Preview only show first 10 pages with watermark. For full document please download

Lte/lte-advanced Digital Pre-distortion Using Agilent

   EMBED


Share

Transcript

A Novel Wideband DPD Measurement Platform Wideband Digital Pre-Distortion Measurement Platform for LTE/LTE-Advanced using Agilent SystemVue Jinbiao Xu, Agilent Technologies Daren McClearnon, Agilent Technologies Oct, 2012 A Novel Wideband DPD Measurement Digital Pre-Distortion (DPD): Problem Statement Agenda 1. Introduction and Problem Statement 2. Digital Pre-Distortion (DPD) Concepts 3. DPD verification with Agilent Hardware 4. DPD simulation with Agilent EDA Tools 5. Crest Factor Reduction (CFR) 6. PA Modeling 7. Summary A Novel Wideband DPD Measurement 2 Digital Pre-Distortion (DPD): Problem Statement • Modern communication systems: • Signals have high peak-to-average power ratios (PAPR). • Must operate with high power-added efficiency (PAE). • High PAPR is a consequence of high spectral efficiency • Multiple-Carrier Signals (MC GSM, MC WCDMA) • CDMA (WCDMA, CDMA2000) • OFDM (LTE, WiMAX) • High PAE is achieved when the RF power amplifier (PA) is driven towards saturation • Operation near saturation inherently results in higher signal distortion A Novel Wideband DPD Measurement 3 DPD Problem Statement Higher DC-RF Efficiency Increase Drive levels Higher Peak Power Causes high distortion levels Higher Spectral Efficiency “Back off” the drive levels Conflicting requirements How to handle signals with high PAPR, while driving the PA to operate with high PAE, while also having low signal distortion? A Novel Wideband DPD Measurement 4 DPD Problem Statement High-efficiency PA design typically relies on: • Constraining the PA energy into a bandpass characteristic • Peaking the PA output energy by dynamically biasing the PA as a function of input power These techniques inherently result in PA nonlinearities with memory Techniques to reduce distortion when operating at high efficiency: • PA linearization: Drive the PA closer to saturation, for a given level of distortion • Signal preconditioning: Reduce signal peaks without significant signal distortion A Novel Wideband DPD Measurement 5 DPD Solution Approach CFR Higher DC-RF Efficiency Increase Drive levels Higher Peak Power Causes high distortion levels DPD Higher Spectral Efficiency Higher throughput levels for subscribers Solution: Preconditioning the signal (CFR) and correcting for the hardware (DPD) will both be discussed in this presentation A Novel Wideband DPD Measurement 6 Agenda 1. Introduction and Problem Statement 2. Digital Pre-Distortion (DPD) Concepts 3. DPD verification with Agilent Hardware 4. DPD simulation with Agilent EDA Tools 5. Crest Factor Reduction (CFR) 6. PA Modeling 7. Summary A Novel Wideband DPD Measurement 7 Digital Pre-distortion principles – compressing PA OUTPUT POWER LINEAR GAIN Psat Pdesired PA, WITH GAIN COMPRESSION Pactual Pin Pin needed to achieve Pdesired INPUT POWER A Novel Wideband DPD Measurement 8 Digital Pre-distortion principles – pre-expansion OUTPUT POWER DPD GAIN EXPANSION LINEAR GAIN Psat PA, WITH GAIN COMPRESSION + LINEAR REGION Maximum DPD REGION correctable power INPUT POWER A Novel Wideband DPD Measurement 9 Digital Pre-distortion principles – linearized result OUTPUT POWER DPD GAIN EXPANSION Psat LINEARIZED DPD + PA PA, WITH GAIN COMPRESSION + LINEAR REGION DPD REGION Maximum correctable power = INPUT POWER A Novel Wideband DPD Measurement 10 Linear Operation with time-varying envelope OUTPUT POWER LINEAR GAIN Psat INPUT POWER Peak-to-Avg Power Ratio (PAPR) 11 A Novel Wideband DPD Measurement Nonlinear Operation – peaks are compressed OUTPUT POWER LINEAR GAIN Psat (compressed peaks) INPUT POWER CCDF (LTE) Peak-to-Avg Power Ratio (PAPR) 12 A Novel Wideband DPD Measurement DPD Pre-Expansion – peaks are exaggerated OUTPUT POWER LINEAR GAIN (expanded peaks) Psat INPUT POWER Possible Improvements 13 • Compensate for artificially higher avg. signal power • Crest Factor Reduction (CFR) A Novel Wideband DPD Measurement DPD Net Result: Linear gain of complex-valued RF carrier envelope over a specific range of power levels RF Power Amplification Baseband Digital Pre-Distortion OUTPUT POWER LINEAR LINEAR DPD pre-expanded peaks INPUT POWER 14 PA compresses peaks INPUT POWER A Novel Wideband DPD Measurement What does a DPD look like? (Volterra Model) Volterra series pre-distorter can be described by Q K z ( n) z k ( n) where Q  z k ( n) m1 0 k 1 k hk (m1 ,, mk ) mk 0 y(n ml ) l 1 Which is a 2-dimensional summation of power series & past time envelope responses Q z (n) h0 Q h1 (m1 ) y(n m1 ) m1 0 Q h2 (m1 , m2 ) y(n m1 ) y(n m2 )  m1 0m2 0 A full Volterra produces a huge computational load. People usually simplify it into • Wiener model • Hammerstein model • Wiener-Hammerstein model • Memory polynomial model 15 A Novel Wideband DPD Measurement DPD principles – Memory Polynomial Model If only diagonal terms are kept, Volterra reduces to “Memory polynomial” model. Agilent uses the “Indirect Learning” algorithm to extract MP coefficients. As of SystemVue 2011.10, you can now add your own model, extraction algorithm, and even your own GUI. K Q z ( n) a kq y(n q) y(n q) k 1 k 1q 0 Where • • K is Nonlinearity order Q is Memory length L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “Memory polynomial predistorter based on the indirect learning architecture,” in Proc. of GLOBECOM, Taipei, Taiwan, 2002, vol. 1, pp. 967–971. 16 A Novel Wideband DPD Measurement Wireless Transmitter Path – Where Is Your Product? Env Tracking BB PHY CFR DPD DAC Up convert Adapt ADC Down convert PA Duplexer • What is included with your actual product? • What IP do you have access to? Or, able to imitate? Able to modify? • What specification do you need to test against? 17 A Novel Wideband DPD Measurement Agilent Measurement-based DPD Modeling Platform W1461 SystemVue W1918 LTE-A IP Library BB TX PHY Vector Signal Generator AWG ESG, MXG, PSG Also: 3G, WLAN 60GHz, DVB, OFDM W1716 DPD Step-byStep GUI CFR DPD model DAC Up convert Generate Coefficients ADC Down convert Throughput BER/FER ACPR EVM PA BB RX PHY 89600 VSA Optional Reference RX 18 Vector Signal Analyzer MXA, PXA, Modular A Novel Wideband DPD Measurement Measurement-Based DPD Modeling Flow Measured PA Input, Measured PA Output 1 Create DPD Stimulus RF Input 2 3 4 5 19 RF Output • DPD flow consists of 5 steps in SystemVue • Convergence improves with more iterations • 2-3 iterations are typical for real PAs Get baseband complex waveforms of PA input and output Extract DPD Model (includes delay estimation and adjustment) Apply DPD Model, and Get DPD+PA Response Verify DPD Performance A Novel Wideband DPD Measurement Measurement-Based DPD Modeling Simplification: Calculated PA Input, Measured PA Output 1 • Uses the Ideal BB stimulus waveform vs. measured PA output waveform to extract the DPD model. • • Advantages: - Single connection - PA remains “ON” - Easier to automate - Faster speed • Is typical of industry practice today • Linearizes the entire system, not just the PA • Provides very acceptable accuracy for quick Evaluation and MFG Test applications. Create DPD Stimulus RF Output BB Input 2 3 4 5 20 Get baseband complex waveforms of PA input and output Extract DPD Model (includes delay estimation and adjustment) Apply DPD Model, and Get DPD+PA Response Verify DPD Performance Assumptions: - Source flatness - Source linearity - No additional source signal conditioning A Novel Wideband DPD Measurement Simulation vs. Measurement DPD Extraction SIMULATION-BASED DPD ADS (predictive) • ADS & GoldenGate Circuits as simulated RF DUTs - Complex loading, memory FX, dynamic behaviors • NVNA X-parameter measurement model, - Great for smaller solid-state devices GG CO-SIM, MODELS CO-SIM, MODELS X-parameters MODEL N5241,2 PNA-X MEASUREMENT-BASED DPD RF DUT M9392A PXI VSA (>140MHz) or N9030A PXA (<140 MHz) 89600 VSA External Trigger I,Q RF Attenuator M9330A AWG if > 100 MHz 21 N5182 MXG, or E8257D PSG as external modulator RF DUT A Novel Wideband DPD Measurement Agilent Simulation-based DPD Modeling Platform W1461 SystemVue W1918 LTE-A IP Library BB TX PHY Agilent ADS Agilent GoldenGate RF circuit-level EDA software Also: 3G, WLAN 60GHz, DVB, OFDM W1716 DPD Step-byStep GUI CFR DPD model DAC Up convert Generate Coefficients ADC Down convert Throughput BER/FER ACPR EVM PA BB RX PHY 89600 VSA Optional Reference RX 22 A Novel Wideband DPD Measurement Agenda 1. Introduction and Problem Statement 2. Digital Pre-Distortion (DPD) Concepts 3. DPD verification with Agilent Hardware 4. DPD simulation with Agilent EDA Tools 5. Crest Factor Reduction (CFR) 6. PA Modeling 7. Summary 23 A Novel Wideband DPD Measurement Measurement-based DPD: Data capture 2 ways to transfer data from Instruments SystemVue Schematic sources grab live external waveforms at run-time into the DPD simulation 89600 VSA gap VSA_89600B_Source out V1 {VSA_89600B_Source@Data Flow Models} VSATitle='Simulation output OutputType=Timed (Envelope/Real Baseband) VSATrace=B COMMAND EXPERT CommandExpertLink C1 {CommandExpertLink@Data Flow Models} Two methods to capture PA response data from vector signal analyzer (MXA/PXA, or PXI modular) 1) 89600 VSA software (convenient, but added cost) 2) Command Expert (free but requires customization) 24 A Novel Wideband DPD Measurement DPD Measurement Automation: 2 Approaches Method 1 – Measure both PA Input and Output signals 1 Create DPD Stimulus RF Input DC Power Analyzer Adjust current to control switch MXA / PXA MXG 2 3 THRU DUT Power Splitter • • • • 25 RF Output Switch 4 Get baseband complex waveforms of PA input and output Extract DPD Model (includes delay estimation and adjustment) Apply DPD Model, and Get DPD+PA Response Set the parameters in SystemVue 5 Verify DPD Performance Click “Go” in the script file. The DPD extraction process runs automatically. After DPD measurement, verify EVM, ACP vs Output Power. A Novel Wideband DPD Measurement DPD Measurement Automation: 2 Approaches Method 2 – Calculate PA Input, Measure PA Output 1 Create DPD Stimulus RF Output BB Input 2 3 MXG MXA / PXA Get baseband complex waveforms of PA input and output Extract DPD Model (includes delay estimation and adjustment) DUT 4 Single connection allows automation, iterations Eliminates one measurement, physically faster Identical extraction algorithms, verification process 26 5 Apply DPD Model, and Get DPD+PA Response Verify DPD Performance A Novel Wideband DPD Measurement Comparing Methods: BB Input vs. Measured RF 6-Carrier GSM LTE-Advanced DL (20 MHz) ACLR of DL 20 MHz System ACLR -2BW Lower -1BW Lower +1BW Upper +2BW Upper BB input Raw PA output 54.06 35.33 35.68 53.58 Measured RF input DPD+PA w/ BB input 55.05 50.15 52.28 54.59 DPD+PA w/ PA input 55.80 51.23 54.32 55.41 27 DPD+PA RESULTS A Novel Wideband DPD Measurement SystemVue DPD Modeling Flow for LTE/LTE-A Step 1. Create DPD stimulus waveform • • Set LTE parameters such as BW, Resource Block allocation and others Choose between built-in LTE or LTE-Advanced waveform generation The download power and length of the waveform can also be set. 28 A Novel Wideband DPD Measurement SystemVue DPD Modeling Flow for LTE/LTE-A Step 2. Capture PA response • • SystemVue downloads directly to the MXG or M9330A AWG (source), and capture data back from PXA or M9392A (analyzer). Equipment parameters such as number of signal, trace assignment, and file name can be set. THRU : Connect the MXG/AWG directly to the PXA/M9392A and click the “Capture Waveform” button. This is the true RF PA input. DUT: Connect the MXG to the PA, connect the PA to the PXA/M9392A, and click the “Capture Waveform” button. The captured signal is the output of the PA DUT. The measured I/Q files are stored and used in following steps. 29 A Novel Wideband DPD Measurement SystemVue DPD Modeling Flow for LTE/LTE-A Step 3. DPD Model Extraction • PA AM-to-AM Characteristic DPD model parameters such as number of training samples, memory order, and nonlinear order can be set. DPD AM-to-AM Characteristic A Novel Wideband DPD Measurement 30 SystemVue DPD Modeling Flow for LTE/LTE-A Step 4. Capture DPD+PA Response • The signal is pre-distorted by the DPD model and re-downloaded into the MXG or AWG. DPD+PA (measured RF output) PA input (original RF input) Set the RF power DPD+PA AM-to-AM Characteristic A Novel Wideband DPD Measurement 31 SystemVue DPD Modeling Flow for LTE/LTE-A Step 5. Verify DPD+PA response • LTE performance for the DPD model used with the PA hardware is verified. Spectrum, EVM and ACLR are calculated and plotted automatically A Novel Wideband DPD Measurement 32 Accommodating Proprietary IP • • • • Use your own extractor IP instead of Agilent’s Continue to enjoy an integrated environment Allows remote & distributed DPD teamwork Greater user control of algorithm details, IP security, performance, delivery date, quality, etc Custom DPD Model Extraction (.m math language) Custom Digital Pre-distorter (.m math language) A Novel Wideband DPD Measurement 33 DPD of LTE-Advanced DL with Doherty PA (50W) Spectrum, ACLR and EVM results (5 MHz DL System) Raw PA output PA+DPD, after 1 iteration to extract DPD coefficients ACLR (dB) ACLR -2BW Lower -1BW Lower +1BW Upper +2BW Upper RF input (HW) 61.75 53.01 53.52 62.33 Raw PA output 50.25 31.98 31.56 48.19 DPD+PA output 57.96 49.00 48.63 58.57 EVM EVM (dB) Input signal -23.44 Raw PA output -21.33 DPD+PA output -23.36 CFR was applied to this LTE-Advanced DL signal , with a maximum EVM target of 8%. 34 Vector Source:MXG Vector Analyzer: PXA A Novel Wideband DPD Measurement DPD of LTE-Advanced DL with LDMOS Doherty PA (200W) Spectrum, ACLR and EVM results (10 MHz DL System) Raw PA output PA+DPD, after 1 iteration to extract DPD coefficients ACLR (dB) ACLR -2BW Lower -1BW Lower +1BW Upper +2BW Upper BB input (sim) 58.67 49.63 49.17 58.01 Raw PA output 49.90 28.69 28.35 47.31 DPD+PA output 48.88 45.10 45.16 48.83 EVM EVM (%) EVM (dB) Simulation BB input 5.33 -24.46 Raw PA output 10.13 -19.89 DPD+PA output 5.52 -25.16 Vector Source:MXG Vector Analyzer: PXA CFR was applied to this LTE-Advanced DL signal, with a maximum EVM target of 10% for 16-QAM. 35 A Novel Wideband DPD Measurement DPD of LTE-Advanced DL with LDMOS Doherty PA (200W) Spectrum, ACLR and EVM results (20MHz DL System) ACLR (dB) ACLR -2BW Lower -1BW Lower +1BW Upper +2BW Upper BB input (sim) 64.73 55.09 57.10 64.92 Raw PA output 51.01 30.69 30.04 49.50 DPD+PA output 50.31 45.16 45.56 51.40 Raw PA output PA+DPD, after 1 iteration to extract DPD coefficients EVM EVM (%) EVM (dB) BB input signal (sim) 6.10 -24.28 Raw PA output 8.87 -21.04 DPD+PA output 6.88 -23.24 Vector Source:MXG Vector Analyzer: PXA CFR was applied to this LTE-Advanced DL signal with a maximum EVM target of 10%,8% and 6% for QPSK, 16-QAM and 64-QAM, respectively. 36 A Novel Wideband DPD Measurement LTE-A Results with 200W LDMOS Doherty PA Raw PA Output (DL 20MHz System) 37 A Novel Wideband DPD Measurement LTE-A Results with 200W LDMOS Doherty PA DPD+PA Output (DL 20MHz System) 38 A Novel Wideband DPD Measurement DPD of LTE-Advanced DL with LDMOS Doherty PA (200W) Results with (2x10MHz) Carrier Aggregation of 2 separate CC’s ACLR (dB) ACLR -2BW Lower -1BW Lower +1BW Upper +2BW Upper BB input (sim) 63.11 56.75 56.70 62.72 Raw PA output 50.58 30.80 30.22 49.06 DPD+PA output 51.74 45.75 45.73 51.18 Raw PA output PA+DPD, after 1 iteration to extract DPD coefficients CC0 EVM (QPSK) EVM (%) EVM (dB) Baseband signal (sim) 0.21 -53.43 Raw PA output 3.03 -30.37 DPD+PA output 1.93 -34.28 CC1 EVM (16-QAM) EVM (%) EVM (dB) 39 Baseband signal (sim) 0.20 -54.11 Raw PA output 3.12 -30.11 DPD+PA output 1.93 -34.31 Vector Source:MXG Vector Analyzer: PXA A Novel Wideband DPD Measurement Multi-Standard Radio (MSR) into LDMOS Doherty PA (200W) 2 Carriers GSM 2 Carriers WCDMA 2 Carriers LTE 2 Carriers EDGE Raw PA output PA+DPD 40 A Novel Wideband DPD Measurement Wideband configurations: LTE-A 2x20MHz + 1x20MHz CA Agilent M9330A AWG, M9392A VSA Source = M9330A AWG N5182 MXG Vector Analyzer= M9392A - 12bits ADC - up to 250MHz bandwidth PA output Spectrum (Blue) PA+DPD Spectrum (Red) PA input Spectrum (Green) 41 A Novel Wideband DPD Measurement DPD of 802.11ac, using M9330A/M9392A (80MHz signal, with 3x oversampling = 240 MHz VSA BW) 42 A Novel Wideband DPD Measurement Agenda 1. Introduction and Problem Statement 2. Digital Pre-Distortion (DPD) Concepts 3. DPD verification with Agilent Hardware 4. DPD simulation with Agilent EDA Tools 5. Crest Factor Reduction (CFR) 6. PA Modeling 7. Summary 43 A Novel Wideband DPD Measurement DPD with Agilent EEsof EDA tools Predictive PA modeling and linearization Benefits of using RF Simulation for DPD • • • • Predict the final DPD result, while Analog PA can still be changed De-risk module or wafer iteration, to save time and money Explore vendors, waveforms, statistical spreads, analog variables Validate system-level specifications with preliminary RF & BB Trade offs: • Accuracy. Dynamic “circuit envelope” behavior depends on – the simulation engine (and any behavioral modeling) – the device-level transistor models, for traps, self-heating, mismatch • Speed. – Real HW measurements >> faster than Simulations Conclusion: it is still worth doing 44 A Novel Wideband DPD Measurement Simulation-based, predictive DPD SystemVue co-simulation with circuit-level PA in ADS SystemVue SystemVue ADS Ptolemy STIMULUS RESPONSE (circuit-system co-simulation) CO-SIM ADS reads data from SystemVue CO-SIM ADS circuit-level PA (circuit envelope simulation) ADS sends data to SystemVue ADS circuit-level PA,needs Circuit Envelop to co-simulate with SystemVue. 45 A Novel Wideband DPD Measurement Simulation-based, predictive DPD SystemVue co-simulation with circuit-level PA in ADS Spect r um Anal yzer Extract Capture PA input vs. output waveforms for DPD extraction Spect r um Anal yzer PAIn_spec Mode=TimeGate Start=0s SegmentTime=50μs SystemVue PAOut_spec Mode=TimeGate Start=0s SegmentTime=50μs PA R2 {ReadFile@Data Flow Models} File='Step1_BBData_Imag_Iter2.txt [Step1_BBData_Imag_FileName ] Periodic=YES Fc T Im 123 Cx Fc Env Env Im PAInputData_Imag2 {Sink@Data Flow Models} StartStopOption=Samples SampleStart=0 SampleStop=99999 [NumOfCapturedSamples-1] DataFileName='Step2_PAOutputdata_Imag_Iter2.txt [filename_PAout_Q] Cx Re ADS Cosim R3 {RectToCx@Data Flow Models} S1 {SetSampleRate@Data Flow Models} SampleRate=69.33e+6Hz [SamplingRate] C1 {CxToEnv@Data Flow Models} Fc=2.505e+9Hz [FCarrier] Re A1 {ADSCosimBlockEnv@Data Flow Models} OutputFc=2.505e+9 [FCarrier] InputBlockSize=1000 [BlockSize] OutputBlockSize=1000 [BlockSize] InputID='SystemVueToADS OutputID='ADSToSystemVue E1 {EnvToCx@Data Flow Models} 123 C7 {CxToRect@Data Flow Models} PAInputData_Real2 {Sink@Data Flow Models} StartStopOption=Samples SampleStart=0 SampleStop=99999 [NumOfCapturedSamples-1] DataFileName='Step2_PAOutputdata_Real_Iter2.txt [filename_PAout_I] R1 {ReadFile@Data Flow Models} File='Step1_BBData_Real_Iter2.txt [Step1_BBData_Real_FileName] Periodic=YES 123 Im PAInputData_Imag1 {Sink@Data Flow Models} StartStopOption=Samples SampleStart=0 SampleStop=99999 [NumOfCapturedSamples-1] DataFileName='Step2_PAInputdata_Imag_Iter2.txt [filename_PAin_Q] The UI to connect with ADS in 123 SystemVue, corresponding to the ADS schematic (Ptolemy co-sim with circuit-level design) in ADS.with digital ADS Generate PA output pre-distorter Re C2 {CxToRect@Data Flow Models} PAInputData_Real1 {Sink@Data Flow Models} StartStopOption=Samples SampleStart=0 SampleStop=99999 [NumOfCapturedSamples-1] DataFileName='Step2_PAInputdata_Real_Iter2.txt [filename_PAin_I] R5 Im Fi l e =' Ste p 3 _ DPD_ Co e ffi c i e n ts _ Im a g _ Ite r2 .tx t [DPD_ Co e ffi c i e n ts _ Im a g _ Fi l e Name] Peri o d i c =YES Re DPD R6 Verify See linearized result, including DPD 46 SystemVue Spect r um Anal yz r e 123 Afte rDPD M o d e =Ti m e Ga te Sta rt=0 s Seg m e n tTi m e =5 0 μs R4 Fi l e =' Ste p 3 _ DPD_ Co e ffi c i e n ts _ Re a l _ Ite r2 .tx t [DPD_ Co e ffi c i e n ts _ Re a l _ Fi l e Na me] Peri o d i c =YES DPD_ PAOu tp u tDa ta _ Im a g Sta rtSto p Op ti o n =Sam p l e s Sam p l e Sta rt=0 [Sta rtSam p l e ] Sam p l e Sto p =9 9 9 9 8 [Sto p Sam p l e - 1] Da ta Fi l e Na m e =' Ste p 4 _ DPD_ PAOu tp u td a ta _ Im a g _ Ite r2 .tx t [Ste p 4 _ DPD_ PAOu tp u t_ Im a g _ Fi l e Na m e ] Im Fc T DPD_Coe f R8 Fi l e =' Ste p 1 _ BBDa ta _ Im a g _ Ite r1 .tx t [Ste p 1 _ BBDa ta _ Im a g _ Fi l e Na me] Cx DPD_O ut p t u DPD_Pr eDist or t er DPD_I npu t Fc Env Env Im Cx ADS Co s i m Re R1 G1 Ga i n =0 .9 7 8 [Powe rAl i g n m e n t] D1 M e m o ry Ord e r=5 [M e m o ry Ord e r] S4 Sam p l e Ra te =6 9 .3 3 e +6 Hz [Sam p l i n g Ra te] No n l i n e a rOrd e r=9 [No n l i n e a rOrd e r] Nu m OfIn p u tSam p l e s =2 0 0 0 0 [Nu m OfIn p u tSam p l e s] Fc Spect r um Anal yz r e Cx A1 Ou tp u tFc =2 .5 0 5 e +9 [FCa rri e r] PA In p u tBl o c k Si z e =1 0 0 0 [Bl o c k Size] Ou tp u tBl o c k Si z e =1 0 0 0 [Bl o c k Si ze] In p u tID=' Sy s te m Vue To ADS Ou tp u tID=' ADSTo Sy s te m Vue R7 Fi l e =' Ste p 1 _ BBDa ta _ Re a l _ Ite r1 .tx t [Ste p 1 _ BBDa ta _ Re a l _ Fi l e Na m e] T C2 Fc =2 .5 0 5 GHz [FCa rri e r] Re Env E2 C1 123 DPD_ PAOu tp u tDa ta _ Re a l Sta rtSto p Op ti o n =Sam p l e s Sam p l e Sta rt=0 [Sta rtSam p l e ] Sam p l e Sto p =9 9 9 9 8 [Sto p Sam p l e - 1] Da ta Fi l e Na m e =' Ste p 4 _ DPD_ PAOu tp u td a ta _ Re a l _ Ite r2 .tx t [Ste p 4 _ DPD_ PAOu tp u t_ Re a l _ Fi l e Na m e ] S1 Sam p l e Ra te =6 9 .3 3 e +6 Hz [Sam p l i n g Ra te] C3 Fc =2 .5 0 5 GHz [FCa rri e r] Befo re DPD M o d e =Ti m e Ga te Sta rt=0 s Seg m e n tTi m e =5 0 μs A Novel Wideband DPD Measurement Simulation-based, predictive DPD SystemVue co-simulation with circuit-level PA in ADS 6-Carrier GSM Carrier Spacing: 4MHz Sampling Rate: 256 * 270.8333kHz =69.3333 MHz 40dB improvement after 2 iterations PA input Spectrum (Green) PA output Spectrum (Blue) PA+DPD Spectrum (Red, first iteration)) PA+DPD Spectrum (Orange, Second iteration) 47 A Novel Wideband DPD Measurement Simulation-based, predictive DPD SystemVue with native FCE model, extracted from GoldenGate Spect r um Anal yzer Extract Capture PA input vs. output waveforms for DPD extraction Spect r um Anal yzer PAIn_spec Mode=TimeGate Start=0s SegmentTime=50μs PAOut_spec Mode=TimeGate Start=0s SegmentTime=50μs PA R2 {ReadFile@Data Flow Models} File='Step1_BBData_Imag_Iter2.txt [Step1_BBData_Imag_FileName ] Periodic=YES Fc T Im 123 Fc Cx Env Env Re Im PAInputData_Imag2 {Sink@Data Flow Models} StartStopOption=Samples SampleStart=0 SampleStop=99999 [NumOfCapturedSamples-1] DataFileName='Step2_PAOutputdata_Imag_Iter2.txt [filename_PAout_Q] Cx Fast Cir cuit Envelope Re R3 {RectToCx@Data Flow Models} S1 {SetSampleRate@Data Flow Models} SampleRate=34.67e+6Hz [SamplingRate] C1 {CxToEnv@Data Flow Models} Fc=2.505e+9Hz [FCarrier] F2 {FastCircuitEnvelope@Data Flow Models} File='SIM_PA_2p505GHz_m7dBm_level3_ampaccu... E1 {EnvToCx@Data Flow Models} PAInputData_Real2 {Sink@Data Flow Models} StartStopOption=Samples SampleStart=0 SampleStop=99999 [NumOfCapturedSamples-1] DataFileName='Step2_PAOutputdata_Real_Iter2.txt [filename_PAout_I] 123 R1 {ReadFile@Data Flow Models} File='Step1_BBData_Real_Iter2.txt [Step1_BBData_Real_FileName] Periodic=YES Im 123 C7 {CxToRect@Data Flow Models} PAInputData_Imag1 {Sink@Data Flow Models} StartStopOption=Samples SampleStart=0 SampleStop=99999 [NumOfCapturedSamples-1] DataFileName='Step2_PAInputdata_Imag_Iter2.txt [filename_PAin_Q] Re 123 CMOS Handset PA C2 {CxToRect@Data Flow Models} PAInputData_Real1 {Sink@Data Flow Models} StartStopOption=Samples SampleStart=0 SampleStop=99999 [NumOfCapturedSamples-1] DataFileName='Step2_PAInputdata_Real_Iter2.txt [filename_PAin_I] Fast Circuit Envelope (FCE) model extracted from GoldenGate Generate PA output with digital pre-distorter (direct co-sim is also possible, but slower) R5 Im Fi l e =' Ste p 3 _ DPD_ Co e ffi c i e n ts _ Im a g _ Ite r2 .tx t [DPD_ Co e ffi c i e n ts _ Im a g _ Fi leName] Pe ri o d i c =YES Re Verify See linearized result, including DPD 48 PA DPD R6 Spect r um Anal yz r e R4 Fi l e =' Ste p 3 _ DPD_ Co e ffi c i e n ts _ Re a l _ Ite r2 .tx t [DPD_ Co e ffi c i e n ts _ Re a l _ Fi l eName] Pe ri o d i c =YES DPD_O ut p t u Im Cx DPD_IDnp PD t _Pr eDist or t er u Sta rtSto p Op ti o n =Sa m p l es Sa m p l e Sta rt=0 [Sta rtSa m p l e] Sa m p l e Sto p =9 9 9 9 8 [Sto p Sa m p l e- 1] Da ta Fi l e Na m e =' Ste p 4 _ DPD_ PAOu tp u td a ta _ Im a g _ Ite r2 .tx t [Ste p 4 _ DPD_ PAOu tp u t_ Im a g _ Fi l e Name] Fc T DPD_Coe f R8 Fi l e =' Ste p 1 _ BBDa ta _ Im a g _ Ite r1 .tx t [Ste p 1 _ BBDa ta _ Im a g _ Fi l e Name] 123 DPD_ PAOu tp u tDa ta _ Im a g Afte rDPD M o d e =Ti m e Ga te Sta rt=0 s Se g m e n tTi m e =5 0μs Fc Env Fast Cir cuit Envelo e p Env Im Cx Re Re R1 G1 Ga i n =0 .8 2 1 [Po we rAl i g n m e n t] D1 M e m o ry Ord e r=5 [M e m o ry Ord e r] S4 Sa m p l e Ra te =3 4 .6 7 e +6 Hz [Sa m p l i n g Ra te] No n l i n e a rOrd e r=9 [No n l i n e a rOrd e r] Nu m OfIn p u tSa m p l e s =3 0 0 0 0 [Nu m OfIn p u tSa m p les] Fc Spect r um Anal yz r e Cx F2 Fi l e =' SIM _ PA_ 2 p 5 0 5 GHz _ m 7 d Bm _ l e v e l 3 _ a m p a ccu. E2 C1 123 R7 Fi l e =' Ste p 1 _ BBDa ta _ Re a l _ Ite r1 .tx t [Ste p 1 _ BBDa ta _ Re a l _ Fi l e Name] T C2 Fc =2 .5 0 5 GHz [FCa rri e r] Env DPD_ PAOu tp u tDa ta _ Re a l Sta rtSto p Op ti o n =Sa m p l es Sa m p l e Sta rt=0 [Sta rtSa m p l e] Sa m p l e Sto p =9 9 9 9 8 [Sto p Sa m p l e- 1] Da ta Fi l e Na m e =' Ste p 4 _ DPD_ PAOu tp u td a ta _ Re a l _ Ite r2 .tx t [Ste p 4 _ DPD_ PAOu tp u t_ Re a l _ Fi l e Na me] Be fo re DPD S1 Sa m p l e Ra te =3 4 .6 7 e +6 Hz [Sa m p l i n g Ra te] C3 Fc =2 .5 0 5 GHz [FCa rri e r] M o d e =Ti m e Ga te Sta rt=0 s Se g m e n tTi m e =5 0μs A Novel Wideband DPD Measurement Simulation-based, predictive DPD SystemVue with native FCE model, extracted from GoldenGate 6-Carrier GSM Carrier Spacing: 600kHz 30dB improvement after 2 iterations Sampling Rate: 128 * 270.8333kHz =34.6667 MHz PA input Spectrum (Green) PA output Spectrum (Blue) PA+DPD Spectrum (Red, first iteration)) PA+DPD Spectrum (Orange, Second iteration) 49 A Novel Wideband DPD Measurement Simulation-based, predictive DPD SystemVue with analog X-parameter model (100W PA) Port_2 {*OUT} ZO=50Ω MultiSource_3 {MultiSource} Source1=200 MHz at -10 dBm 1 3 VDC X 2 SG1 {VDC} VDC=22V XP_1 {XPARAMS} File='.\100W_3Hz_3H_3Bias_PHD.mdf {*GND} FILE Analog X-parameter device is placed into a Spectrasys subnetwork (RF simulation domain) 50 A Novel Wideband DPD Measurement Simulation-based, predictive DPD SystemVue with analog X-parameter model (100W PA) X-param PA Spect r um Anal yzer Extract Capture PA input vs. output waveforms for DPD extraction PAIn_spec Mode=TimeGate Start=0s SegmentTime=50μs R2 {ReadFile@Data Flow Models} File='Step1_BBData_Imag_Iter1.txt [Step1_BBData_Imag_FileName ] Periodic=YES PAOut_spec Mode=TimeGate Start=0s SegmentTime=50μs Fc T Im Spect r um Anal yzer Cx 123 Fc RF_Link Env Env Im PAInputData_Imag2 {Sink@Data Flow Models} StartStopOption=Samples SampleStart=0 SampleStop=99999 [NumOfCapturedSamples-1] DataFileName='Step2_PAOutputdata_Imag_Iter1.txt [filename_PAout_Q] Cx Re Re R3 {RectToCx@Data Flow Models} S1 {SetSampleRate@Data Flow Models} SampleRate=34.67e+6Hz [SamplingRate] C1 {CxToEnv@Data Flow Models} Fc=200e+6Hz [FCarrier] Data1 {RF_Link@Data Flow Models} Schematic='Xparam_device FreqSweepSetup=Automatic EnableNoise=NO CalcPhaseNoise=NO R1 {ReadFile@Data Flow Models} File='Step1_BBData_Real_Iter1.txt [Step1_BBData_Real_FileName] Periodic=YES E1 {EnvToCx@Data Flow Models} C7 {CxToRect@Data Flow Models} 123 PAInputData_Real2 {Sink@Data Flow Models} StartStopOption=Samples SampleStart=0 SampleStop=99999 [NumOfCapturedSamples-1] DataFileName='Step2_PAOutputdata_Real_Iter1.txt [filename_PAout_I] 123 Im PAInputData_Imag1 {Sink@Data Flow Models} StartStopOption=Samples SampleStart=0 SampleStop=99999 [NumOfCapturedSamples-1] DataFileName='Step2_PAInputdata_Imag_Iter1.txt [filename_PAin_Q] Re C2 {CxToRect@Data Flow Models} 123 PAInputData_Real1 {Sink@Data Flow Models} StartStopOption=Samples SampleStart=0 SampleStop=99999 [NumOfCapturedSamples-1] DataFileName='Step2_PAInputdata_Real_Iter1.txt [filename_PAin_I] RF_Link Brings RF networks (incl. X-parameter devices) up to the dataflow simulation Generate PA output with digital pre-distorter R5 Im Fi l e =' Ste p 3 _ DPD_ Co e ffi c i e n ts _ Im a g _ Ite r1 .tx t [DPD_ Co e ffi c i e n ts _ Im a g _ Fi leName] Peri o d i c =YES Re Verify See linearized result, including DPD DPD R6 DPD_ PAOu tp u tDa ta _ Im a g R4 Fi l e =' Ste p 3 _ DPD_ Co e ffi c i e n ts _ Re a l _ Ite r1 .tx t [DPD_ Co e ffi c i e n ts _ Re a l _ Fi leName] Peri o d i c =YES R8 Fi l e =' Ste p 1 _ BBDa ta _ Im a g _ Ite r1 .tx t [Ste p 1 _ BBDa ta _ Im a g _ Fi l e Name] DPD_O utp t u Cx DPDD _IPD np t_Pr eDist or t er u Sta rtSto p Op ti o n =Sam p l es Sam p l e Sta rt=0 [Sta rtSam p l e] Sam p l e Sto p =9 9 9 9 8 [Sto p Sam p l e- 1] Da ta Fi l e Na m e =' Ste p 4 _ DPD_ PAOu tp u td a ta _ Im a g _ Ite r1 .tx t [Ste p 4 _ DPD_ PAOu tp u t_ Im a g _ Fi l e Name] Fc T DPD_Coe f Im Fc Env RF_Link Env Im Cx Re Re R1 R7 Fi l e =' Ste p 1 _ BBDa ta _ Re a l _ Ite r1 .tx t [Ste p 1 _ BBDa ta _ Re a l _ Fi l e Name] G1 Ga i n =1 .1 4 [Powe rAl i g n m e n t] D1 S4 M e m o ry Ord e r=3 [M e m o ry Ord e r] Sam p l e Ra te =3 4 .6 7 e +6 Hz [Sam p l i n g Rate] No n l i n e a rOrd e r=1 1 [No n l i n e a rOrd e r] Nu m OfIn p u tSam p l e s =2 0 0 0 0 [Nu m OfIn p u tSam p les] Fc T Spect r um Anal yz r e Cx S1 Sam p l e Ra te =3 4 .6 7 e +6 Hz [Sam p l i n g Rate] 51 123 Spect r um Anal yz r e Afte rDPD M o d e =Ti m e Ga te Sta rt=0s Seg m e n tTi m e =5 0μs Env C3 Fc =0 .2 GHz [FCa rri e r] Befo re DPD M o d e =Ti m e Ga te Sta rt=0s Seg m e n tTi m e =5 0μs C2 Fc =0 .2 GHz [FCa rri e r] Da ta 1 Sc h e m a ti c =' Xpa ra m _ d evice Fre q Swe e p Setu p =Auto m a tic Ena b l e No i s e =NO Ca l c Pha s e No i s e =NO X-param PA E2 C1 123 DPD_ PAOu tp u tDa ta _ Re a l Sta rtSto p Op ti o n =Sam p l es Sam p l e Sta rt=0 [Sta rtSam p l e] Sam p l e Sto p =9 9 9 9 8 [Sto p Sam p l e- 1] Da ta Fi l e Na m e =' Ste p 4 _ DPD_ PAOu tp u td a ta _ Re a l _ Ite r1 .tx t [Ste p 4 _ DPD_ PAOu tp u t_ Re a l _ Fi l e Name] A Novel Wideband DPD Measurement Simulation-based, predictive DPD SystemVue with analog X-parameter model (100W PA) 6-Carrier GSM Carrier Spacing: 600kHz ~40dB improvement (w/o memory effects) Sampling Rate: 128 * 270.8333kHz =34.6667 MHz FILE PA input Spectrum (Green) PA output Spectrum (Blue) PA+DPD Spectrum (Red, first iteration)) PA+DPD Spectrum (Orange, Second iteration) 52 A Novel Wideband DPD Measurement DPD Modeling Simplification: Automation UI Measurement-based MXG DUT MXA / PXA GG co-sim (or FCE model) FastCircuitEnvelope ADS co-sim ADS Cosim 53 Both DPD extractions share the same UI: • Measurement-based • Simulation-based Verification of simulation-based DPD Sweep power, re-extract DPD at each point, watch EVM, ACP EVM vs. Output Power ACP vs. Output Power Lower/Upper ACLR w/o DPD EVM w/o DPD ACLR with DPD EVM with DPD Input waveform: • • • • IEEE 802.11ac, 5 GHz WLAN No CFR (PAPR is 8.7dB) Bandwidth = 80MHz system 4x Oversampling  rate=320 MHz Output < 0 dBm 0 < Output < +16.5 dBm DPD offers little benefit DPD offers significant benefit Device Under Test: • 54 WLAN “FCE” model extracted from Agilent GoldenGate RFIC simulator A Novel Wideband DPD Measurement Verification of simulation-based DPD Sweep power, constant DPD coefficients, watch EVM, ACP Question: “Do I need Adaptive DPD?” Lower/Upper ACLR w/o DPD EVM w/o DPD EVM with DPD Different (or fewer) DPD coefficients needed 55 Useful Range for this set of DPD coefficients PA may be less correctable Lower/ Upper ACLR with DPD ACP may actually be worse out of range: turn DPD off. ACP satisfies a spectral compliance mask High DC-RF efficiency but poor ACP A Novel Wideband DPD Measurement Verification of simulation-based DPD Sweep power, re-extract at each point, see final Pout vs. Pin Power Output With DPD Linear Gain = 25.5dB Using Crest Factor Reduction (CFR) to reduce the peaks, the average signal level can be increased farther to the right, resulting in higher DCRF Efficiency, and longer distance coverage Signal with PAPR = 8.7dB must be backed-off, lower average power Signal with PAPR = 7.5dB can be driven to higher average power 56 A Novel Wideband DPD Measurement Memory Polynomial vs. Volterra DPD models 802.11ac 80MHz, FCE PA Model Co-sim Memory Polynomial (21 coefficients) ACPR 57 Lower Upper EVM (dB) Original input -56.19 -57.20 -47.16 PA Output (No DPD) -36.66 -38.43 DPD+PA Iter1 -50.28 -49.95 DPD+PA Iter2 -53.39 -52.18 Volterra Series (24 coefficients) Lower Upper EVM (dB) Original input -56.19 -57.20 -47.16 -29.88 PA Output (No DPD) -36.68 -38.45 -29.90 -42.20 DPD+PA Iter1 -51.60 -49.79 -42.90 DPD+PA Iter2 -54.05 -54.29 -46.06 DPD+PA Iter3 -54.71 -55.26 -46.40 -44.41 ACPR A Novel Wideband DPD Measurement Verification after DPD model extraction Verifying Memory Order and Nonlinear Order in Memory Polynomial EVM vs. Memory Order (@Nonlinear Order=7) EVM and ACP are stable when memory order>=3. ACPR vs. Memory Order (@Nonlinear Order=7) Memory effect almost removed when memory order >=3. EVM vs. Nonlinear Order (@Memory Order=3) 58 EVM and ACP are stable when nonlinear order>=7. ACPR vs. Nonlinear Order (@Memory Order=3) A Novel Wideband DPD Measurement Verification after DPD model extraction A closer look at ACPR vs. Nonlinear Order (“how many terms do I need?”) -39dB Nonlinear=9 (@Memory=3) -56dB Order=3 59 Order=11 A Novel Wideband DPD Measurement Verification after DPD model extraction A closer look at ACPR vs. Memory Order (“how many terms do I need?”) -43dB -54dB Memory=3 (@Nonlinear=7) Memoryless 60 Order=5 A Novel Wideband DPD Measurement Agenda 1. Introduction and Problem Statement 2. Digital Pre-Distortion (DPD) Concepts 3. DPD verification with Agilent Hardware 4. DPD simulation with Agilent EDA Tools 5. Crest Factor Reduction (CFR) 6. PA Modeling 7. Summary A Novel Wideband DPD Measurement 61 Crest Factor Reduction (CFR) Concepts • Spectrally efficient wideband RF signals may have PAPR >13dB. • CFR preconditions the signal to reduce signal peaks without significant signal distortion • CFR allows the PA to operate more efficiently – it is not a linearization technique • CFR supplements DPD and improves DPD effectiveness • Without CFR and DPD, a basestation or handset PA must operate at significant back-off from saturated power to maintain linearity. The back-off reduces efficiency Benefits of CFR 1. PAs can operate closer to saturation, for improved efficiency (PAE). 2. Output signal still complies with spectral mask and EVM specifications A Novel Wideband DPD Measurement 62 Crest Factor Reduction (CFR) Concepts • • If you can reduce the Peak-to-Average Power Ratio (PAPR) of the signal, then for a given value of Peak, you can raise the Average power (up & to the right, above) with no loss in signal quality. Thus, CFR enables higher PA efficiency by reducing the back-off, often by 6dB A Novel Wideband DPD Measurement 63 CFR for LTE-Advanced Downlink OFDMA Controls EVM and band limits in the frequency domain. • Constrains constellation errors, to avoid bit errors. • Constrains the degradation on individual sub-carriers. Allows QPSK sub-carriers to be degraded more than 64 QAM sub-carriers. Does not degrade reference signals, P-SS and S-SS. Subcarriers of out-of band are set to NULL. A Novel Wideband DPD Measurement 64 CFR for LTE-Advanced Downlink OFDMA • No side modifications for receiver • No out-of band spectral distortion (no spectral mask measurement pass/fail issue • EVM always meets specification •Good PAR reductions •No impact of timing and frequency and channel estimation of DL Q m {D A TA P ORT} D ata Ty pe=Integer B us =NO 0+0*j S C _S tatus {D A TAPORT} D ata Ty pe=Integer B us =NO DC MOD V al ue=0 [0+0*j] D 2 {D P D _LTE _A _C FR _P os tP roc @ DPD Models} B andw i dth=B W 20 M H z [B andwidth] 256 O v ers am pl i ngO pti on=R ati o 4 [O v ers am pl i ngO ption] E V M _Thres hol d_Q P S K =0.12 [E V M _Thres hold_QPSK] E V M _Thres hol d_16Q A M =0.1 [E V M _Thres hol d_16QAM] M1 M odul o=256 E V M _Thres hol d_64Q A M =0.06 [E V M _Thres hol d_64QAM] output {D A TA P ORT} D ata Ty pe=C om plex Qm M appi ngD ata {D A TA P ORT} D ata Ty pe=C om plex B us =NO G2 G ai n=1 A A3 B l oc k S i z es =1;600;6991;600 [[1,H al f_U s edC arriers ,D FT_z eros ,H al f_U s edCariers] A 0+0*j A2 B l oc k S i z es =600;600 [[H al f_U s edC arriers , H al f_U s edC arriers] z eros V al ue=0 [0+0*j] D P D _R adi usClip C l i ppi ngThres hol d=16.5e-6 [C l i ppi ngThres hold] DPD B us =NO SC_St at u s LTE_A out pu t re f input FFT out pu t DPD_Radi usClip FFT i fft1 fft FFTS i z e=8192 [D FTS i ze] S i z e=8192 [D FTS i ze] D i rec ti on=Inv erse FFTS i z e=8192 [D FTS i ze] S i z e=8192 [D FTS i ze] D i rec ti on=Forw ard FreqS equenc e=0-pos -neg FreqS equenc e=0-pos -neg FFT CFR_PostProc input i fft2 FFTS i z e=8192 [D FTS i ze] G1 G ai n=8192 [D FTS i ze] S i z e=8192 [D FTS i ze] D i rec ti on=Inv erse FreqS equenc e=0-pos -neg G3 G ai n=1 A Novel Wideband DPD Measurement 65 CFR of LTE-Advanced 20MHz Downlink QPSK modulation, CFR algorithm set to Max EVM = 10% Spectrums with and w/o CFR are same! PAPR=9dB w/o CFR PAPR=6.8dB w CFR A Novel Wideband DPD Measurement 66 CFR of LTE-Advanced 20MHz Downlink Algorithm EVM targets: QPSK < 10%, 16QAM < 8%, 64QAM < 6% PAPR=8.9dB w/o CFR PAPR=7.2dB with CFR Observed EVMs w/CFR A Novel Wideband DPD Measurement 67 CFR of LTE-Advanced with Carrier Aggregation CFR Approach 1 • • CFR performed separately on each Component Carrier (up to 20MHz BW) Component Carriers are then summed CFR Approach 2 • • CFR is applied to the carrier-aggregated composite signal (up to 100MHz BW) Then each component carrier is re-filtered individually to remove out-of-band energy, and re-summed A Novel Wideband DPD Measurement 68 CFR of LTE-Advanced with Carrier Aggregation Approach 1, 2x20MHz contiguous CA 1. 2. Both CC0 and CC1 adopt 16-QAM and QPSK, respectively. CC1 magnitude threshold of polar clipping is a little larger than CC0 because QPSK modulation can tolerate larger EVM limit, according to EVM specification. Component Carrier 0 (CC0) HARQ _Bit s Spect r um Anal yzer LTE_A U E1_ChannelBit s DL 11010 UE1_Dat a UE1_M odSym bols f r m _FD B4 DataPattern=PN9 11010 CA_Spectrum Mode=TimeGate Start=0s SegmentTime=50μs Src CFR Cx f r m _TD LTE_DL_Src_CFR2 ShowSystemParameters=YES FrameMode=FDD Bandwidth=BW 20 MHz [Bandwidth] OversamplingOption=Ratio 4 [OversamplingOption] CyclicPrefix=Normal UEs_RevMode=0;0;0;0;0;0 [[0,0,0,0,0,0] CFREnable=YES ClippingThreshold=11.75e-6 [ClippingThreshold1] NumFrames=1 B1 DataPattern=PN9 Fc T S1 SampleRate=122.9e+6Hz [SamplingRate] Env Fc=2.14e+9Hz [FCarrier1] G1 GainUnit=voltage Gain=1 CCDF Parameter CCDF CC1_CCDF CFREnable=YES CCDF Env Fc Change CA_CCDF Start=0s Stop=50ms HARQ _Bit s CC0_CCDF1 LTE_A U E1_ChannelBit s DL 11010 UE1_Dat a UE1_M odSym bols Src f r m _FD CFR B2 DataPattern=PN9 11010 B3 DataPattern=PN9 LTE_DL_Src_CFR1 ShowSystemParameters=YES FrameMode=FDD Bandwidth=BW 20 MHz [Bandwidth] OversamplingOption=Ratio 4 [OversamplingOption] CyclicPrefix=Normal UEs_RevMode=0;0;0;0;0;0 [[0,0,0,0,0,0] NumTxAnts=Tx1 CRS_NumAntPorts=CRS_Tx1 CFREnable=YES ClippingThreshold=13.05e-6 [ClippingThreshold2] NumFrames=1 Fc T Cx f r m _TD S2 SampleRate=122.9e+6Hz [SamplingRate] Env C2 Fc=2.16e+9Hz [FCarrier2] G2 GainUnit=voltage Gain=1 Component Carrier 1 (CC1) A Novel Wideband DPD Measurement 69 CFR of LTE-Advanced with Carrier Aggregation Approach 1: 2x20MHz contiguous CA CC0 PAPR =7.2 dB CC1 PAPR = 6.7dB 2x20MHz 2CC with CFR #1 PAPR = 8.2dB EVM of PDSCH 16-QAM is 8.54% in CC0 and EVM of PDSCH QPSK is 11.11% in CC1. EVM values of P-SS, S-SS and RS <0.65% A Novel Wideband DPD Measurement 70 CFR of LTE-Advanced with Carrier Aggregation Approach 2: 2x20MHz contiguous CA 1. Both CC0 and CC1 adopt 16-QAM and QPSK, respectively. 2. Aggregate CC0 and CC1 first, then do polar clipping on the 40MHz bandwidth composite CA signal. 3. Each Component Carrier is filtered separately (20MHz each) 4. Combine the filtered CC0 and CC1 into one CA signal again. Filtering per each carrier Component Carrier 0 (CC0) HARQ _B tsi L TE_A Spect r um Ana r e z ly UE1_Channel tsB i 11010 DL UE1_Da t UE1_M odSy m sb l o Src f r m_ D F CFR B4 Da ta Patte rn=PN9 11010 Cx L TE_DL _ Src _CFR2 Sho wSy s te m Para m eters=YES S1 Fra m e M o d e=FDD Ban d wi d th =BW 2 0 M Hz [Bandwidth] Sam p l e Ra te =1 2 2 .9 e +6 Hz [SamplingRate] Ov e rs a m p l i n g Op ti o n =Ra ti o 4 [Ov e rsamplingOption] Cy c l i c Pre fi x=Normal CFREna b l e=NO Cl i p p i n g Th re s h o l d =1 1 .1 5 e -6 [ClippingThreshold1] Env Fc Change Fc =2 .1 4 e +9 Hz [FCarier1] E3 Ou tp u tFc =2 .1 4 e +9 Hz [FCarier1] Ban d wi d th=0Hz Fc Parameter CFREnable=NO B1 Da ta Patte rn=PN9 CA_Spe ctrum M o d e =Ti meGate Sta rt=0s Seg m e n tTime=50μs Fc T f r m_ D T Fc Change Env Cx inpu t out p t u DPD_RadiusClip Fc T Cx Env E2 DPD_ Ra d i u s Clip_1 S4 C4 Cl i p p i n g Th re s h old=0.14250 Sam p l e Ra te =1 2 2 .9 e +6 Hz [SamplingRate] Fc =2 .1 5 e +9 Hz [FCarier] DL Src f r m_ D F 11010 E4 Ou tp u tFc =2 .1 6 e +9 Hz [FCarier2] Ban d wi d th=0Hz UE1_Da t UE1_M odSy m sb l o CFR E5 Ou tp u tFc =2 .1 5 e +9 Hz [FCarier] Ban d wi d th=0Hz Cl i p p i n g _CCDF Sta rt=0s Sto p =50ms Spect r um Ana r e z ly CCDF UE1_Channel tsB i B2 Da ta Patte rn=PN9 A3 Ou tp u tFc=Max Fc Change L TE_A CCDF Fc Change Env HARQ _B tsi 11010 Env F1 FCe n te r=2 .1 4 e +9 Hz [FCarier1] Pas s Ban d wi d th=18e6Hz Pas s Ri p p le=0.1 Sto p Ban d wi d th=19e6Hz Sto p Ri p ple=80 M a x i m u m Order=2057 Fc T f r m_ D T Cx L TE_DL _ Src _CFR1 Sho wSy s te m Para m eters=YES S2 Fra m e M o d e=FDD Sam p l e Ra te =1 2 2 .9 e +6 Hz [SamplingRate] Ban d wi d th =BW 2 0 M Hz [Bandwidth] Ov e rs a m p l i n g Op ti o n =Ra ti o 4 [Ov e rsamplingOption] Cy c l i c Pre fi x=Normal CFREna b l e=NO Cl i p p i n g Th re s h o l d =1 2 .5 e -6 [Cl ippingThreshold2] Env C2 Fc =2 .1 6 e +9 Hz [FCarier2] Component Carrier 1 (CC1) CA_CCDF Sta rt=0s Sto p =50ms F4 FCe n te r=2 .1 6 e +9 Hz [FCarier2] Pas s Ban d wi d th=18e6Hz Pas s Ri p p le=0.1 Sto p Ban d wi d th=19e6Hz Sto p Ri p ple=80 M a x i m u m Order=2057 CA_Spe c tru m _ Clipping M o d e =Ti meGate Sta rt=0s Seg m e n tTime=50μs Polar clipping B3 Da ta Patte rn=PN9 Combine carriers as CA signal A Novel Wideband DPD Measurement 71 CFR of LTE-Advanced with Carrier Aggregation Approach 2: 2x20MHz contiguous CA 2x20MHz 2CC w/o CFR PAPR = 9 dB 2x20MHz 2CC with CFR #2 PAPR = 7.4dB EVM of PDSCH 16-QAM is 7.80% in CC0 and EVM of PDSCH QPSK is 7.82% in CC1. All EVM values of P-SS, S-SS and RS are about 7% A Novel Wideband DPD Measurement 72 Agenda 1. Introduction and Problem Statement 2. Digital Pre-Distortion (DPD) Concepts 3. DPD verification with Agilent Hardware 4. DPD simulation with Agilent EDA Tools 5. Crest Factor Reduction (CFR) 6. PA Modeling 7. Summary A Novel Wideband DPD Measurement 73 PA Modeling with Memory Polynomial A nonlinear PA model with memory effects is a by-product of the DPD process 1. Create DPD Stimulus It can be used as a transportable model for system-level simulations Accuracy degrades with changes to Signal, RF carrier frequency, bandwidth, and power level. 2. Capture PA Response 3. Extract PA Model 4. Verify PA Response A Novel Wideband DPD Measurement 74 PA Modeling with Memory Polynomial (MP) PA output PA Model Extraction and Verification Im Re R1 {ReadFile@Data Flow Models} File='Step2_PAOutputdata_imag.txtR3 {RectToCx@Data Flow Models} NMSE Sh i fte d _ PA_Out_Piece Sc a l e d _ PA_In_Piece PA_ Out Sh i fte d _PA_Out DPD_ PACo e ffExtractor PA_In Sc a l e d_PA_In R2 {ReadFile@Data Flow Models} File='Step2_PAOutputdata_real.txt DPD_ Coef DPD_ Output DPD_ Pre Di s to rter DPD_ Input In Test 123 NMSE DPD_NMSE In Ref PA_ Coef D1 {DPD_PACoeffExtractor@DPD Models} ModelType=Memory Polynomial [ModelType] ModelIdentificationAlgorithm=LSE using QR [ModelIdentificationAlgorithm] MemoryOrder=3 [MemoryOrder] NonlinearOrder=9 [NonlinearOrder] NumOfInputSamples=61440 [NumOfInputSamples] PA input R5 {ReadFile@Data Flow Models} File='Step2_PAInputdata_imag.txt D3 {DPD_PreDistorter@DPD Models} D2 {DPD_NMSE@DPD Models} MemoryOrder=3 [MemoryOrder] NumOfInputSamples=61440 [NumOfInputSamples] NonlinearOrder=9 [NonlinearOrder] NumOfInputSamples=61440 [NumOfInputSamples] 123 Im Re Im DPD_CoeffImag StartStopOption=Samples R6 {RectToCx@Data Flow Models} DPD Coefficients Re R4 {ReadFile@Data Flow Models} File='Step2_PAInputdata_real.txt NMSE StartStopOption=Samples C1 {CxToRect@Data Flow Models} 123 DPD_CoeffReal StartStopOption=Samples Real part of PA coefficients Imaginary part of PA coefficients 0.39152231499472767 0.21240763496121581 -0.23274788419756332 -0.09408421097412327 -0.014555159450854303 -0.013485802116749272 -0.0018840630729567572 -0.0002707103038025503 -1.4961320837900501e-005 0.2518269309218949 -0.59748335589139812 0.47971434227815068 -0.20894251288419013- 0.627076629490954 -0.68351712455802727 0.59425895517848892 -0.021747841570654059 0.036844218259549213 0.012303248529776717 0.0020763571187302357 0.00028702357690964096 1.6024859831773016e-005 0.66865526723410285 -1.3558414032104396 1.0569299692538558 -0.40306476477955344 The complex Memory Polynomial coefficients are stored to an ASCII file for each: - Memory Order - Nonlinear Order A Novel Wideband DPD Measurement 75 PA Modeling with Memory Polynomial Re-read coefficients from ascii file into MP model PA Modeling Verification R2 File='Step3_PA_Coefficients_Imag.txt Periodic=YES Captured PA input waveform Im Re R3 R1 File='Step3_PA_Coefficients_Real.txt Periodic=YES Fc R5 File='Step2_PAInputdata_imag.txt Periodic=YES Fc T Im Fc Spe c trum Analyzer DPD_Coef DPD_O ut put Cx Env Amplifier Env Cx DPD_ Pre Di s to rter Cx Env DPD_I nput Re R6 S1 SampleRate=61.44e+6Hz [SamplingRate] C1 Fc=2GHz A1 GainUnit=dB Gain=6.5 E4 R4 File='Step2_PAInputdata_real.txt Periodic=YES C4 Fc=2GHz Spe c trum Analyzer PA_Input Mode=TimeGate Start=0s SegmentTime=150μs R8 File='Step2_PAOutputdata_imag.txt Periodic=YES D3 MemoryOrder=3 NonlinearOrder=9 NumOfInputSamples=61440 PA_Output_SW Mode=TimeGate Start=0s SegmentTime=150μs Fc T Im PA Model by using memory polynomial coefficients Spe c trum Analyzer Cx Env Re R7 S2 SampleRate=61.44e+6Hz [SamplingRate] C2 Fc=2GHz PA_Output_HW Mode=TimeGate Start=0s SegmentTime=150μs R9 File='Step2_PAOutputdata_real.txt Periodic=YES Captured PA output waveform A Novel Wideband DPD Measurement 76 PA Modeling with Memory Polynomial Distorted PA model results A Novel Wideband DPD Measurement 77 Agenda 1. Introduction and Problem Statement 2. Digital Pre-Distortion (DPD) Concepts 3. DPD verification with Agilent Hardware 4. DPD simulation with Agilent EDA Tools 5. Crest Factor Reduction (CFR) 6. PA Modeling 7. Summary A Novel Wideband DPD Measurement 78 Unified architecture, verification for Layer 1 Comms Augments general purpose tools, or, stands on its own Agilent SystemVue Cross-domain PHY modeling framework, for Model-Based Design Baseband Algorithms PHY IP Dataflow Simulation RF Simulators Baseband Hardware Flows DSP/ASSP GPP/ARM Software FPGA/ASIC/SoC Software Hardware RF Sys Architecture RF Hardware Flows TEST RFIC / MMIC Hardware SiP / Board Hardware PHY system integration and verification Complete a working PHY using combinations of Software, RF/BB Hardware, Simulation, and Measurements A Novel Wideband DPD Measurement 79 Agilent DPD Modeling Value for Enterprise System-level approach • • • • • Open, standards-based modeling interfaces (.m, C++, HDL) for vendor and hardware neutrality Wireless standards IP leadership for confidence, coverage, interoperability and virtual system-level closed-loop BER/Throughput Modifiable DPD modeling IP, with quick results before implementation Excellence in RF modeling and Test Consistent flow: Same modeling approach for Simulation, R&D evaluation, Final Test Enterprise connectivity for highest leverage • • • • Test & Measurement leadership and software integration RF EDA flow leadership, with connectivity for predictive, preliminary results Reduces overall tool count, support, increases design re-use Connects islands of domain knowledge, tools, skills Services for successful integration • • • 80 Local presence, worldwide Customization services and Training Aggressive product roadmap Summary Modern communication systems with high spectral efficiency and wide bandwidths typically • Use signals with high peak-to-average power ratios (PAPR). • Operate RF PAs with high power added efficiency (PAE). • However, high PAPR results in driving the PA into higher distortion levels that requires PA back-off in drive level, which reduces PAE. The key problem is: How to handle signals with high PAPR, with the PA operating at high PAE, while maintaining low signal distortion? • Digital Pre-Distortion (DPD) and Crest Factor Reduction (CFR) techniques together help overcome conflicting requirements. • SystemVue offers a practical DPD Design Flow usable with real PA hardware that includes integration with Agilent ESG/MXG and PXA/MXA instruments. A Novel Wideband DPD Measurement 81 Questions & Answers A Novel Wideband DPD Measurement 82 “LTE-Advanced DPD using Agilent SystemVue” THANK YOU W1716 Digital Pre-Distortion Web - www.agilent.com/find/eesof-systemvue-dpd-builder App Note - http://cp.literature.agilent.com/litweb/pdf/5990-6534EN.pdf App Note - http://cp.literature.agilent.com/litweb/pdf/5990-7818EN.pdf App Note - http://cp.literature.agilent.com/litweb/pdf/5990-8883EN.pdf SystemVue www.agilent.com/find/eesof-systemvue www.agilent.com/find/eesof-systemvue-videos www.agilent.com/find/eesof-systemvue-evaluation Or, contact your regional Agilent resource www.agilent.com/find/eesof-contact A Novel Wideband DPD Measurement 83 Appendixes A Novel Wideband DPD Measurement 84 Summary: Agilent SystemVue For system architects and baseband algorithm developers • Improved productivity through model-based design & verification • Provides top-down System-Level cockpit for communications & defense • Unites Algorithm & Baseband with Agilent’s leadership in other domains, such as RF, Test, and Standards IP for • superior cross-domain effectiveness • earlier design maturity • higher performance, lower margins A Novel Wideband DPD Measurement 85 Summary: SystemVue improves top-down System Design with strengths in 4 key areas POLYMORPHIC BASEBAND ALGORITHMS & IP Easily assemble Virtual PHYs INDUSTRY-LEADING REFERENCE IP and APPS WiMAX DVB-S2 ZigBee OFDM DPD RADAR MIMO Channel mmWave WPAN ACCURATE RF & CHANNEL EFFECTS HARDWARE & MEASUREMENT CONNECTIVITY Quickly move Ideas to proven, real-world Hardware A Novel Wideband DPD Measurement 86 Wideband configurations: LTE-A 2x20MHz Contiguous CA Agilent M9330A AWG, M9392A VSA Source = M9330A AWG N5182 MXG Vector Analyzer= M9392A - 12bits ADC - up to 250MHz bandwidth PA output Spectrum (Blue) PA+DPD Spectrum (Red) PA input Spectrum (Green) A Novel Wideband DPD Measurement 87 DPD of LTE-Advanced DL CA, using M9330A/M9392A 3x20MHz contiguous CCs, (60MHz signal BW) A Novel Wideband DPD Measurement 88 DPD of LTE-Advanced DL CA, using M9330A/M9392A 2x20MHz + 20MHz non-contiguous CCs, (60MHz signal BW) A Novel Wideband DPD Measurement 89 LTE-A Results with 200W LDMOS Doherty PA DPD+PA Output (10MHz System) A Novel Wideband DPD Measurement 90 LTE-A Results with 200W LDMOS Doherty PA Raw PA Output (10MHz System) A Novel Wideband DPD Measurement 91 LTE-A Results with 200W LDMOS Doherty PA DPD+PA Output (DL 20MHz System) A Novel Wideband DPD Measurement 92 LTE-A Results with 200W LDMOS Doherty PA Raw PA Output (DL 20MHz System) A Novel Wideband DPD Measurement 93 LTE-A Results with 200W LDMOS Doherty PA DPD+PA Output (DL Carrier Aggregation 2x10MHz System) A Novel Wideband DPD Measurement 94 LTE-A Results with 200W LDMOS Doherty PA Raw PA Output (DL Carrier Aggregation 2x10MHz System) A Novel Wideband DPD Measurement 95