Transcript
Calibrated Inertial Systems with GPS
μIMU, μAHRS, μINS Features • • • • • • • • • • • •
Up to 1KHz IMU Update Rate Attitude (Roll, Pitch, Yaw, Quaternions, DCM), Velocity, and Position (LLA, ECEF, NED) UTC Time Synchronized Dual Redundant IMUs Calibrated for Bias, Scale Factor, and Cross-Axis Alignment Coning & Sculling Integrals (Δ theta, Δ velocity) Barometric Pressure and Humidity u-Blox L1 GPS (GNSS) Receiver -40°C to 85°C Temperature Compensation Configurable binary and NMEA protocol output Fast Integration using SDK and Example Software Data Logging using SDK library and PC Software Miniature Surface Mount Package: o 16.5 x 12.6 x 4.6 mm, 1.3 grams EVB Case: o 40 x 33.2 x 15.8 mm, 19 grams
Applications • • • • • • • • • •
Drone Navigation Unmanned Vehicle Payloads Stabilized Platforms Antenna and Camera Pointing First Responder and Personnel Tracking Pedestrian and Auto Outdoor / Indoor Navigation Health, Fitness, and Sport Monitors Hand-held Devices Robotics and Ground Vehicles Maritime
µIMU™ µAHRS™ µINS™
EVB
Overview The μIMU™ is a miniature calibrated sensor module consisting of an Inertial Measurement Unit (IMU), magnetometer, barometer, and L1 GPS (GNSS) receiver. Data out includes angular rate, linear acceleration, magnetic field, barometric altitude, and GPS WGS84 geoposition. All systems include a comprehensive sensor calibration for bias, scale-factor, and cross-axis alignment, minimizing manufacturing variation and maximizing system performance. The μAHRS™ is an Attitude Heading Reference System (AHRS) that includes all functionality of the μIMU™ and fuses IMU and magnetometer data to estimate roll, pitch, and heading. The μINS™ is a GPS (GNSS) aided Inertial Navigation System (GPS-INS) module that includes all functionality of the μIMU™ and provides orientation, velocity, and position. Sensor data from MEMs gyros, accelerometers, magnetometers, barometric pressure, and GPS/GNSS is fused to provide optimal estimation. The patent-pending package is smaller than 4 stacked dimes and fits into most industrial and commercial application designs.
μINS™ With US Dime (Actual Size)
[email protected]
WWW.INERTIALSENSE.COM
Calibrated Inertial Systems with GPS
μIMU, μAHRS, μINS Specifications Performance
1 sec 30 sec
Max Output Rate Bandwidth Alignment Error Sampling Rate Resolution
1 KHz 250 Hz 0.05° 8 KHz *0.0076 °/sec
1 KHz 218 Hz 0.05° 4 KHz *122 µg
µIMU™
GPS Data w/ UTC Time Angular Rate Linear Acceleration Magnetic Field Barometric Altitude Attitude (Quaternions, Euler, DCM) Inertial Velocity & Position
[email protected]
• • • • •
Max
3.6 3.6 3.0 3.6 120
0.99 2.31 3.3 0.1
1.9
Units mW mW V V µA V V mA V V V V
Min 3.3 2.4
Typ
Max 20
Units V V/ms
85 425
mA mW
85 425
mA mW
Mechanical (IS-uINS)
Barometer limitation Barometer limitation Human body model
Mags ±4800 µT
100 Hz 50 Hz 0.05° 100 Hz 0.6 µT
Pressure 30 – 120 kPa
Pa/√Hz 50 Hz 5 Hz 250 Hz 0.0016 kPa 13 cm
*1KHz resolution after oversampling
Data Output
2.7 -0.5
Typ 340 412 3.3 3.3 15 2.9
*The supply rising slope must be higher than minimum rating for proper function.
MAX 3.6 V 10,000 g -20 to 85 °C -45 to 85 °C 600 kPa ± 2 kV 250 °C Accels ±16 g < 40 μg < 0.5 % FS 300 μg/√Hz
3.0 1.4
Supply Voltage (VCC) *Rising Slope of VCC EVB + (µIMU-2 or µAHRS-2) Current Draw @ 5V Power Consumption EVB + µINS-3 Current Draw @ 5V Power Consumption
30 ns 60 ns 4 ms ±3 %
Gyros ±2000 °/sec < 10 °/hr < 0.1 % FS 0.01 °/s/√Hz
Min
Electrical (IS-uINS-EVB + IS-uINS)
-164 dBm -147 dBm -156 dBm 5 Hz 1 KHz, 500 Hz
Supply Voltage (Vcc) Acceleration Storage Temperature (µIMU-2) Storage Temperature (µIMU-3) Overpressure ESD rating Maximum Soldering Temperature
Operating Range In-Run Bias Stability Non-linearity Noise Density
Power Consumption µIMU @ 1KHz µINS, µAHRS @ 250Hz Supply Voltage (Vcc) GPS VBAT Voltage GPS VBAT Current @ 3.0V GNSS Antenna Supply Voltage I/O Pin MAX Voltage Range Total Output Current, All Pins I/O Pin Input low-level I/O Pin Input high-level I/O Pin Output high-level Analog Input Range
500 m/s 50 Km 10 Km 0.8 sec
Absolute Maximum Ratings
Sensors
Electrical (uIMU, uAHRS, and uINS)
Typ 2.0 m 2.5 m 0.2° 0.5° 0.5° 2.0° 0.05 m/s 0.05°
Horizontal Position (SBAS) Vertical Position Dynamic Roll/Pitch (µINS) Dynamic Heading (µINS) Static Roll/Pitch (µINS, µAHRS) Static Heading (µINS, µAHRS) Velocity Angular Resolution Operation Limits Velocity Altitude (GPS) Altitude (Barometric) Startup Time GPS Lock Time Hot Start Cold Start GNSS Receiver Sensitivity Tracking & Navigation Cold Start Hot Start GPS Update Rate Max Output Rate (IMU, INS) Time Pulse Signal Accuracy RMS 99% IMU signal latency Humidity Sensor Relative Accuracy
µAHRS™ • • • • • •
µINS™ • • • • • •
µIMU-2, µAHRS-2 Size Weight µINS-3 Size Weight
16.6 x 12.6 x 4.8 1.5
Units mm grams
16.5 x 12.6 x 4.6 1.3
mm grams
Conditions
Mechanical (IS-uINS-EVB + IS-uINS) Size Case size Distance Between Mounting Tab Holes Weight Weight with case
34.7 x 28 x 7 40 x 33.2 x 15.8 56 x 33.2 x 15.8 48 10.5 19.0
Units mm mm
Conditions W/o mounting tabs W/ mounting tabs
mm grams grams
W/ GPS antenna “
Communications Interface Interface (IS-uINS-EVB-1.x) Max Baud Rate: TTL, RS422, RS485 RS232
TTL, SPI, I2C USB, TTL, RS232, RS422, RS485, CAN*, SPI**, I2C** 3 Mbps 500 Kbps
* Request hardware option. **Available in future firmware update.
•
WWW.INERTIALSENSE.COM
Calibrated Inertial Systems with GPS
μIMU, μAHRS, and μINS Ordering Information Part Number IS-uINS-3 IS-uAHRS-2 IS-uIMU-2 IS-EVB-1
Description GPS Aided Inertial Navigation System Module w/ Calibrated IMU Attitude Heading Reference System w/ L1 GNSS Receiver Calibrated Inertial Measurement Unit w/ L1 GNSS Receiver uIMU, uAHRS, and uINS enclosed carrier board: USB, RS232, RS422, RS485, GPS battery, SMA GPS antenna connector, breakout headers
Contents Features ........................................................................................................................................................................................................................... 1 Applications ..................................................................................................................................................................................................................... 1 .......................................................................................................................................................................................................................................... 1 Overview.......................................................................................................................................................................................................................... 1 Specifications .................................................................................................................................................................................................................. 2 Ordering Information ..................................................................................................................................................................................................... 3 1
Operation ............................................................................................................................................................................................................... 4 1.1
IMU ............................................................................................................................................................................................................... 4
1.2
Coning & Sculling Integrals (Δ Theta, Δ Velocity) ...................................................................................................................................... 4
2
Pin Definition ......................................................................................................................................................................................................... 4
3
Typical Application ................................................................................................................................................................................................ 5
4
System Status LED ................................................................................................................................................................................................. 6
5
EVB (Evaluation Board) ......................................................................................................................................................................................... 6 5.1
6
7
RS232 DB9 Adapter for EVB H5 .................................................................................................................................................................. 6
Mechanical............................................................................................................................................................................................................. 6 6.1
Recommend PCB Footprint and Layout .................................................................................................................................................... 6
6.2
Physical Dimensions .................................................................................................................................................................................... 7
6.3
Port and Jumper Configuration .................................................................................................................................................................. 8
6.4
Jumper Configuration.................................................................................................................................................................................. 9
Related Components ..........................................................................................................................................................................................10
[email protected]
3
WWW.INERTIALSENSE.COM
Calibrated Inertial Systems with GPS
μIMU, μAHRS, and μINS 1 Operation 1.1 IMU The inertial measurement unit (IMU) is updated at 1 KHz. Gyros and accelerometers are sampled at 8KHz and 4KHz respectively and downsampled to 1KHz. The IMU is factory calibrated for bias, cross-axis alignment, and scale factor.
1.2 Coning & Sculling Integrals (Δ Theta, Δ Velocity) Coning and sculling integrals, delta theta and delta velocity, are accumulated by the IMU at IMU update rates. These integrals are reset each time they are output.
2 Pin Definition VCC
H1
GND
1
GPS TIMEPULSE
GPS VBAT G1/SDA/AN1
G3/Tx0/AN3
G2/SCL/AN2
G4/Rx0/AN4
H2
1
H6 1
G6/Rx1/MOSI G7/Tx1/MISO
H5
G8/CS 1
G5/SCLK G9 GND
B
nRESET
Reset
1
H4 µIMU, µAHRS, and µINS Module - Top View EVB Header and Pin 1 Locations
µINS 22
11, 21 3
4 5 19 18 9 6 7 8 20 12 20
EVB H1-2 Pin 2 all headers Pin 1 all headers
H2-3 H2-4 H4-4 H4-3 H6-3 H6-4 H6-5 H6-6 H6-7 RESET Button H5-3 H5-4
[email protected]
Name VCC VIN +3.3V GND GPS VBAT
I/O I I O I
G1/SDA/AN1 G2/SCL/AN2 G3/Tx0/AN3 G4/Rx0/AN4 G5/SCLK G6/RX1/MOSI G7/Tx1/MISO G8/CS GPS.TIMEPULSE nRESET TIMEPULSE 485Rx+/232Rx 485Rx-
I/O I/O I/O I/O I/O I/O I/O I/O O I O I I
4
Description 3.3V supply voltage 3.3V – 20V supply voltage 3.3V output Ground GPS backup supply voltage. Apply (1.4V to 3.6V) enable GPS hardware backup mode and allows hot or warm startup (faster GPS lock acquisition). *I2C data. Analog 1 input. *I2C clock. Analog 2 input. Serial 0 output (TTL). Analog 3 input. Serial 0 input (TTL). Analog 4 input. *SPI clock ‡Serial 1 input (TTL). *SPI MOSI. ‡Serial 1 output (TTL). *SPI MISO. *SPI chip select GPS 1 PPS time synchronization pulse. System reset on logic low. May be left unconnected if not used. GPS time pulse signal (1 Hz frequency) Serial 0 input (RS232 or RS485/RS422 Rx+) Serial 0 input (RS485/RS422 Rx-)
WWW.INERTIALSENSE.COM
Calibrated Inertial Systems with GPS
μIMU, μAHRS, and μINS H5-5 H5-6 1, 2, 4, 5, 8, 9, 10, 13, 14, 15, 16, 17
485Tx+/232Tx 485TxReserved
O O -
Serial 0 output (RS232 or RS485/RS422 Tx+) Serial 0 output (RS485/RS422 Tx-) Leave unconnected
GPIO pins G1 through G9 are configurable as general purpose digital inputs or outputs. *Available in future firmware update. ‡Tied to FTDI USB to serial converter when USB is connected.
Use Molex PicoBlade™ series connectors for the EVB headers.
3 Typical Application The following schematic demonstrates a typical setup for the µINS module. A rechargeable lithium backup battery enables the GPS to perform a warm or hot start. If no backup battery is connected, GPS.VBAT should be connected to VCC and the module will perform a cold start on power up. If the system processor is not capable of updating the µINS firmware, it is recommended to add a header to an alternate µINS serial port for firmware updates via an external computer. The reset line is not necessary for typical use.
Typical Application of µIMU, µAHRS, or µINS Module
The following are recommended components for the typical application. Equivalent or better components may be used. Designator BAT1 D1 R1 C1
Manufacturer Panasonic Panasonic
[email protected]
Manufacturer # ML-614S/FN DB2J31400L
Description BATTERY LITHIMU 3V RECHARGABLE SMD DIODE SCHOTTKY 30V 0.03A SMINI2 RES 1.00K OHM 1/16W 1% CAP CER .10UF 50V X7R 10%
5
WWW.INERTIALSENSE.COM
Calibrated Inertial Systems with GPS
μIMU, μAHRS, and μINS 4 System Status LED Status LED Orange Blue Green Red Pulse White / Purple
System status including GPS lock, INS alignment, and time synchronization are reported via the top tri-color LED. This LED can be disabled (turned off) by setting bit 0x4 of DID_FLASH_CONFIG.sysCfgBits.
Meaning INS not aligned INS aligned – No GPS lock INS aligned – w/ GPS lock GPS time synchronization Bootloader mode (Updating firmware)
5 EVB (Evaluation Board) The EVB is a carrier board that provides a fast and convenient means to integrate and interface with the µIMU, µAHRS, and µINS. It provides header breakout for all of the module pins, SMA connection for the GPS antenna, RS232, RS485/RS422, CAN bus, and USB communication interfaces, and I/O and reset push buttons. The EVB can be powered with 3.3V to 20V input or over USB. µINS EVB without and with Case
The EVB RS232 interface for the serial port 0 is enabled by default and available through header H5. The figure to the right illustrates how a standard DB9 connector is wired to this port.
GND
TxD RxD
5.1 RS232 DB9 Adapter for EVB H5
RS232 PC Side
EVB H5 H5-5 Ser0 Tx H5-3 Ser0 Rx H5-1 GND
RS232 DB9 Adapter for EVB H5 Ser0
6 Mechanical 6.1 Recommend PCB Footprint and Layout A single ceramic 100nF decoupling capacitor should be placed in close proximity between the Vcc and GND pins. It is recommended that this capacitor be on the same side of the PCB as the uINS and that there not be any vias between the capacitor and the Vcc and GND pins. The default forward direction is indicated in the PCB footprint figure and on the uINS silkscreen as the X axis. The forward direction is reconfigurable in software as necessary.
[email protected]
6
WWW.INERTIALSENSE.COM
Calibrated Inertial Systems with GPS
μIMU, μAHRS, and μINS 6.2 Physical Dimensions
Module Dimensions in mm
Evaluation Board Dimensions in mm
[email protected]
7
WWW.INERTIALSENSE.COM
Calibrated Inertial Systems with GPS
μIMU, μAHRS, and μINS 6.3 Port and Jumper Configuration The following table describes how to configure the ports and pins on the µIMU, µAHRS, and µINS and EVB evaluation board. This is done by setting the corresponding ioConfig[y:x] bits in the Flash Config data structure to one of the values in the fourth column of the following tables. The evaluation board ships with hardware jumpers configured for USB, TTL, and RS232 serial communication by default. These jumpers must be moved to enable RS485/RS422 and CAN operation. A USB connection to the evaluation board powers and enables a USB to serial chip for communications on serial port 1 (gpio G6 and G7) of the µINS. Pins H6-4 and H6-5 of the evaluation board must be left open when the evaluation board USB port is used. The system voltage of the EVB is read by AN2 through a voltage divider when gpio G2 is configured for ADC function.
µINS-2
Function GPI GPO Ser0 (TTL)
G3 G4
RS232 RS485/RS422 Servo ADC *CAN
Signal Input Input Output Output Rx Tx Rx Tx Rx+, RxTx+, TxServo 1 Servo 2 AN3 AN4 L H
EVB H4-4 H4-3 H4-4 H4-3 H4-4 H4-3 H5-3 H5-5 H5-3, H5-4 H5-5, H5-6 H4-4 H4-3 H4-4 H4-3 H4-4 H4-3
Components
485
Flash Config ioConfig[7:4]
Jumpers
TE485
Software
J5
J6
U5 R5
R8
1 2 3 3
1
3
0
1
1
1
0
0
1 1
1
4 6 8
Jumpers & Components: 1 = Must be set, 0 = Must be clear. *Available in future firmware update.
µINS-2
Function GPI GPO
G1 G2
*Ser2 (TTL) Servo ADC ADC *TWI
µINS-2
Function *GPI *GPO
G6 G7
Ser1 (TTL) USB *Servo *SPI
Signal Input Input Output Output Tx Rx Servo 3 AN2 AN1 AN2 SDA SCL Signal Input Input Output Output Rx Tx P N Servo 5 MOSI MISO
[email protected]
EVB H2-3 H2-4 H2-3 H2-4 H2-3 H2-4 H2-3 H2-4 & VIN H2-3 H2-4 & VIN H2-3 H2-4 EVB H6-4 H6-5 H6-4 H6-5 H6-4 H6-5 H7-2 & J1-3 H7-3 & J1-2 H6-4 H6-4 H6-5
ioConfig[3:0]
µINS-2
1
Function
Function
Signal Input Input Output Output SCLK CS Signal
*GPI
Input
*GPO Servo
Output Servo 4
*GPI G5 G8
2 3
*GPO *SPI
µINS-2
4 6
G9
8 ioConfig[11:8]
EVB H6-3 H6-6 H6-3 H6-6 H6-3 H6-6 EVB H6-7 & S1 Button H6-7 H6-7
ioConfig[15:12] 1 2 8 ioConfig[19:16] 1 2 8
*Available in future firmware update.
1 2 3 3 4 8
8
WWW.INERTIALSENSE.COM
Calibrated Inertial Systems with GPS
μIMU, μAHRS, and μINS 6.4 Jumper Configuration Evaluation Board hardware jumpers are located on the bottom side.
U5
Bottom View
The jumpers identified in the following table are used to configure RS485/RS422 features and enable the CAN transceiver on the evaluation board. Jumper J5 J6 J7 R5 R8 U5
Label 1 TE485 485 HALF
Label 2
Description *RS485 termination enable *Select RS485 or RS232 mode for Ser0 *RS485 half-duplex Jumper connecting TTL Serial 0 Tx to H4-4, bypassing CAN transceiver. Jumper connecting TTL Serial 0 Rx to H4-3, bypassing CAN transceiver. CAN transceiver. Remove R5 and R8 and add U5 to enable CAN support on H4.
* Option enabled away from silkscreen label.
[email protected]
9
WWW.INERTIALSENSE.COM
Calibrated Inertial Systems with GPS
μIMU, μAHRS, and μINS 7 Related Components The following components are optional components that may be used with the µINS and µIMU. Part GPS Antenna
Manufacturer Taoglas Limited
Manufacturer # AGGBP.25B.07.0060A
GPS Antenna
Taoglas Limited
AA.162.301111
GPS Antenna GPS Backup Battery
Abracon LLC Panasonic
APAMPG-130 ML-614S/FN
Description 25x25mm Two Stage GPS-Galileo-Glonass-BeiDou Embedded Active Patch Antenna Module with Front-End SAW Filter Ulysses Ultra-Low Profile Miniature Magnet Mounted GPS-GLONASS Antenna GPS-GLONASS Active Antenna 30dB Magnet Mounted BATTERY LITHIMU 3V RECHARGABLE SMD
Inertial Sense LLC 72 N 720 E, Salem, UT 84653 USA Phone 801-610-6771 Email
[email protected] Website InertialSense.com © 2017 Inertial Sense Inertial Sense®, Inertial Sense logo and combinations thereof are registered trademarks or trademarks of Inertial Sense LLC. Other terms and product names may be trademarks of others. DISCLAIMER: The information in this document is provided in connection with Inertial Sense products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Inertial Sense products. EXCEPT AS SET FORTH IN THE INERTIAL SENSE TERMS AND CONDITIONS OF SALES LOCATED ON THE INERTIAL SENSE WEBSITE, INERTIAL SENSE ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL INERTIAL SENSE BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGESFOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF INERTIAL SENSE HASBEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Inertial Sense makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Inertial Sense does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Inertial Sense products are not suitable for, and shall not be used in, automotive applications. Inertial Sense products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Inertial Sense products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“SafetyCritical Applications”) without an Inertial Sense officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Inertial Sense products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Inertial Sense as military-grade.
[email protected]
10
WWW.INERTIALSENSE.COM