Preview only show first 10 pages with watermark. For full document please download

Irls3036

   EMBED


Share

Transcript

PD -97148A IRLS3036-7PPbF HEXFET® Power MOSFET Applications l DC Motor Drive l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching G l Hard Switched and High Frequency Circuits D S Benefits l Optimized for Logic Level Drive l Very Low RDS(ON) at 4.5V VGS l Superior R*Q at 4.5V VGS l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free VDSS RDS(on) typ. max. ID (Silicon Limited) ID (Package Limited) 60V 1.5m: 1.9m: 300Ac 240A D S G S S S S D2Pak 7 Pin G D S Gate Drain Source Absolute Maximum Ratings Symbol Parameter Max. Units ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 300c ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 210 ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited) 240 IDM Pulsed Drain Current d 1000 PD @TC = 25°C Maximum Power Dissipation 380 W Linear Derating Factor 2.5 VGS Gate-to-Source Voltage ± 16 W/°C V dv/dt TJ Peak Diode Recovery f 8.1 V/ns Operating Junction and TSTG Storage Temperature Range A -55 to + 175 °C 300 Soldering Temperature, for 10 seconds (1.6mm from case) Avalanche Characteristics EAS (Thermally limited) Single Pulse Avalanche Energy e IAR Avalanche Current d EAR Repetitive Avalanche Energy d 300 mJ See Fig. 14, 15, 22a, 22b A mJ Thermal Resistance Typ. Max. Units RθJC Symbol Junction-to-Case kl ––– 0.40 °C/W RθJA Junction-to-Ambient (PCB Mount, steady state) j ––– 40 www.irf.com Parameter 1 10/28/10 IRLS3036-7PPbF Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V(BR)DSS Drain-to-Source Breakdown Voltage ΔV(BR)DSS/ΔTJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) IDSS Gate Threshold Voltage Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage 60 ––– ––– ––– 1.0 ––– ––– ––– ––– RG(int) Internal Gate Resistance ––– Conditions ––– ––– V VGS = 0V, ID = 250μA 0.059 ––– V/°C Reference to 25°C, ID = 5mAd 1.5 1.9 VGS = 10V, ID = 180A g mΩ VGS = 4.5V, ID = 150A g 1.7 2.2 ––– 2.5 V VDS = VGS, ID = 250μA ––– 20 VDS = 60V, VGS = 0V μA ––– 250 VDS = 60V, VGS = 0V, TJ = 125°C ––– 100 VGS = 16V nA ––– -100 VGS = -16V 1.9 ––– Ω Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Min. Typ. Max. Units Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) 390 ––– ––– ––– 110 160 ––– 33 ––– ––– 53 ––– ––– 57 ––– Turn-On Delay Time ––– 81 ––– Rise Time ––– 540 ––– Turn-Off Delay Time ––– 89 ––– Fall Time ––– 170 ––– Input Capacitance ––– 11270 ––– Output Capacitance ––– 1025 ––– Reverse Transfer Capacitance ––– 520 ––– Effective Output Capacitance (Energy Related)i––– 1460 ––– ––– 1630 ––– Effective Output Capacitance (Time Related) h Conditions S VDS = 10V, ID = 180A ID = 180A VDS = 30V nC VGS = 4.5V g ID = 180A, VDS =0V, VGS = 4.5V VDD = 39V ID = 180A ns RG = 2.1Ω VGS = 4.5V g VGS = 0V VDS = 50V pF ƒ = 1.0MHz VGS = 0V, VDS = 0V to 48V i VGS = 0V, VDS = 0V to 48V h Diode Characteristics Symbol Parameter Min. Typ. Max. Units IS Continuous Source Current ––– ––– ISM (Body Diode) Pulsed Source Current ––– ––– VSD trr (Body Diode)e Diode Forward Voltage Reverse Recovery Time Qrr Reverse Recovery Charge IRRM ton Reverse Recovery Current Forward Turn-On Time Notes:  Calculated continuous current based on maximum allowable junction temperature Bond wire current limit is 240A. Note that current limitation arising from heating of the device leds may occur with some lead mounting arrangements. ‚ Repetitive rating; pulse width limited by max. junction temperature. ƒ Limited by TJmax, starting TJ = 25°C, L = 0.018mH RG = 25Ω, IAS = 180A, VGS =10V. Part not recommended for use above this value . „ ISD ≤ 180A, di/dt ≤ 1070A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. 2 300 A 1000 Conditions MOSFET symbol showing the integral reverse D G p-n junction diode. TJ = 25°C, IS = 180A, VGS = 0V g VR = 51V, TJ = 25°C IF = 180A TJ = 125°C di/dt = 100A/μs g TJ = 25°C S ––– ––– 1.3 V ––– 57 ––– ns ––– 60 ––– ––– 140 ––– nC TJ = 125°C ––– 160 ––– ––– 4.6 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) … Pulse width ≤ 400μs; duty cycle ≤ 2%. † Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. ‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniquea refer to applocation note # AN- 994 echniques refer to application note #AN-994. ‰ Rθ is measured at TJ approximately 90°C. Š RθJC value shown is at time zero. www.irf.com IRLS3036-7PPbF 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 4.5V 4.0V 3.5V 3.3V 3.0V 2.7V 10 1 2.7V BOTTOM 100 2.7V ≤ 60μs PULSE WIDTH Tj = 175°C ≤ 60μs PULSE WIDTH Tj = 25°C 0.1 10 0.1 1 10 100 0.1 VDS , Drain-to-Source Voltage (V) 10 100 Fig 2. Typical Output Characteristics 2.5 RDS(on) , Drain-to-Source On Resistance 1000 TJ = 175°C 100 (Normalized) ID, Drain-to-Source Current(Α) 1 VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics TJ = 25°C 10 VDS = 25V ≤ 60μs PULSE WIDTH 1 2.0 3.0 4.0 ID = 180A VGS = 10V 2.0 1.5 1.0 0.5 5.0 -60 -40 -20 VGS, Gate-to-Source Voltage (V) 20000 VGS, Gate-to-Source Voltage (V) Coss = Cds + Cgd Ciss 10000 5000 Coss Crss 10 100 VDS , Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage www.irf.com VDS = 48V ID= 180A VDS = 30V 4 3 2 1 0 0 1 20 40 60 80 100 120 140 160 180 Fig 4. Normalized On-Resistance vs. Temperature 5 VGS = 0V, f = 100 kHz Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 15000 0 TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics C, Capacitance (pF) VGS 15V 10V 4.5V 4.0V 3.5V 3.3V 3.0V 2.7V 0 20 40 60 80 100 120 140 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 3 IRLS3036-7PPbF 1000 10000 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) TJ = 175°C 100 TJ = 25°C 10 1 OPERATION IN THIS AREA LIMITED BY R DS (on) 1000 100μsec 100 1msec LIMITED BY PACKAGE 10 10msec 1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 0.1 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.1 1.6 LIMITED BY PACKAGE ID , Drain Current (A) 250 200 150 100 50 0 75 100 125 150 175 V(BR)DSS , Drain-to-Source Breakdown Voltage 300 50 100 80 ID = 5mA 70 60 50 -60 -40 -20 TC , Case Temperature (°C) 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Drain-to-Source Breakdown Voltage 1200 EAS, Single Pulse Avalanche Energy (mJ) 4.0 3.0 Energy (μJ) 10 Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 25 1 VDS , Drain-toSource Voltage (V) VSD , Source-to-Drain Voltage (V) 2.0 1.0 0.0 ID 22A 37A BOTTOM 180A TOP 1000 800 600 400 200 0 0 10 20 30 40 50 60 VDS, Drain-to-Source Voltage (V) Fig 11. Typical COSS Stored Energy 4 DC 70 25 50 75 100 125 150 175 Starting TJ, Junction Temperature (°C) Fig 12. Maximum Avalanche Energy Vs. DrainCurrent www.irf.com IRLS3036-7PPbF 1 Thermal Response ( Z thJC ) D = 0.50 0.1 0.20 0.10 0.05 τJ 0.02 0.01 0.01 R1 R1 τJ τ1 R2 R2 R3 R3 τ2 τ1 τ3 τ2 Ci= τi/Ri Ci= τi/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 Ri (°C/W) τC τ3 τ τι (sec) 0.103731 0.000184 0.196542 0.001587 0.098271 0.006721 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Avalanche Current (A) Duty Cycle = Single Pulse 100 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔTj = 150°C and Tstart =25°C (Single Pulse) 0.01 0.05 0.10 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔΤ j = 25°C and Tstart = 150°C. 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 300 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 22a, 22b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1% Duty Cycle ID = 180A 250 200 150 100 50 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRLS3036-7PPbF 24 ID = 1.0A ID = 1.0mA ID = 250μA 2.5 18 IRRM - (A) VGS(th) Gate threshold Voltage (V) 3.0 2.0 12 1.5 IF = 120A VR = 51V 6 1.0 TJ = 125°C TJ = 25°C 0 -75 -50 -25 0 25 50 75 100 125 150 175 100 200 300 TJ , Temperature ( °C ) 400 500 600 700 800 900 dif / dt - (A / μs) Fig. 17 - Typical Recovery Current vs. dif/dt Fig 16. Threshold Voltage Vs. Temperature 1000 24 800 QRR - (nC) IRRM - (A) 18 12 IF = 180A VR = 51V 6 600 400 200 TJ = 125°C TJ = 25°C 0 100 200 300 400 500 600 IF = 120A VR = 51V TJ = 125°C TJ = 25°C 0 700 800 100 900 300 400 500 600 700 800 900 dif / dt - (A / μs) dif / dt - (A / μs) Fig. 18 - Typical Recovery Current vs. dif/dt 1000 800 QRR - (nC) 200 Fig. 19 - Typical Stored Charge vs. dif/dt IF = 180A VR = 51V TJ = 125°C TJ = 25°C 600 400 200 0 100 200 300 400 500 600 700 800 900 dif / dt - (A / μs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRLS3036-7PPbF Driver Gate Drive D.U.T ƒ - ‚ - - „ * D.U.T. ISD Waveform Reverse Recovery Current +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG + V - DD IAS VGS 20V A 0.01Ω tp I AS Fig 22a. Unclamped Inductive Test Circuit RD VDS Fig 22b. Unclamped Inductive Waveforms VDS 90% VGS D.U.T. RG + - VDD V10V GS 10% VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % td(on) Fig 23a. Switching Time Test Circuit tr t d(off) Fig 23b. Switching Time Waveforms Id Current Regulator Same Type as D.U.T. Vds Vgs 50KΩ 12V tf .2μF .3μF D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Current Sampling Resistors Fig 24a. Gate Charge Test Circuit www.irf.com Qgs1 Qgs2 Qgd Qgodr Fig 24b. Gate Charge Waveform 7 IRLS3036-7PPbF D2Pak - 7 Pin Package Outline Dimensions are shown in millimeters (inches) Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 www.irf.com IRLS3036-7PPbF D2Pak - 7 Pin Part Marking Information  25 D2Pak - 7 Pin Tape and Reel Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/10 www.irf.com 9