Transcript
Micro systems research @ Energy & Flow Prof. David Smeulders Prof. Harald van Brummelen
www.energy.tue.nl
Multiscale Engineering Fluid Dynamics Prof. Harald van Brummelen Prof. Herman Wijshoff (Océ)
www.energy.tue.nl
Multiscale Engineering Fluid Dynamics Thema’s Het ontwikkelen van geavanceerde numerieke modellen en methoden voor stromingsproblemen met meerdere lengte- en tijdsschalen: 1. vrije-rand stromingen/interactie problemen druppelvorming in inkjet processen, vloeistof/vaste-stof interactie
2. moleculaire/continuum stromingen adaptieve modellen, wand interacties
3. ontwikkeling generieke numerieke technieken geavanceerde (adaptieve) eindige-elementen methoden, efficiënte oplosmethoden
www.energy.tue.nl
Simulatie van inkjet processen Ontwikkeling van nieuwe numerieke technieken om druppelvorming in het pico (10-12) liter regime te simuleren t.b.v. jetting processen
molecular/continuum flows Nieuwe numerieke methoden voor stromingen ‘tussen moleculair en continuum’ (vb. semi-conductor litho-machines van ASML)
Lithographie processen Inverse interface problemen: materiaal eigenschappen aanpassen zodat de geometrie in een etsproces precies gecontroleerd wordt
Microfluidics and micro heat transfer @ Energy Technology David Smeulders, Arjan Frijns, Silvia Nedea, Camilo Rindt, Michel Speetjens Claire Ferchaud, Gökalp Gürsel, Eldhose Iype, Maurice Fransen, JungHan Kim, Zhipeng Liu, Manoj Sharma, Huaichen Zhang Section Energy Technology dept. Mechanical Engineering Eindhoven University of Technology, the Netherlands
Research @ Energy Technology Main reserach area: Heat and mass transfer • “Knowledge across the scales” Knowledge on the small scales is needed to understand the physical behaviour on the larger scales • “From molecule to measurement” gaining fundamental knowledge on the molecular/nanoscales and upscaling to the micro and macro-levels.
www.energy.tue.nl
Main research areas (1): Energy transport & storage • CO2 capture/storage • Geothermal energy
Flow in micro-pores
LeJean Hardin and Jamie Paynederivative
Slatt & O'Brien, AAPG Bulletin, December 2011, v. 95, p. 2017-2030,
• Seasonal heat storage: • Aquifer thermal energy storage (ATES) • Phase change materials (PCM) • Thermo chemical materials (TCM) www.energy.tue.nl
Main research areas (2): Microfluidics & micro heat transfer • Single phase: • AC-electro-osmosis, • Micro-pumping, • Gas MEMS
• Multi-phase: • Evaporative cooling of micro-systems, • Nucleate boiling in micro-channels • Outgassing in nanopores
• Micro optofluidics: • Optical micro sensors
Particle focusing by ACEO (Liu, 2014)
Pulsating Heat Pipe (PHP)
Molecular Dynamics simulations (Nedea, 2012) www.energy.tue.nl
Compact heat storage: “The quest for the heat battery” Battery
Heat battery? Electricity
Heat
PVT collector
www.energy.tue.nl
Compact heat storage: thermo chemical materials (TCM) • What are thermo chemical materials (TCM)? • Storing of energy in thermo chemical materials as chemical energy. MgSO4 + xH2O MgSO4.xH2O + heat • Applicable for designing seasonal heat storage systems • Volume change of roughly 40% • Changes in porosity • Change in crystal structure • Melting at high heating rates • Formation of powdery particles Problems encountered - Hydration process is slower in normal atmospheric conditions - Hydration step is limited by diffusion through surface layers
www.energy.tue.nl
Compact heat storage “From molecule to measurement” Multi-scale approach Fully hydrated (MgSO4 · 7H2O) +Q
Water removal
Fully dehydrated
(Iype et al., 2013)
www.energy.tue.nl
Towards individualization of dialysis: Development of a micro-opto-fluidic sensor In the Netherlands • 60,000 with severe kidney problems. • Almost 16,000 patients require renal replacement (either dialysis or kidney transplant) therapy. • 6500 dialysis patients at home or in hospitals. • Annual death is 1 in 6. www.nierstichting.nl
The kidney plays an important role in our body.
• In the USA, approximately 430,000 are on dialysis and approximately 185,000 live with a functioning kidney transplant. http://www.usrds.org/ 2013 Annual Report
Towards individualization of dialysis: Development of a micro-opto-fluidic sensor Kidney failure
dialysis needed for - removal of toxics - balancing electrolytes in blood - water balance Artificial kidney: Filtering by osmosis
Blood
Dialysate (premixed solution)
www.energy.tue.nl
Towards individualization of dialysis: Development of a micro-opto-fluidic sensor “One size fits all” approach • Preparation of dialysate with fixed concentration of essential electrolytes • Same for all patients Possible side effects of treatment Electrolyte
Insufficient removal
Excessive removal
Na+
increased thrist interdialytic weight gain hypertension
K+
hyperkalemia
heart rhythm disturbances
Ca2+
vascular calcification
renal bone disease
rapid decline in blood volume intre-dialytic hypotension
However: “One size fits none”
What do we propose? An optical sensor based on Photoinduced Electron Transfer (PET) Inlet Dialysis fluid Dialysis Machine
Dialyzer
Outlet Micro Optofluidic sensor Inlet and oulet fluid coupling
concentrate waste
fluidic channel Excitation source
Immobilized molecule
Spectrometer Polymer substrate
Waveguide
Dept. of Mechanical Engineering
Treated water
Fibers
The proposed microoptofluidic chip
Why Optical?
Selectivity Reliability
Reproducibility Fast Dept. of Mechanical Engineering
What is PET? The PET principle exploits quenching of fluorescence LUMO
Off state
hν(abs)
E
eFluorophore
PET
Spacer
HOMO HOMO
Receptor
Receptor Fluorophore
LUMO
hν (flu)
hν(abs)
On state hν (flu)
E Fluorophore
Spacer
Receptor
A
A
HOMO
HOMO Fluorophore
Intensity of fluorescence is measure for concentration
Receptor
Micro-opto fluidic system: proof-of-principle
Intensity [counts]
15000 Absorption Emission
10000
5000
PET: concentration RhB: temperature
0 0
200 400 600 800 Wavelength [nm]
Next: - Immobilization of sensor molecules - Calibration, incl. flow and temperature dependency - First tests with waste dialysate (clinics) - System optimization and integration
Examples of graduation projects @ ET • Multi-scale modelling (MD, DSMC, DFT, CFD): • • • • •
rarefied gas flows/gas micro flows; (reactive) surface interactions; boiling/condensation processes; two-phase flows; …
• Experimental/numerical: • • • • • •
optimizing micro-scale heat transfer (mini/micro HEX); two-phase flows and (nucleate) boiling; pulsating heat pipes; micro-pumping (ACEO/ferrofluidic); microfluidic sensors; …
velocity
• Development of micro-scale measurement techniques: • combined 3D velocity & temperature measurements; • ….. www.energy.tue.nl