Transcript
10/21/2015
Lecture 3
Principles of
Peter Rosenthal
TEM Image Formation
(Francis Crick Institute)
• • • • • • •
Electron Optics Electron‐Specimen Interactions Amplitude and Phase Objects Zernike Phase Plate Lens Aberrations Defocused Phase Contrast In‐focus Phase Contrast in Cryo EM
I
I
n d sin
EMBO Course on Image Process for Cryo EM Birkbeck College, London, Sept 1-11, 2015
high res
Low res
electron de Broglie wavelength
12.3 V
Typical wavelengths for biological specimens 0.033 Å (120kV) 0.025 Å (200kV) 0.02 Å (300 kV) ~1 Å X‐ray
1
10/21/2015
Geometrical Optics
FT
FT
SCATTERED BEAMS ARE FOCUSSED AT THE BACK FOCAL PLANE FORMING A “DIFFRACTION PATTERN” UNSCATTERRED BEAMS FOCUSSED AT SINGLE POINT “ZERO ORDER”
Gun
Electron Lens
C1 C2 Aperture
OBJ Aperture
Intermediate Projector
Screen
2
10/21/2015
Electron‐specimen interaction • • • • •
Coulomb field: positive nucleus, negative cloud Depends on atomic properties (Z) Elastic Scattering Inelastic Scattering Atomic scattering factors
Published in: E. V. Orlova; H. R. Saibil; Chem. Rev. Article ASAP Copyright © 2011 American Chemical Society
Amplitude Object Amplitude Object
Phase Object
Phase Object
3
10/21/2015
Phase Object Approximation: electrons experience a phase shift on passing through the projected 2D Coulomb potential of the specimen
PHASE SHIFT
e
i
Weak Phase Object Approximation
e
i ( x ,y )
1 i x, y ...
e
i ( x ,y )
(x, y) (x, y, z)dz
Thin biological specimens are weak phase objects • Proteins Low Z atoms (C,O,P,N) 1.35 g/cm3 • Vitreous Ice 0.92 g/cm3
The phase shift is very small, in which case: The transmitted wave is the resultant of the unscattered wave and the second term is the scattered wave with a 90 phase shift.
We measure intensities at the image plane:
1i x, y 1 1 2
2
No Contrast!
4
10/21/2015
Zernike Phase Plate
4
Zernike, F. How I discovered phase contrast. Science 121, 345‐9 (1955).
Zernike Phase Contrast • The phase plate changes the relative length of the optical path of the diffracted beams with respect to the zero‐order beam (such that an extra phase • Converts phase contrast to amplitude contrast. • Possible because of separation of unscattered and scattered waves at the back focal plane.
Phase Contrast
Amplitude Contrast
Contrast in TEM Negative Stain
Cryomicroscopy
Cryo-Negative Stain
5
10/21/2015
Lens Aberrations
Scattering/Aperture Contrast
Negative Stain
Source: Wikipedia
Path Length Difference/Phase Shift Due to Lens Aberrations
Cs 4
Spherical Aberration
Ray diagrams of lens aberrations: (a) perfect lens, (b) spherical, (c) chromatic, and (d) astigmatic aberration. F is the focal length of the lens.
=0 is not affected! Published in: E. V. Orlova; H. R. Saibil; Chem. Rev. Article ASAP Copyright © 2011 American Chemical Society
6
10/21/2015
Defocus Phase Contrast
Scatterer at focus
Scatterer not at focus
F 2
Defocus
=0 is not affected!
Path Length Difference/Phase Shift Due to Lens Aberrations
Cs 4
Phase contrast for selected
X
Spherical Aberration Defocus
Phase contrast for selected
X
• The contrast of a spacing X of the image is modified by the 2sin (X) phase contrast transfer function: Erickson, H. P. The Fourier Transform of an Electron Micrograph‐First Order and Second Order Theory of Image Formation. Advances in Optical and Electron Microscopy 5 (1973). Erickson, H. P. & Klug, A. Fourier Transform of an Electron Micrograph ‐ Effects of Defocussing and Aberrations, and Implications for Use of Underfocus Contrast Enhancement. Berichte Der Bunsen‐ Gesellschaft Fur Physikalische Chemie 74, 1129‐& (1970).
7
10/21/2015
Contrast Transfer Function
Scherzer Focus
FFT of Carbon Film F1 F2 Angle of astigmatism
F F1 cos2 F 2 sin 2
Defocus choice for proteins
Weak Phase/Weak Amplitude Objects ei ( x, y)eu( x,y) 1 i x, y ... eu( x,y)
eu( x, y) 1 u(x, y)
Weak Phase
1 i (x, y) 1 u(x, y)
Weak Amplitude
IF WE LOOK AT THE EFFECT ON THE IMAGE: Contrast Transfer Function
2sin (X) Q2 cos (X)
8
10/21/2015
2sin (X) Q2 cos (X) The fraction (Q) of amplitude contrast for proteins in ice has been measured:
Contrast Transfer Function FFT of Carbon Film F1 F2 Angle of astigmatism
5.8% at 120kV 4.8% at 200kV 2.7% at 300kV, (6.9% when using an energy filter). Toyoshima, C. & Unwin, N. Ultramicroscopy 25, 279-91 (1988). Toyoshima, C., Yonekura, K. & Sasabe, H. Ultramicroscopy 48, 165-176 (1993). Yonekura, K., Braunfeld, M. B., Maki-Yonekura, S. & Agard, D. A. J Struct Biol 156, 524-36 (2006).
2 F 2 Cs 4 ( ) 2 4
F F1 cos2 F 2 sin 2
In‐focus Phase Contrast Electrons
Boersch, S. Z. Naturforsch. 2a, 615 (1947). Unwin, P. N. Phase contrast and interference microscopy with the electron microscope. Philos Trans R Soc Lond B Biol Sci 261, 95‐104 (1971). Majorovits, E. et al. Optimizing phase contrast in transmission electron microscopy with an electrostatic (Boersch) phase plate. Ultramicroscopy 107, 213‐26 (2007). Cambie, R., Downing, K. H., Typke, D., Glaeser, R. M. & Jin, J. Design of a microfabricated, two‐electrode phase‐contrast element suitable for electron microscopy. Ultramicroscopy 107, 329‐39 (2007). Danev, R. & Nagayama, K. Transmission electron microscopy with Zernike phase plate. Ultramicroscopy 88, 243‐52 (2001).
Danev, R. & Nagayama, K. Single particle analysis based on Zernike phase contrast transmission electron microscopy. J Struct Biol 161, 211-8 (2008).
9
10/21/2015
Recommended Books 1. Reimer, L. Transmission electron microscopy : physics of image formation and microanalysis (Springer, Berlin ; New York, 1997). 2. Frank, J. Three‐dimensional electron microscopy of macromolecular assemblies : visualization of biological molecules in their native state (Oxford University Press, Oxford ; New York, 2006). 3. Slayter, E. M. & Slayter, H. S. Light and electron microscopy (Cambridge University Press, Cambridge [England] ; New York, 1992). 4. Misell, D. L. Image Analysis, Enhancement and Interpretation (ed. Glauert, A. M.) (Elsevier Science & Technology, Oxford, 1978). 5. Spence, J. C. H. High‐resolution electron microscopy (Oxford University Press, Oxford ; New York, 2003). 6. Glaeser, R. M. Electron crystallography of biological macromolecules (Oxford University Press, Oxford ; New York, 2007). 7. Cowley, J. M. Diffraction physics (North‐Holland ; Sole distributor for the U.S.A. and Canada Elsevier Science Pub. Co., Amsterdam ; New York, 1984). 8. Hawkes, P. W. & Valdrè, U. Biophysical electron microscopy : basic concepts and modern techniques (Academic Press, London ; San Diego, 1990).
10