Transcript
PD -97148A
IRLS3036-7PPbF HEXFET® Power MOSFET Applications l DC Motor Drive l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching G l Hard Switched and High Frequency Circuits
D
S
Benefits l Optimized for Logic Level Drive l Very Low RDS(ON) at 4.5V VGS l Superior R*Q at 4.5V VGS l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free
VDSS RDS(on) typ. max. ID (Silicon Limited) ID (Package Limited)
60V 1.5m: 1.9m: 300Ac 240A
D
S G
S
S
S
S
D2Pak 7 Pin
G
D
S
Gate
Drain
Source
Absolute Maximum Ratings Symbol
Parameter
Max.
Units
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V (Silicon Limited)
300c
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V (Silicon Limited)
210
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V (Package Limited)
240
IDM
Pulsed Drain Current d
1000
PD @TC = 25°C
Maximum Power Dissipation
380
W
Linear Derating Factor
2.5
VGS
Gate-to-Source Voltage
± 16
W/°C V
dv/dt TJ
Peak Diode Recovery f
8.1
V/ns
Operating Junction and
TSTG
Storage Temperature Range
A
-55 to + 175
°C
300
Soldering Temperature, for 10 seconds (1.6mm from case)
Avalanche Characteristics EAS (Thermally limited)
Single Pulse Avalanche Energy e
IAR
Avalanche Current d
EAR
Repetitive Avalanche Energy d
300
mJ
See Fig. 14, 15, 22a, 22b
A mJ
Thermal Resistance Typ.
Max.
Units
RθJC
Symbol
Junction-to-Case kl
–––
0.40
°C/W
RθJA
Junction-to-Ambient (PCB Mount, steady state) j
–––
40
www.irf.com
Parameter
1 10/28/10
IRLS3036-7PPbF Static @ TJ = 25°C (unless otherwise specified) Symbol
Parameter
Min. Typ. Max. Units
V(BR)DSS Drain-to-Source Breakdown Voltage ΔV(BR)DSS/ΔTJ Breakdown Voltage Temp. Coefficient RDS(on)
Static Drain-to-Source On-Resistance
VGS(th) IDSS
Gate Threshold Voltage Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage
60 ––– ––– ––– 1.0 ––– ––– ––– –––
RG(int)
Internal Gate Resistance
–––
Conditions
––– ––– V VGS = 0V, ID = 250μA 0.059 ––– V/°C Reference to 25°C, ID = 5mAd 1.5 1.9 VGS = 10V, ID = 180A g mΩ VGS = 4.5V, ID = 150A g 1.7 2.2 ––– 2.5 V VDS = VGS, ID = 250μA ––– 20 VDS = 60V, VGS = 0V μA ––– 250 VDS = 60V, VGS = 0V, TJ = 125°C ––– 100 VGS = 16V nA ––– -100 VGS = -16V 1.9
–––
Ω
Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR)
Parameter
Min. Typ. Max. Units
Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd)
390 ––– ––– ––– 110 160 ––– 33 ––– ––– 53 ––– ––– 57 ––– Turn-On Delay Time ––– 81 ––– Rise Time ––– 540 ––– Turn-Off Delay Time ––– 89 ––– Fall Time ––– 170 ––– Input Capacitance ––– 11270 ––– Output Capacitance ––– 1025 ––– Reverse Transfer Capacitance ––– 520 ––– Effective Output Capacitance (Energy Related)i––– 1460 ––– ––– 1630 ––– Effective Output Capacitance (Time Related) h
Conditions
S
VDS = 10V, ID = 180A ID = 180A VDS = 30V nC VGS = 4.5V g ID = 180A, VDS =0V, VGS = 4.5V VDD = 39V ID = 180A ns RG = 2.1Ω VGS = 4.5V g VGS = 0V VDS = 50V pF ƒ = 1.0MHz VGS = 0V, VDS = 0V to 48V i VGS = 0V, VDS = 0V to 48V h
Diode Characteristics Symbol
Parameter
Min. Typ. Max. Units
IS
Continuous Source Current
–––
–––
ISM
(Body Diode) Pulsed Source Current
–––
–––
VSD trr
(Body Diode)e Diode Forward Voltage Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM ton
Reverse Recovery Current Forward Turn-On Time
Notes:
Calculated continuous current based on maximum allowable junction temperature Bond wire current limit is 240A. Note that current limitation arising from heating of the device leds may occur with some lead mounting arrangements. Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.018mH RG = 25Ω, IAS = 180A, VGS =10V. Part not recommended for use above this value . ISD ≤ 180A, di/dt ≤ 1070A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
2
300 A 1000
Conditions MOSFET symbol showing the integral reverse
D
G
p-n junction diode. TJ = 25°C, IS = 180A, VGS = 0V g VR = 51V, TJ = 25°C IF = 180A TJ = 125°C di/dt = 100A/μs g TJ = 25°C
S
––– ––– 1.3 V ––– 57 ––– ns ––– 60 ––– ––– 140 ––– nC TJ = 125°C ––– 160 ––– ––– 4.6 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Pulse width ≤ 400μs; duty cycle ≤ 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS.
When mounted on 1" square PCB (FR-4 or G-10 Material). For
recommended footprint and soldering techniquea refer to applocation note # AN- 994 echniques refer to application note #AN-994. Rθ is measured at TJ approximately 90°C. RθJC value shown is at time zero.
www.irf.com
IRLS3036-7PPbF 1000
1000
100 BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS 15V 10V 4.5V 4.0V 3.5V 3.3V 3.0V 2.7V
10
1
2.7V
BOTTOM
100
2.7V ≤ 60μs PULSE WIDTH Tj = 175°C
≤ 60μs PULSE WIDTH Tj = 25°C 0.1
10 0.1
1
10
100
0.1
VDS , Drain-to-Source Voltage (V)
10
100
Fig 2. Typical Output Characteristics 2.5
RDS(on) , Drain-to-Source On Resistance
1000
TJ = 175°C 100
(Normalized)
ID, Drain-to-Source Current(Α)
1
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
TJ = 25°C 10
VDS = 25V ≤ 60μs PULSE WIDTH 1 2.0
3.0
4.0
ID = 180A
VGS = 10V 2.0
1.5
1.0
0.5
5.0
-60 -40 -20
VGS, Gate-to-Source Voltage (V)
20000
VGS, Gate-to-Source Voltage (V)
Coss = Cds + Cgd
Ciss 10000
5000
Coss Crss 10
100
VDS , Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
VDS = 48V
ID= 180A
VDS = 30V
4
3
2
1
0
0 1
20 40 60 80 100 120 140 160 180
Fig 4. Normalized On-Resistance vs. Temperature 5
VGS = 0V, f = 100 kHz Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd
15000
0
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
C, Capacitance (pF)
VGS 15V 10V 4.5V 4.0V 3.5V 3.3V 3.0V 2.7V
0
20
40
60
80
100
120
140
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3
IRLS3036-7PPbF 1000
10000 ID, Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
TJ = 175°C 100
TJ = 25°C
10
1
OPERATION IN THIS AREA LIMITED BY R DS (on)
1000 100μsec 100 1msec LIMITED BY PACKAGE
10
10msec 1
Tc = 25°C Tj = 175°C Single Pulse
VGS = 0V
0.1
0.1 0.2
0.4
0.6
0.8
1.0
1.2
1.4
0.1
1.6
LIMITED BY PACKAGE
ID , Drain Current (A)
250 200 150 100 50 0 75
100
125
150
175
V(BR)DSS , Drain-to-Source Breakdown Voltage
300
50
100
80
ID = 5mA
70
60
50 -60 -40 -20
TC , Case Temperature (°C)
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 9. Maximum Drain Current vs. Case Temperature
Fig 10. Drain-to-Source Breakdown Voltage 1200
EAS, Single Pulse Avalanche Energy (mJ)
4.0
3.0
Energy (μJ)
10
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode Forward Voltage
25
1
VDS , Drain-toSource Voltage (V)
VSD , Source-to-Drain Voltage (V)
2.0
1.0
0.0
ID 22A 37A BOTTOM 180A TOP
1000
800
600
400
200
0 0
10
20
30
40
50
60
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
4
DC
70
25
50
75
100
125
150
175
Starting TJ, Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent
www.irf.com
IRLS3036-7PPbF 1
Thermal Response ( Z thJC )
D = 0.50 0.1
0.20 0.10 0.05
τJ
0.02
0.01
0.01
R1 R1 τJ τ1
R2 R2
R3 R3
τ2
τ1
τ3
τ2
Ci= τi/Ri Ci= τi/Ri
SINGLE PULSE ( THERMAL RESPONSE )
0.001
Ri (°C/W) τC
τ3
τ
τι (sec)
0.103731 0.000184 0.196542 0.001587 0.098271 0.006721
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.0001 1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000
Avalanche Current (A)
Duty Cycle = Single Pulse
100
Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔTj = 150°C and Tstart =25°C (Single Pulse)
0.01 0.05 0.10
10
Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔΤ j = 25°C and Tstart = 150°C. 1 1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
300
Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 22a, 22b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP Single Pulse BOTTOM 1% Duty Cycle ID = 180A
250
200
150
100
50
0 25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
IRLS3036-7PPbF 24
ID = 1.0A
ID = 1.0mA ID = 250μA
2.5
18
IRRM - (A)
VGS(th) Gate threshold Voltage (V)
3.0
2.0
12
1.5
IF = 120A VR = 51V
6
1.0
TJ = 125°C TJ = 25°C
0
-75
-50
-25
0
25
50
75
100 125 150 175
100
200
300
TJ , Temperature ( °C )
400
500
600
700
800
900
dif / dt - (A / μs)
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage Vs. Temperature
1000
24
800
QRR - (nC)
IRRM - (A)
18
12
IF = 180A VR = 51V
6
600
400
200
TJ = 125°C TJ = 25°C
0 100
200
300
400
500
600
IF = 120A VR = 51V TJ = 125°C TJ = 25°C
0
700
800
100
900
300
400
500
600
700
800
900
dif / dt - (A / μs)
dif / dt - (A / μs)
Fig. 18 - Typical Recovery Current vs. dif/dt 1000
800
QRR - (nC)
200
Fig. 19 - Typical Stored Charge vs. dif/dt
IF = 180A VR = 51V TJ = 125°C TJ = 25°C
600
400
200
0 100
200
300
400
500
600
700
800
900
dif / dt - (A / μs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRLS3036-7PPbF Driver Gate Drive
D.U.T
-
-
-
*
D.U.T. ISD Waveform Reverse Recovery Current
+
RG
• • • •
dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test
VDD
P.W. Period VGS=10V
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
+
D=
Period
P.W.
+
+ -
Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
Re-Applied Voltage
Body Diode
VDD
Forward Drop
Inductor Current Inductor Curent ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V
DRIVER
L
VDS
tp
D.U.T
RG
+ V - DD
IAS VGS 20V
A
0.01Ω
tp
I AS
Fig 22a. Unclamped Inductive Test Circuit RD
VDS
Fig 22b. Unclamped Inductive Waveforms VDS 90%
VGS
D.U.T.
RG
+
- VDD
V10V GS
10% VGS
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
td(on)
Fig 23a. Switching Time Test Circuit
tr
t d(off)
Fig 23b. Switching Time Waveforms Id
Current Regulator Same Type as D.U.T.
Vds Vgs
50KΩ 12V
tf
.2μF .3μF
D.U.T.
+ V - DS
Vgs(th) VGS 3mA
IG
ID
Current Sampling Resistors
Fig 24a. Gate Charge Test Circuit
www.irf.com
Qgs1 Qgs2
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
7
IRLS3036-7PPbF D2Pak - 7 Pin Package Outline Dimensions are shown in millimeters (inches)
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
8
www.irf.com
IRLS3036-7PPbF D2Pak - 7 Pin Part Marking Information
25
D2Pak - 7 Pin Tape and Reel
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/10
www.irf.com
9