Preview only show first 10 pages with watermark. For full document please download

Logic Family

   EMBED


Share

Transcript

AXP Logic Family Delivers High Performance to Mixed-voltage Applications ▲ High-performance Networking for IoT Applications ▲ FEBRUARY, 2106 Interview with Jennifer Zhao – VP and GM at NXP Semiconductors Bluetooth Low Energy Modules CONTENTS Embedded Developer EDITORIAL STAFF Content Editor Alex Maddalena [email protected] Digital Content Manager Heather Hamilton [email protected] Tel | 208-639-6485 Global Creative Director Nicolas Perner [email protected] Graphic Designer Carol Smiley [email protected] Audience Development Claire Hellar [email protected] 4 6 8 16 26 Register at EEWeb http://www.eeweb.com/register/ 6 PRODUCT WATCH New Product Insights: Cypress EZ-BLE Bluetooth Modules Inside the Lab: Microsemi SmartFusion 2 Development Kit TECH REPORT COM Express for Highly Integrated Systems High-performance Networking for Industrial and IoT Applications INDUSTRY INTERVIEW Low-power AXP Logic Delivers High Performance to Mixed-voltage Applications Interview with Jennifer Zhao – NXP Semiconductors 4 8 Published by AspenCore 950 West Bannock Suite 450 Boise, Idaho 83702 Tel | 208-639-6464 Victor Alejandro Gao General Manager Executive Publisher Cody Miller Global Media Director Group Publisher EEWeb renesassynergy.com 26 PRODUCT WATCH Embedded Developer In this installment of Arrow Product Insights, we’ll introduce you to Cypress’s small form-factor EZ-BLE modules, which are fully certified to shorten time to market. 4 EZ-BLE™ PRoC™ Module EZ-BLE™ PSoC™ Module The EZ-BLE modules provide a turnkey solution for adding Bluetooth Low-Energy (BLE) to IoT devices without the need for RF expertise, and are provided with Bluetooth 4.1 qualification and regulatory certification to multiple international RF standards like FCC for USA, IC for Canada, and TELEC or MIC for Japan. Cypress has leveraged their PSoC 4 BLE and PRoC BLE architectures in creating these EZ-BLE modules to address the needs of various IoT applications. All modules are based on an ARM Cortex-M0 microcontroller with up to 256kB of Flash and 32kB of SRAM as well as a Bluetooth Low Energy radio with excellent receiver sensitivity of -91 dBm and transmit power up to +3dBm. The modules also feature multiple serial interfaces including I2C, SPI or UART, a CapSense capacitive touch sensing controller, and a 12-bit, 1 MSPS ADC. EZ-BLE PRoC modules are designed for IoT applications requiring BLE connectivity with footprints as small as 10 x 10 x 1.8mm. PRoC modules are ideal for applications interfacing to digital sensors, with 16 GPIOs available. For designs requiring more IOs or a lower cost, an additional PRoC module is available in a larger footprint that is complemented by 23 GPIOs. EZ-BLE PSoC modules extend the functionality of the PRoC modules by adding programmable analog and digital capabilities. EZ-BLE PSoC modules add a low power comparator and four op-amps, as well as four universal digital blocks that can be configured as PWMs, serial interfaces or can be used to implement custom digital logic. The EZ-BLE PSoC XT module adds a power amplifier for additional transmit power and extends the temperature range of the module to 105ºC for use in lighting and industrial applications. Cypress is also creating an EZ-BLE Serial Module for applications that need simple, plug-and-play BLE connectivity without modifying firmware. For more information on the latest products, join us for the next Arrow Product Insights. 5 PRODUCT WATCH Embedded Developer Microsemi SmartFusion2 SoC FPGA Welcome to Inside the Lab with Arrow Electronics, the web series dedicated to exploring the latest in technology and electronics. In this episode, we’ll discuss Microsemi’s SmartFusion2 system-on-chip (SoC) FPGA and Timberwolf audio processor. Sponsored by Arrow Electronics SECURITY, RELIABILITY, AND LOW POWER Microsemi’s tagline for the SmartFusion2 SoC FPGAs is Security, Reliability, and Low Power. The SmartFusion2 is actually the only SoC FPGA that is protected from differential power analysis attacks and the only one that features physically unclonable function key enrollment. For high reliability markets such as military, aviation, and space, the SmartFusion2 is specifically protected against single event upset or SEU events. It also has the industry’s lowest static power of 7 milliwatts during operation while dropping down to 2 milliwatts in their Flash Freeze low-power state. Click the image below to watch a video demonstration of the SmartFusion2: The Microsemi Timberwolf audio processor is ideal for today’s growing need of low-power, hands-free communication. The field upgradeable platform, when combined with algorithm and firmware, enables beam forming, acoustic echo cancellation, direction of arrival, and far-field mic capabilities. The SF2+ development kit uses Micron memory, ST Micro sensors and Samtec 6 connectors to support the logic of the SmartFusion2. The SF2+ also accepts Arduino shields, opening up that diverse ecosystem for full integration with the FPGA environment. This board and its interface all use Microsemi development tools so that those familiar with their tools will have no learning curve to overcome. MicroSemi’s SmartFusion2 offers the ultimate in flexibility, security, and efficiency. To learn more and see if the SmartFusion2 will work for your next application, visit arrow.com. 7 TECH REPORT Embedded Developer COM Express Faces a Bright Future in Highly Integrated Systems Given that complete computing modules will always grow more powerful and compact, COM Express is on path to increasing acceptance in future military system designs. T racing a lineage back to mezzanine boards followed by processor-based mezzanine boards, the computer- on-module (COM) concept captured a clear foothold in military embedded designs. COM boards provide a complete computing core that can be upgraded when needed, leaving the application-specific I/O on the baseboard. COM Express adds high-speed fabric interconnects to the mix, making it fair to say that COM Express boards have a sure lock on future success. The progression of semiconductor integration means that a single computing module will only get more powerful. Meanwhile, the case for a two-board solution—COM module and baseboard—only gets stronger as complete system electronics are possible on a single By Jeff Child Editor-in-Chief, COTs Journal baseboard. That doesn’t mean other, larger solutions—like slot-card boards or stackable solutions like PC/104—are going away any time soon. But the mindshare COM Express can gain for military applications will keep increasing. 8 9 TECH REPORT Embedded Developer video, audio, USB, and PCI Express, delivering maximum I/O flexibility to meet specific application requirements— and because signals don’t have to pass through multiple connectors, the signal integrity remains intact. Figure 1. COM Express aboard Cornell’s AUV acts as the lone on-board computer and handles complex and essential tasks, including integrating data from sensors such as sonar, a Doppler Velocity Log, hydrophones, and on-board cameras. Cornell’s 2014 AUV Gemini is shown here. A comparison between COM Express and PC/104, including PC/104 family specifications like PCI-104-Express and so on, is a natural one, particularly since both are target space- and weightconstrained applications. The doublesided connectors of PC/104 are hard to justify unless there’s some reason for a stacked solution because they are more costly than single-sided connectors used by COM Express. Another advantage of COM Express is that it lets users handle transitions from legacy connectors and offers native interface support for modern-day I/O interfaces. On top of offering more PCI Express and USB ports than PC/104-Express modules, additional connecters can be added for LAN, SATA, 10 Exemplifying the successful use of COM Express, the Cornell University Autonomous Underwater Vehicle (CUAUV) team has used the technology multiple times in its entries for the Annual International RoboSub competition (Figure 1). CUAUV’s 2015 vehicle, Argo, is powered by ADLINK’s Express-HL COM Express computer-onmodule, featuring a 4th-generation quadcore Intel Core i7 processor with Mobile Intel QM87 Express chipset. The ExpressHL acts as the lone on-board computer and handles complex and essential tasks, including integrating data from sensors such as sonar, a Doppler Velocity Log, hydrophones, and on-board cameras. In addition, the Express-HL module and carrier board run the computer vision code and mission logic that make it possible for Argo to be autonomous. The international RoboSub competition is co-sponsored by the Association for Unmanned Vehicle Systems International (AUVSI) Foundation and the U.S. Office of Naval Research (ONR) with the goal of advancing the development of AUVs. The event serves to foster ties between young engineers and organizations developing AUV technologies. The competition mission elements and tasks are designed to simulate real-world challenges, such as visual recognition of objects, navigation, and acoustic sensing. U.S. Navy Diver 2nd Class Andrew Bui, with Space and Naval Warfare Systems Center Pacific, recovers an autonomous underwater vehicle (AUV) built by students from Cornell University after navigating through an obstacle course at the Transducer Evaluation Center’s anechoic pool in San Diego July 24, 2013, during RoboSub 2013. 11 TECH REPORT Embedded Developer TQ’s new COMSys Intel® Atom and Intel Core Technology-based COM ExpressTM Platform From Intel® Atom to the latest Intel® Core technology, the new TQ COMSys embedded PC platform provides highend graphics performance, with easy mechanical and thermal integration. TQ’s modular embedded PC concept banks on standards with a good future. The use of COM Express modules ensures high availability, since the COM (computer-on-module) standard has worldwide prominence, which ensures that suitable modules are available for each new generation of x86 CPUs. Since COM Express modules are equipped with CPUs listed on the Intel® Embedded Roadmap and are thus available for at least seven years, there is no risk that designers will constantly have to change devices; all devices built using the TQ COMSys platform, whether Box PC, Panel PC, or individual embedded PC system, can be delivered with the same configuration or converted to the latest processor technology with minimal effort. This feature guarantees 12 the future of investments and of the ability to meet rising standards. The COM Express mainboard (carrier board) MB-COME-1, in combination with a standard COM Express module, forms a very compact hardware kit that can be used for a freely scalable embedded PC platform thanks to its modular design. Because of this–with uniform interfaces and mechanical dimensions–the PC system can be easily adjusted to suit the requirements of the application. The COM Express mainboard (carrier board) MB-COME-1, in combination with a standard COM Express module, forms a very compact hardware kit that can be used for a freely scalable embedded PC platform thanks to its modular design. The many extension options and storage media that can be added offer a high level of flexibility and allow functionalities and performance to be extended easily, quickly, and inexpensively. Typical uses are found in embedded server applications, PC systems for automation, visualization and monitoring, and all applications that place high demands on quality, durability, and long-term availability. For more information visit: www.EmbeddedModules.net. 13 Your Circuit Starts Here. Sign up to design, share, and collaborate on your next project—big or small. Join Today CLICK HERE eeweb.com/register Schematics.com Click Here to Sign Up TECH REPORT Embedded Developer High-performance, Highly Secure NETWORKING for Industrial and IoT Applications The networking, industrial control, machine-to-machine (M2M) and emerging Internet of Things (IoT) markets all share a similar basic requirement: the ability to connect a variety of end points together and support centralized control of the network. The widespread adoption of the Internet Protocol (IP) standard enables industrial automation, M2M, and IoT applications to leverage common network connectivity building blocks. 16 17 TECH REPORT Embedded Developer System Control Internal Boot ROM Security Fuses Security Monitor Power Management 32 KB D Cache NEON FPU 32 KB I Cache ARM® Cortex®-A7 Core 32 KB D Cache NEON 32 KB I Cache DDR3L/4 Memory Controller DMA 512 KB Coherent L2 Cache System Interfaces 128 KB SRAM IFC Flash 3x I2C, 2x SPI, GPIO uQE (HDLC, TDM, PB) Security (XoR, CRC) Audio Subsystem: 4x I2S, ASRC, SPDF SATA 3.0 1x SD/MMC PCIe 2.0 Cache Coherent Interconnect (CCI 400) QuadSPI Flash 2x DUART, 6x LP UART To deliver maximum reliability and bullet-proof security, Freescale network processors integrate industry-leading network acceleration and protection technologies. Among these technologies is the programmable micro QUICC Engine that supports Field Bus and RS485 protocols such as PROFIBUS (both FPU ARM® Cortex®-A7 Core PCIe 2.0 In process automation and manufacturing control applications, the network must be always available, highly reliable and secure. At the same time, network processors need to provide intelligent features that allow companies to take advantage of the flow of information available today within their networks. In process automation and manufacturing control applications, the network must be always available, highly reliable and secure. 18 QorlQ LS1021A Processor QorIQ LS1021A Block Diagram QorIQ LS1021AProcessor Processor Block DiagramBlock Diagram Ethernet Freescale first established itself as the industry leader for networking solutions by supporting these requirements with its communication processors based on Power Architecture® technology. Building on this expertise and record of innovation achieved over the past twenty years, Freescale announced the first QorIQ networking processor family based on the ARM® ISA. The innovative QorIQ LS1021A processor is equipped with Communication Accelerators Ethernet Freescale continues to lead the industry in this trend as one of the top suppliers of networking processors used in control and data plane applications for more than 20 years. Whether the design involves networking infrastructure, industrial control networks (gateways or PLCs) or factory floor equipment, some essential requirements must be satisfied: deliver exceptional reliability, data security, efficient packet processing and enhanced connectivity support. dual high-efficiency ARM Cortex®-A7 master and slave), as well as legacy HDLC ISO layer 4 and hardware prioritization cores with ECC-protected L1 and L2 and TDM communication protocols. on egress, allows for simple effective caches to ensure maximum reliability and queuing to be implemented. support operating speeds up to 1 GHz. Supporting Ethernet connectivity, High-Performance, Secure Networking for Industrial IoTEthernet Applications The dual ARM cores are complimented each ofHighly the virtualized, enhanced triple Theseand proven controllers are by the highest level of integration ever speed Ethernet controllers (VeTSEC) common to other Freescale processors offered in a sub-3 W microprocessor. support IEEE® 1588 time stamping on used in industrial applications and managed queues, when combined with the ingress up to ISO layer 4 and High-performance networking interfaces both ingress and egress,which along with are supported by a wideparsing variety of ® include Gigabit Ethernet, PCI Express timer and pulse implementation in mature software drivers, queuing including to be implemented. hardware prioritization on egress, allows for simple effective 2.0, SATA 3.0 and USB 3.0. The LS1021A hardware. The hardware also supports software stacks for Industrial Ethernet ® processor also features support for software managed queues, which when Master), PROFINET® These proven Ethernet controllers are (EtherCAT common to other Freescale processors used in legacy serial interfaces, including TDM, combined with the ingress parsing up to (RT), EtherNet/IP™ and PRP. industrial applications and are supported by a wide variety of mature software drivers, HDLC, UART, I2C, SPI, CAN and PWM/ including software stacks for Industrial Ethernet (EtherCAT® Master), PROFINET® (RT), Quadric decoding. In addition to the wide variety of communication interfaces, EtherNet/IP™ and PRP. the processor offers support for SDHC, I2S, and an integrated LCD controller. Ethernet The adoption of Ethernet to enable connectivity between machines on the factory floor has been growing steadily as manufacturers seek greater visibility to data, improved productivity and the ability to remotely manage their industrial operations. Enhancing the visibility and management of networked factory devices, which enables streamlining of their associated functions, depends on the ability to ensure the data carried across the factory network remains secure. 4x CAN, FlexTimer, PWM 1x USB 3.0 w/ PHY 4-Lane 6 GHz SerDes USB 2.0 LCD Controller Core Complex Basic Peripherals and Interconnect Accelerators and Memory Control Networking Elements Enterprise Network Lineage Features The QorIQ LS1021A processor was designed from the ground up to meet the needs of demanding and rugged networked applications. This is achieved by incorporating error detection and correction (ECC) technology on all memories, including Layer 1 and 2 19 TECH REPORT Embedded Developer Enterprise Network Lineage Features The QorIQ LS1021A processor was designed from the ground up to meet the needs of demanding and rugged networked applications. This is achieved by incorporating error detection and correction (ECC) technology on all memories, including Layer 1 and 2 caches, as well as SRAM and external DDR memory for maximum reliability, as well as watchdog timers. Complimenting the reliability enabled by ECC-protected memories is a high-performance security engine that supports a full array of data protection mechanisms, including secure boot, trust architecture, ARM TrustZone® and manufacturing protection, which together enable the maximum in trusted node capability. These features are essential in IoT applications where many edge of network devices and sensors will be capturing and transmitting user-specific data between nodes. Since this data can be directly related or linked to an individual user, it is essential that the data be encrypted. This is increasingly being regulated and monitored by legislation, which extends to the specification of encryption standards and protocols to be used. The inevitable result will be a requirement that communication processors used in M2M or IoT applications must have the capability of performing cryptographic operations, such as hashing, signing and encrypting data, as well as a secure key storage unit in order to meet regulatory requirements. Industrial communication links must also be secure, not just from data snooping but also from unauthorized control which could result in such costly events as taking down a production line. However, even if the data transmitted between the network communication links is encrypted, the physical device may still be vulnerable to attack via an unauthorized modification of the program software. Therefore, a device must not only provide secure communication, but be able to operate as a trusted node. A trusted node is a device that the user can fully rely on to not only protect data, but to ensure it only executes authentic software created for it by the user. In the real world trust is typically conferred, and this concept extends in similar fashion to the digital world. If you get information (data or a command) from a trusted source, you can assume that it is reliable, valid information. Booting up a trusted device requires a “root of trust,” which can be an external (typically expensive) device, such as an FPGA or ASIC, or it can be integrated in the SoC (system-on-chip) itself, as it is in the QorIQ LS1 product family. In the case Industrial communication links must also be secure, not just from data snooping but also from unauthorized control which could result in such costly events as taking down a production line. 20 of the LS1021A processor, authentication is performed within a preboot loader that is contained completely in internal ROM. This implementation provides a onetime user programmable authentication KEY to be used with the preboot loader, creating the trust needed to prevent unauthorized code/users from manipulating the system. The trusted node feature is enabled by writing the authentication KEYs and an enable bit, which are one-time user programmable fuses. Once the Trust mode is enabled, external boot code image(s) (e.g., boot loader, OS kernels or even bare metal code) will only be executed after it has been decrypted and authenticated by the preboot loader KEYs. This code then becomes the next source of trust. Included in the decrypted/authenticated code can be data-like KEYs that can be used in the trusted communication links. Support for a primary and alternate (secondary) signed code images to provide additional reliability. The external code image is encrypted using the same KEY(s) blown into KEY area on the QorIQ LS1021A processor by the user’s development team with the tool chain provided to program the device. Hence, the code image is known to be secure when it leaves the development group. Once the code image is authenticated by the device, the device operates in TQMLS102xA Dual Core ARM® Cortex­-A7 Embedded Module with Freescale QorIQTM LS102xA “Layerscape” QorIQTM high speed communication technology combined with a dual core ARM® Cortex®-A7 for superior networking and data processing, The TQMLS102xA minimodule is based on the LS102xA processor from Freescale, and combines the ARM core Architecture with the QorIQ high speed communication technology and is the ideal solution for applications requiring superior networking and data processing. The dual core ARM® Cortex®-A7 core provides a cache Coherent Interconnect bus system and a clock rate up to 2 x 1.0 GHz, guaranteeing the embedded module provides a balanced ratio between high performance and power dissipation. Key Features and Benefits: • Integrated Graphics Controller • QorIQTM QUICC Engine • High speed communication via 3x Gigabit Ethernet, 2x PCle and 1x USB 3.0 interface • Low power consumption (typ. 3 W) • ECC protection • Cache Coherent Interconnect bus system • IEEE 1588 hardware support • Security functions (optional) • Extended temperature rangexsaa 21 security features. TECH REPORT Embedded Developer Example applications the “secure” state. To maintain the secure operation state, additional security features are available to detect and prevent unauthorized tampering or manipulation of the code/data in external memory. The secure debug controller manages access to the system through the JTAG interface, which can be closed down unconditionally or be opened in various access modes upon passing a challenge/response sequence. All security failures are collected and their severity evaluated by the security monitor that is part of the secure nonvolatile storage unit, which then executes the respective actions. This could be the automatic deletion of sensitive information, such as KEYs, and to notify the operating system of such a violation. Programmable Logic Controller (PLC): QorIQ LS1021A Processor Logic Controller (PLC): QorlQ LS1021A Processor Programmable LS1021A/LS1020A FPU ARM® Cortex®-A7 Core NEON 32 KB D Cache FPU 32 KB I Cache ARM® Cortex®-A7 Core NEON 32 KB D Cache 32 KB I Cache 128 KB SRAM 512 KB Coherent L2 Cache Cache Coherent Interconnect (CCI 400) CANopen PROFINET® RJ45 EtherNet/IP™ ETHERNET Powerlink RJ45 Modbus TCP/IP RJ45 EhterCAT® Master Summary PHY Ethernet PHY Ethernet PHY Ethernet PCIe 2.0 TCP/IP PCIe 2.0 uQE (HDLC, TDM, PB) LCD Controller Security (XoR, CRC) SAI I2S FlexTimer Module UCC PHY RS485 UCC PHY RS485 SAI I2S FlexTimer Module CAN PHY RS485 CAN PHY RS485 USB 2.0 FlexTimer Module CAN PHY RS485 CAN PHY RS485 SDHC PROFIBUS® Modbus DeviceNet™ CANopen J1939 SD Card Quad SPI IC To enable high performance, highly SATA 3.0 Harddrive Master NOR SPI secure network connectivity for DDR3L/4 NAND UART Console Memory USB 3.0 3.0 High-Performance, Highly SecureUSB Networking for Industrial and IoT Applications Controller industrial control, M2M and IoT IFC applications, some essential DDR FLASH requirements must be satisfied: exceptional reliability, ensure data Wireless Gateway (Trusted Node): QorIQ LS1021A Processor Wireless Gateway (Trusted Node): QorlQ LS1021A Processor LS1021A is secure, deliver efficient packet processing, and enhanced connectivity ARM ARM Cortex -A7 Cortex -A7 Core Core support. The QorIQ LS1021A FPU NEON FPU NEON processor has been engineered to 32 KB 32 KB 32 KB 32 KB D Cache I Cache D Cache I Cache meet these requirements, delivering 128 KB SRAM 512 KB Coherent L2 Cache exceptional performance efficiency 5 White Paper together with an optimized mix of connectivity and security features. Cache Coherent Interconnect (CCI 400) 2 ® ® ® For more information on the starter kit or to order modules, please go to www.embeddedmodules.net or contact Vaughn Orchard at Vaughn@convergencepromotions. com. Phone: (508) 209-0294. RJ45 PHY Ethernet RJ45 PHY Ethernet RJ45 PHY Ethernet 4-Lane 6 GHz SerDes The second block related to security is the cryptographic engine block, which covers acceleration of the security and encryption algorithms to be implemented. Note, this is used by the preboot loader to accelerate the decryption/authentication The following are a collection of example use cases for industrial and IoT applications that can be supported based on the feature set of the QorIQ S1021A processor: 4-Lane 6 GHz SerDes The Run-Time integrity checker supports periodic checks of predefined memory regions for modification (by harmful or defective code) by continuously calculating and comparing hashes of these memory regions. An external tamper detection pin can be used to detect physical attacks to the device. Finally, ARM TrustZone supports the division of the system into secure and nonsecure zones and controls access privileges between those zones. Following are a collection of example use cases for industrial and IoT applications that can be Example Applications supported based on the feature set of the QorIQ S1021A processor. boot process. This block provides hardware acceleration for the algorithms associated with IPSec, SSL/TLS, WiMAX and various other standards; many of them with single-pass processing involved whenever data in the IoT has to be exchanged and transported out of the device. It is a modular and scalable security core that is optimized to process all it can, and even perform multialgorithmic operations (e.g., 3DESHMAC-SHA-1) in a single pass of data. Some of the algorithms implemented in hardware are XOR, DES, AES and a NIST-certified random number generator. uQE (HDLC, TDM, PB) ® Security (XoR, CRC) LCD Controller PHY USB PCIe PCIe 2.0 I2C PCIe 2.0 USB SATA 3.0 PCIe I2C I2C USB 3.0 SAI I2S FlexTimer Module UCC SAI I2S FlexTimer Module CAN USB 2.0 FlexTimer Module CAN UCC CAN CAN SDHC DDR3L/4 Memory Controller DDR Quad SPI I2C NOR SPI NAND UART SD Card Console IFC FLASH 22 23 Network Attached Encrypted Storage: QorIQ LS1021A Processor MYLINK MYLINK INDUSTRY INTERVIEW Embedded Developer 1011100101101011110101001101110010110111001 Low-power AXP Logic Family Delivers High Performance to Mixed-voltage Applications Interview with Jennifer Zhao – VP and General Manager at NXP Semiconductors 011011100101101011 It has been a busy time for NXP semiconductors with the recent acquisition of Freescale Semiconductor at the end of 2015. As a result, NXP is now clearly a market leader in automotive, microcontroller, and security semiconductor solutions. One of the areas that NXP leads in is standard logic. While FPGAs, SoCs, and ASICs are the big logic elements these days, standard logic still has a very significant place in any EE’s tool bag. Logic has come in a great many flavors; there has been a progression from 74VHC, 74AC & ACT, 74HC & HCT, 74LVC, 74LVT & LVX, 74AVC, 74ABT, and 74AUP. The latest version, 74AXP, features extremely low dynamic power, due to lower input and output capacitance. Fully specified from 0.75 to 2.75 V, AXP logic supports the trend to the lower 1.2 V and 0.8 V voltage nodes. By Jim Harrison To find out more about the AXP logic family, we spoke with Jennifer Zhao, VP and General By Jim Harrison 26 Manager of NXP’s Business Line Logic group. 27 Embedded Developer 0101001101110010110111001 Jennifer, how long have you been with NXP? I’ve been with NXP for 7 years, and before that I was with its predecessor, Phillips Semiconductor. I now am the General Manager for logic products “A single AA battery, which can supply 3.9 Wh, will theoretically operate an AXP buffer (0.45 µW) for more than 8.6 million hours—or 990 years.” Now that NXP has combined with Freescale you are an even more formidable force in the industry. Certainly. We have 11,200 engineers in 23 countries, more than 130 facilities, more than 9,000 issued and pending patent families, and are active in more than 80 standardization bodies and consortia. We had revenue of $6.1 billion in 2015. We have R&D activities and manufacturing facilities in Asia, Europe and the United States. There are seven wafer fabs—two in Austin, and one each in Chandler, Hamburg, Manchester, Nijmegen, and Singapore, plus seven assembly and test facilities. Is NXP bringing out some interesting new versions of AXP logic? Yes, we are introducing an extension of the AXP logic family that we launched two years ago, which has been very popular. We are basically expanding the family with the AXP translators. These are high speed and translate levels between 0.7 to 5.5 V. 28 INDUSTRY INTERVIEW 0110111001011010111101010 The first AXP devices came in the tiny leadless packages with 0.5 mm pad pitch, as well as state of the art 0.35 and 0.30 mm pitch. Now we are adding leaded packages. They are attractive to the industrial sector, where the leadless goes more into portable and consumer designs. We like to illustrate the logics’ low power by the fact that a single AA battery, which can supply 3.9 Wh, will theoretically operate an AXP buffer (0.45 µW) for more than 8.6 million hours—or 990 years. AXP provides the lowest propagation delay of all low power families, and critically, it provides system designers with the lowest CPD, typically just 2.9 pF, which is more than a 50% reduction when compared to competing low-voltage/low-power families. We have the lower capacitance because of an advanced manufacturing process. Do the translators have the industrial temperature range? Yes, they are rated for -40° to 85°C and they will also be qualified for automotive. They will be qualified to AEC-200. There are 8 and 10 lead packages for the new translator devices. There are five versions of the new translator, including one with a configurable gate. The configurable part—74AXP1T57—can be set to one Advanced, Extremely Low-power Translators A feature-rich family designed for high-performance, low-voltage, and low-power applications, these Si-gate CMOS devices provide voltage-level translation solutions with very low static and dynamic power dissipation. KEY FEATURES • Dual supply voltage level translation • VCCI = 0.7 V to 2.75 V; VCCO = 1.2 V to 5.5 V • Very low dynamic power dissipation (CPD) • Fully specified at the 0.8 V node • Schimtt-trigger action on all inputs • 12 mA balanced output drive • Over-voltage tolerant I/Os • Fully specified (-40 to +85ºC) BENEFITS • Low propagation delay • Suitable for mixed-voltage applications • High noise immunity • Extended battery life • Wide range of functions • Simplified board layout, mechanical stability APPLICATIONS • Smartphones/Tablet PCs • Digital cameras • Portable medical devices • Other power sensitive applications The AXP family of Si-gate CMOS devices uses leading low threshold process technology and next-generation packaging technology to create extremely small functions that support the trend to very low operating voltage and consume very little power. The AXP translators are level translating gates targeted at small footprint portable applications. They are available in single (1G), dual (2G), and triple (3G), gate Mini Logic formats. Multiple standard and configurable logic functions are included in the AXP translators. These are made available in the industry’s smallest packages. 29 Embedded Developer 0101001101110010110111001 of nine logic functions. The other ICs are buffers with a tri-state or opendrain output, and a NAND gate. All inputs have schmitt-trigger action. 0110111 These translators have two power supply inputs? Yes, dual supplies. They can operate off of 0.8 V, 1.2, 1.8, or 2.5 V and can have a 1.2 to 5.5 V outputs. When will the translator devices be available? They are available from distribution now. We are adding more gate functions to the AXP family in the near future, and we see all of these devices going into applications such at cameras, goggles for VR, portable medical devices, a smart diaper, laptops and tablets, and media players. INTRODUCING AXP Translator Learn LINK More Industry’s LOWEST POWER VOLTAGE TRANSLATORS for High Performance Applications “We are adding more gate functions to the AXP family in the near future, and we see all of these devices going into applications such as cameras, goggles for VR, portable medical devices, a smart diaper, laptops and tablets, and media players.” Learn More Here LINK HERE 30 LOGIC www.NXP.com www.NXP.com M o v i n g To w a r d s a David Elien VP of Marketing & Business Development, Cree, Inc. Clean Energy Let There Be LIGHT FUTURE How Cree reinvented the light bulb — Hugo van Nispen, COO of DNV KEMA Cutting Edge SPICE Modeling MCU Wars 32-bit MCU Comparison + Cutting Edge Flatscreen Technologies + New LED Filament Tower View more EEWeb magazines— Click Here Click here Power Developer O ct o b er 201 3 From Concept to Reality Sierra Circuits: Designing for Durability A Complete PCB Resource Wolfgang Heinz-Fischer Head of Marketing & PR, TQ-Group TQ-Group’s Comprehensive Design Process Freescale and TI Embedded Modules + Ken Bahl CEO of Sierra Circuits PLUS: The “ Ground ” Myth in Printed Circuits + + PCB Resin Reactor ARM Cortex Programming Low-Power Design Techniques