Preview only show first 10 pages with watermark. For full document please download

Mc10e151 D

   EMBED


Share

Transcript

MC10E151, MC100E151 5VECL 6-Bit D Register Description The MC10E/100E151 contains 6 D-type, edge-triggered, master-slave flip-flops with differential outputs. Data enters the master when both CLK1 and CLK2 are LOW, and is transferred to the slave when CLK1 or CLK2 (or both) go HIGH. The asynchronous Master Reset (MR) makes all Q outputs go LOW. The 100 Series contains temperature compensation. http://onsemi.com Features • • • • • • • • • • • • • 1100 MHz Min. Toggle Frequency Differential Outputs Asynchronous Master Reset Dual Clocks PECL Mode Operating Range: VCC = 4.2 V to 5.7 V with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = −4.2 V to −5.7 V Internal Input 50 kW Pulldown Resistors ESD Protection: Human Body Model; > 2 kV, Machine Model; > 200 V Meets or Exceeds JEDEC Standard EIA/JESD78 IC Latchup Test Moisture Sensitivity Level: Pb = 1 Pb−Free = 3 For Additional Information, see Application Note AND8003/D Flammability Rating: UL 94 V−0 @ 0.125 in, Oxygen Index: 28 to 34 Transistor Count = 304 devices Pb−Free Packages are Available* PLCC−28 FN SUFFIX CASE 776 MARKING DIAGRAM* 1 MCxxxE151FNG AWLYYWW xxx A WL YY WW G = 10 or 100 = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package *For additional marking information, refer to Application Note AND8002/D. ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet. *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. © Semiconductor Components Industries, LLC, 2006 November, 2006 − Rev. 9 1 Publication Order Number: MC10E151/D MC10E151, MC100E151 MR CLK2 CLK1 NC VCCO Q5 25 24 23 22 21 20 Q5 Table 1. PIN DESCRIPTION PIN 19 D5 26 18 Q4 D4 27 17 Q4 D3 28 16 VCC 1 15 Q3 VEE D2 2 14 Q3 D1 3 13 Q2 D0 4 12 Q2 5 6 7 NC VCCO Q0 8 9 Q0 Q1 10 FUNCTION D0 − D5 ECL Data Inputs CLK1, CLK2 ECL Clock Inputs MR ECL Master Reset Q0 − Q5, Q0 − Q5 ECL Differential Outputs VCC, VCCO Positive Supply VEE Negative Supply NC No Connect 11 Q1 VCCO * All VCC and VCCO pins are tied together on the die. Warning: All VCC, VCCO, and VEE pins must be externally connected to Power Supply to guarantee proper operation. Figure 1. Pinout: PLCC−28 (Top View) D0 R D1 Q2 Q3 Q4 D R D5 Q1 Q3 D R D4 MR Q2 D R D3 Q0 Q1 D R D2 Table 2. FUNCTION TABLE Q0 D Q4 Q5 D R Q5 CLK1 CLK2 MR Figure 2. Logic Diagram http://onsemi.com 2 Qn 1 Reset L 0 Operational H MC10E151, MC100E151 Table 3. MAXIMUM RATINGS Rating Unit VCC Symbol PECL Mode Power Supply Parameter VEE = 0 V Condition 1 Condition 2 8 V VEE NECL Mode Power Supply VCC = 0 V −8 V VI PECL Mode Input Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 −6 V V Iout Output Current Continuous Surge 50 100 mA mA TA Operating Temperature Range 0 to +85 °C Tstg Storage Temperature Range −65 to +150 °C qJA Thermal Resistance (Junction−to−Ambient) 0 lfpm 500 lfpm PLCC−28 PLCC−28 63.5 43.5 °C/W °C/W qJC Thermal Resistance (Junction−to−Case) Standard Board PLCC−28 22 to 26 °C/W VEE PECL Operating Range NECL Operating Range 4.2 to 5.7 −5.7 to −4.2 V V Tsol Wave Solder 265 265 °C VI  VCC VI  VEE Pb Pb−Free Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. Table 4. 10E SERIES PECL DC CHARACTERISTICS VCC = 5.0 V, VEE = 0.0 V (Note 1) 0°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit IEE Power Supply Current VOH Output HIGH Voltage (Note 2) 3980 4070 4160 4020 4105 4190 4090 4185 4280 mA mV VOL Output LOW Voltage (Note 2) 3050 3210 3370 3050 3210 3370 3050 3227 3405 mV VIH Input HIGH Voltage 3830 3995 4160 3870 4030 4190 3940 4110 4280 mV VIL Input LOW Voltage 3050 3285 3520 3050 3285 3520 3050 3302 3555 mV IIH Input HIGH Current IIL Input LOW Current 0.5 0.3 0.5 0.25 0.3 0.2 mA mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 1. Input and output parameters vary 1:1 with VCC. VEE can vary −0.46 V / +0.06 V. 2. Outputs are terminated through a 50 W resistor to VCC − 2.0 V. http://onsemi.com 3 MC10E151, MC100E151 Table 5. 10E SERIES NECL DC CHARACTERISTICS VCCx = 0.0 V; VEE = −5.0 V (Note 3) 0°C Symbol Characteristic Min 25°C Typ Max Min Typ 85°C Max Min Typ Max Unit IEE Power Supply Current mA VOH Output HIGH Voltage (Note 4) −1020 −930 −840 −980 −895 −810 −910 −815 −720 mV VOL Output LOW Voltage (Note 4) −1950 −1790 −1630 −1950 −1790 −1630 −1950 −1773 −1595 mV VIH Input HIGH Voltage −1170 −1005 −840 −1130 −970 −810 −1060 −890 −720 mV VIL Input LOW Voltage −1950 −1715 −1480 −1950 −1715 −1480 −1950 −1698 −1445 mV IIH Input HIGH Current IIL Input LOW Current 0.5 0.3 0.5 0.065 0.3 0.2 mA mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 3. Input and output parameters vary 1:1 with VCC. VEE can vary −0.46 V / +0.06 V. 4. Outputs are terminated through a 50 W resistor to VCC − 2.0 V. Table 6. 100E SERIES PECL DC CHARACTERISTICS VCCx = 5.0 V; VEE = 0.0 V (Note 5) 0°C Symbol Characteristic Min 25°C Typ Max 65 78 Min 85°C Typ Max 65 78 Min Typ Max Unit 75 90 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 6) 3975 4050 4120 3975 4050 4120 3975 4050 4120 mV VOL Output LOW Voltage (Note 6) 3190 3295 3380 3190 3255 3380 3190 3260 3380 mV VIH Input HIGH Voltage 3835 3975 4120 3835 3975 4120 3835 3975 4120 mV VIL Input LOW Voltage 3190 3355 3525 3190 3355 3525 3190 3355 3525 mV IIH Input HIGH Current 150 mA IIL Input LOW Current 150 0.5 0.3 150 0.5 0.25 0.5 0.2 mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 5. Input and output parameters vary 1:1 with VCC. VEE can vary −0.46 V / +0.8 V. 6. Outputs are terminated through a 50 W resistor to VCC − 2 volts. Table 7. 100E SERIES NECL DC CHARACTERISTICS VCCx = 0.0 V; VEE = −5.0 V (Note 7) 0°C Symbol Characteristic Typ Max 65 78 −1025 −950 −880 Output LOW Voltage (Note 8) −1810 −1705 VIH Input HIGH Voltage −1165 VIL Input LOW Voltage IIH Input HIGH Current IIL Input LOW Current IEE Power Supply Current VOH Output HIGH Voltage (Note 8) VOL Min 25°C Min 85°C Typ Max 65 78 −1025 −950 −880 −1620 −1810 −1745 −1025 −880 −1165 −1810 −1645 −1475 0.5 0.3 Typ Max Unit 75 90 mA −1025 −950 −880 mV −1620 −1810 −1740 −1620 mV −1025 −880 −1165 −1025 −880 mV −1810 −1645 −1475 −1810 −1645 −1475 mV 150 mA 0.5 0.25 0.5 0.2 150 Min 150 mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 7. Input and output parameters vary 1:1 with VCC. VEE can vary −0.46 V / +0.8 V. 8. Outputs are terminated through a 50 W resistor to VCC − 2.0 V. http://onsemi.com 4 MC10E151, MC100E151 Table 8. AC CHARACTERISTICS VCCx = 5.0 V; VEE = 0.0 V or VCCx = 0.0 V; VEE = −5.0 V (Note 9) 0°C Symbol Characteristic Min Typ 25°C Max Min Typ 900 1100 575 650 85°C Max Min Typ 900 1100 575 650 Max Unit fMAX Maximum Toggle Frequency 900 1100 tPLH tPHL Propagation Delay to Output CLK, MR 575 650 ts Setup TIme D 0 −175 0 −175 0 −175 ps th Hold Time D 350 175 350 175 350 175 ps tRR Reset Recovery Time 750 550 750 550 750 550 tPW Minimum Pulse Width tSKEW Within-Device Skew (Note 10) 65 65 65 ps tJITTER Random Clock Jitter (RMS) <1 <1 <1 ps tr, tf Rise/Fall Times CLK, MR (20 - 80%) 900 400 300 900 400 450 700 300 MHz 900 400 450 700 300 ps ps 450 700 ps NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 9. 10 Series: VEE can vary −0.46 V / +0.06 V. 100 Series: VEE can vary −0.46 V / +0.8 V. 10. Within-device skew is defined as identical transitions on similar paths through a device. Q Zo = 50 W D Receiver Device Driver Device Q D Zo = 50 W 50 W 50 W VTT VTT = VCC − 2.0 V Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D − Termination of ECL Logic Devices.) http://onsemi.com 5 MC10E151, MC100E151 ORDERING INFORMATION Package Shipping † MC10E151FN PLCC−28 37 Units / Rail MC10E151FNG PLCC−28 (Pb−Free) 37 Units / Rail MC10E151FNR2 PLCC−28 500 / Tape & Reel MC10E151FNR2G PLCC−28 (Pb−Free) 500 / Tape & Reel MC100E151FN PLCC−28 37 Units / Rail MC100E151FNG PLCC−28 (Pb−Free) 37 Units / Rail MC100E151FNR2 PLCC−28 500 / Tape & Reel MC100E151FNR2G PLCC−28 (Pb−Free) 500 / Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. Resource Reference of Application Notes AN1405/D − ECL Clock Distribution Techniques AN1406/D − Designing with PECL (ECL at +5.0 V) AN1503/D − ECLinPSt I/O SPiCE Modeling Kit AN1504/D − Metastability and the ECLinPS Family AN1568/D − Interfacing Between LVDS and ECL AN1672/D − The ECL Translator Guide AND8001/D − Odd Number Counters Design AND8002/D − Marking and Date Codes AND8020/D − Termination of ECL Logic Devices AND8066/D − Interfacing with ECLinPS AND8090/D − AC Characteristics of ECL Devices http://onsemi.com 6 MC10E151, MC100E151 PACKAGE DIMENSIONS PLCC−28 FN SUFFIX PLASTIC PLCC PACKAGE CASE 776−02 ISSUE E −N− 0.007 (0.180) B Y BRK T L−M M 0.007 (0.180) U M N S T L−M S S N S D Z −M− −L− W 28 D X V 1 A 0.007 (0.180) R 0.007 (0.180) C M M T L−M T L−M S S N S N S 0.007 (0.180) H N S S G J 0.004 (0.100) −T− SEATING T L−M S N T L−M S N S K PLANE F VIEW S G1 M K1 E S T L−M S VIEW D−D Z 0.010 (0.250) 0.010 (0.250) G1 VIEW S S NOTES: 1. DATUMS −L−, −M−, AND −N− DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE. 2. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM −T−, SEATING PLANE. 3. DIMENSIONS R AND U DO NOT INCLUDE MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE. 4. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 5. CONTROLLING DIMENSION: INCH. 6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY. 7. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635). DIM A B C E F G H J K R U V W X Y Z G1 K1 INCHES MIN MAX 0.485 0.495 0.485 0.495 0.165 0.180 0.090 0.110 0.013 0.019 0.050 BSC 0.026 0.032 0.020 −−− 0.025 −−− 0.450 0.456 0.450 0.456 0.042 0.048 0.042 0.048 0.042 0.056 −−− 0.020 2_ 10_ 0.410 0.430 0.040 −−− http://onsemi.com 7 MILLIMETERS MIN MAX 12.32 12.57 12.32 12.57 4.20 4.57 2.29 2.79 0.33 0.48 1.27 BSC 0.66 0.81 0.51 −−− 0.64 −−− 11.43 11.58 11.43 11.58 1.07 1.21 1.07 1.21 1.07 1.42 −−− 0.50 2_ 10_ 10.42 10.92 1.02 −−− 0.007 (0.180) M T L−M S N S MC10E151, MC100E151 ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC). ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 http://onsemi.com 8 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative MC10E151/D