typ. = 1.6V n-channel C Benefits • High Efficiency in a Wide Range of Applications • Suitable for a Wide Range of Switching Frequencies due to Low VCE (ON) and Low Switching Losses • Rugged Transient Performance for Increased Reliability • Excellent Current Sharing in Parallel Operation • Low EMI E G C TO-220AB G C E Gate Collector Emitter Absolute Maximum Ratings Parameter VCES IC@ TC = 25°C IC@ TC = 100°C ICM ILM IF@TC=25°C IF@TC=100°C IFM VGE PD @ TC =25° PD @ TC =100° TJ TSTG Max. Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current c Units 600 20 10 40 40 20 10 40 ±20 ±30 101 50 Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current d Continuous Gate-to-Emitter Voltage Transient Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 Screw V A V W °C -55 to + 175 300 (0.063 in. (1.6mm) from case) 10 lbf·in (1.1 N·m) Thermal Resistance Parameter RθJC RθJC RθCS RθJA Wt 1 Junction-to-Case - IGBT e Junction-to-Case - Diode e Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount e Weight Min. Typ. Max. Units ––– ––– ––– ––– ––– ––– 0.50 ––– 1.44 1.49 3.66 ––– 62 °C/W g www.irf.com 11/28/06 IRGB4064DPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units V(BR)CES Collector-to-Emitter Breakdown Voltage 600 — — ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 0.47 — — 1.6 1.91 VCE(on) Collector-to-Emitter Saturation Voltage — 1.9 — — 2.0 — V Conditions VGE = 0V, IC = 100µA IC = 10A, VGE = 15V, TJ = 25°C V 5,6,7,9, IC = 10A, VGE = 15V, TJ = 175°C 10 ,11 4.0 — 6.5 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -11 — gfe Forward Transconductance — 6.9 — S VCE = 50V, IC = 10A, PW = 80µs ICES Collector-to-Emitter Leakage Current — — 25 µA VGE = 0V, VCE = 600V — 328 — — 2.5 3.1 V IF = 10A — 1.7 — — — ±100 nA VGE = ±20V IGES Gate-to-Emitter Leakage Current V IC = 10A, VGE = 15V, TJ = 150°C Gate Threshold Voltage Diode Forward Voltage Drop CT6 V/°C VGE = 0V, IC = 500µA (-55°C-175°C) VGE(th) VFM Ref.Fig f VCE = VGE, IC = 275µA 9,10,11,12 mV/°C VCE = VGE, IC = 1.0mA (25°C - 175°C) VGE = 0V, VCE = 600V, TJ = 175°C 8 IF = 10A, TJ = 175°C Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Qg Total Gate Charge (turn-on) — 21 32 Qge Gate-to-Emitter Charge (turn-on) — 5.3 8.0 Qgc Gate-to-Collector Charge (turn-on) — 8.9 13 Conditions Ref.Fig IC = 10A nC 24 VGE = 15V CT1 VCC = 400V Eon Turn-On Switching Loss — 29 71 Eoff Turn-Off Switching Loss — 200 308 Etotal Total Switching Loss — 229 339 td(on) Turn-On delay time — 27 37 tr Rise time — 15 23 td(off) Turn-Off delay time — 79 90 tf Fall time — 21 30 Eon Turn-On Switching Loss — 99 — Eoff Turn-Off Switching Loss — 316 — Etotal Total Switching Loss — 415 — Energy losses include tail & diode reverse recovery td(on) Turn-On delay time — 27 — IC = 10A, VCC = 400V, VGE = 15V tr Rise time — 16 — td(off) Turn-Off delay time — 98 — — IC = 10A, VCC = 400V, VGE = 15V µJ RG = 22Ω, L = 1.0mH, TJ = 25°C CT4 Energy losses include tail & diode reverse recovery IC = 10A, VCC = 400V, VGE = 15V ns RG = 22Ω, L = 1.0mH, TJ = 25°C CT4 IC = 10A, VCC = 400V, VGE = 15V 13,15 µJ RG=22Ω, L=1.0mH, TJ = 175°C CT4 ns f RG = 22Ω, L = 1.0mH, TJ = 175°C WF1,WF2 14,16 CT4 WF1,WF2 tf Fall time — 33 Cies Input Capacitance — 594 — Coes Output Capacitance — 49 — VCC = 30V Cres Reverse Transfer Capacitance — 17 — f = 1.0Mhz RBSOA Reverse Bias Safe Operating Area FULL SQUARE SCSOA Short Circuit Safe Operating Area 5 — — µs VCC = 400V, Vp =600V Erec Reverse Recovery Energy of the Diode — 191 — µJ TJ = 175°C trr Diode Reverse Recovery Time — 62 — ns VCC = 400V, IF = 10A 20,21 Irr Peak Reverse Recovery Current — 16 — A VGE = 15V, Rg = 22Ω, L=1.0mH WF3 pF VGE = 0V TJ = 175°C, IC = 40A VCC = 480V, Vp =600V 22 4 CT2 Rg = 22Ω, VGE = +15V to 0V Rg = 22Ω, VGE = +15V to 0V 22, CT3 WF4 17,18,19 Notes: VCC = 80% (VCES), VGE = 15V, L = 28 µH, RG = 22 Ω. ‚ Pulse width limited by max. junction temperature. ƒRθ is measured at TJ approximately 90°C „Refer to AN-1086 for guidelines for measuring V(BR)CES safely 2 www.irf.com 24 120 20 100 16 80 Ptot (W) IC (A) IRGB4064DPbF 12 60 8 40 4 20 0 0 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 TC (°C) TC (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10µsec 100µsec 10 IC A) IC (A) 1msec DC 10 1 Tc = 25°C Tj = 175°C Single Pulse 1 0.1 1 10 100 10 1000 100 VCE (V) VCE (V) Fig. 4 - Reverse Bias SOA TJ = 175°C; VCE = 15V Fig. 3 - Forward SOA, TC = 25°C; TJ ≤ 175°C 40 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 20 10 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 20 10 0 0 0 2 4 6 8 10 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs www.irf.com VGE = 18V 30 ICE (A) ICE (A) 40 VGE = 18V 30 1000 0 2 4 6 8 10 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 3 IRGB4064DPbF 40 80 VGE = 18V VGE = 12V 60 VGE = 8.0V 50 VGE = 10V IF (A) ICE (A) 30 -40°C 25°C 175°C 70 VGE = 15V 20 40 30 10 20 10 0 0 0 2 4 6 8 10 0.0 1.0 2.0 3.0 VCE (V) 20 18 18 16 16 ICE = 5.0A VCE (V) VCE (V) ICE = 20A 8 ICE = 10A 12 ICE = 20A 10 8 6 6 4 4 2 2 0 0 5 10 15 5 20 10 15 20 VGE (V) VGE (V) Fig. 9 - Typical VCE vs. VGE TJ = -40°C Fig. 10 - Typical VCE vs. VGE TJ = 25°C 20 40 18 16 TJ = 25°C TJ = 175°C 30 ICE = 5.0A 14 ICE = 10A 12 ICE = 20A 10 ICE (A) VCE (V) 7.0 ICE = 5.0A 14 ICE = 10A 10 6.0 Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs 20 12 5.0 VF (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 175°C; tp = 80µs 14 4.0 8 6 20 10 4 2 0 0 5 10 15 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 175°C 4 20 0 5 10 15 20 VGE (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs www.irf.com IRGB4064DPbF 1000 600 Swiching Time (ns) 500 Energy (µJ) 400 EOFF 300 200 tdOFF 100 tF tdON tR 10 EON 100 0 0 4 8 12 16 20 1 24 0 4 8 12 I C (A) 20 24 IC (A) Fig. 14 - Typ. Switching Time vs. IC TJ = 175°C; L=1mH; VCE= 400V RG= 22Ω; VGE= 15V Fig. 13 - Typ. Energy Loss vs. IC TJ = 175°C; L = 1mH; VCE = 400V, RG = 22Ω; VGE = 15V. 350 1000 EOFF 300 16 Swiching Time (ns) Energy (µJ) 250 EON 200 150 100 tdOFF 100 tdON tF 50 tR 0 0 25 50 75 100 10 125 0 25 50 RG (Ω) 125 Fig. 16- Typ. Switching Time vs. RG TJ = 175°C; L=1mH; VCE= 400V ICE= 10A; VGE= 15V 24 20 20 16 RG =10 Ω 16 RG =22 Ω 12 IRR (A) IRR (A) 100 RG (Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 175°C; L = 1mH; VCE = 400V, ICE = 10A; VGE = 15V RG =47 Ω 8 12 8 RG = 100 Ω 4 4 0 0 0 4 8 12 16 20 IF (A) Fig. 17 - Typical Diode IRR vs. IF TJ = 175°C www.irf.com 75 24 0 25 50 75 100 125 RG (Ω) Fig. 18 - Typical Diode IRR vs. RG TJ = 175°C; IF = 10A 5 IRGB4064DPbF 20 900 10Ω 20A 22Ω 800 47 Ω 15 IRR (A) QRR (nC) 700 10 100Ω 10A 600 500 5.0A 400 5 300 0 200 400 600 800 1000 1200 0 500 diF /dt (A/µs) 1500 Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V; TJ = 175°C Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 10A; TJ = 175°C 80 16 300 RG = 10Ω RG = 22Ω 150 RG = 47Ω 100 RG = 100Ω 50 70 Isc 12 60 10 50 8 40 6 30 4 20 2 10 0 0 0 0 2 4 6 8 8 10 12 14 16 18 20 22 Current (A) 200 Tsc 14 Time (µs) 250 IRR (A) 1000 diF /dt (A/µs) 10 12 14 16 VGE (V) IF (A) Fig. 22- Typ. VGE vs Short Circuit Time VCC=400V, TC =25°C Fig. 21 - Typical Diode ERR vs. IF TJ = 175°C 1000 16 Cies 14 300V 400V 100 VGE (V) Capacitance (pF) 12 Coes 10 8 6 10 Cres 4 2 0 1 0 20 40 60 VCE (V) 80 Fig. 23- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 6 100 0 4 8 12 16 20 24 Q G, Total Gate Charge (nC) Fig. 24 - Typical Gate Charge vs. VGE ICE = 10A, L=600µH www.irf.com IRGB4064DPbF Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 τJ 0.10 0.1 0.05 τJ τ1 R2 R2 R3 R3 R4 R4 τC τ2 τ1 τ3 τ2 τ4 τ3 τ τ4 Ci= τi/Ri Ci i/Ri 0.02 0.01 R1 R1 Ri (°C/W) τι (sec) 0.007362 0 0.342317 0.000048 0.647826 0.000192 0.493231 0.001461 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.01 1E-006 1E-005 0.0001 0.001 0.01 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 10 Thermal Response ( Z thJC ) D = 0.50 1 0.20 0.10 0.05 0.1 0.02 τJ 0.01 R1 R1 τJ τ1 τ1 Ci= τi/Ri 0.01 R2 R2 τ2 τC τ τ2 Ri (°C/W) τι (sec) 1.939783 0.000975 1.721867 0.006135 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 7 IRGB4064DPbF L L DUT 0 1K Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.5 - Resistive Load Circuit 8 VCC 80 V + - DUT Rg 480V Fig.C.T.2 - RBSOA Circuit Fig.C.T.4 - Switching Loss Circuit Fig.C.T.6 - Typical Filter Circuit for V(BR)CES Measurement www.irf.com IRGB4064DPbF 500 10 TEST CURRENT tf 25 350 8 tr 275 90% ICE 4 VCE (V) 200 ICE (A) 6 VCE (V) 200 15 125 10 5% ICE 100 10% test current 2 5% VCE Eoff Loss 0 -0.04 0 0.06 -25 -0.1 0.16 time(µs) Eon Loss 0.1 110 QRR tRR 5 90 0 70 450 VC E Vce (V) Peak IRR IF (A) VF (V) -5 375 300 -175 -250 0 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4 10 -100 5 time (µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4 -25 5% VCE 50 IC 50 225 -10 30 150 -400 -15 10 75 -475 -0.05 -20 -10 0 -325 0.15 10% Peak IRR 0.35 time (µS) WF.3- Typ. Reverse Recovery Waveform @ TJ = 175°C using CT.4 www.irf.com -5 0 5 Ice (A) 300 20 90% test current ICE (A) 400 10 Time (uS) WF.4- Typ. Short Circuit Waveform @ TJ = 25°C using CT.3 9 IRGB4064DPbF TO-220AB Package Outline (Dimensions are shown in millimeters (inches)) TO-220AB Part Marking Information EXAMPLE: T HIS IS AN IRF1010 LOT CODE 1789 AS S EMBLED ON WW 19, 2000 IN THE ASS EMBLY LINE "C" Note: "P" in as s embly line pos ition indicates "Lead - Free" PART NUMBER INT ERNATIONAL RECTIFIER LOGO DAT E CODE YEAR 0 = 2000 WEEK 19 LINE C AS S EMBLY LOT CODE TO-220AB packages are not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 11/06 10 www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/