Preview only show first 10 pages with watermark. For full document please download

Nonlinear Adaptive And Robust Flight Control Using The Backstepping Algorithm

   EMBED


Share

Transcript

W¡uP¡æf[ ¨WŸ üxÍ :ÿ „ CqŸ zG‚ [¢ u Nonlinear Adaptive and Robust Flight Control Using the Backstepping Algorithm [ 2Ú 2000 tСp ¡٠¨WÍsW¡Y × – W¡uP¡æf[ ¨WŸ üxÍ :ÿ „ CqŸ zG‚ [¢ u Nonlinear Adaptive and Robust Flight Control Using the Backstepping Algorithm [ 2000 tСp ¡٠¨WÍsW¡Y × – ¨WŸ üxÍ :ÿ „ CqŸ zG‚ [¢ u Nonlinear Adaptive and Robust Flight Control Using the Backstepping Algorithm “êp½ ¥î³ f[ú W¡uP ¡æf[÷¿ C;¥ [ 10Ú 1999 tСp ¡٠¨WÍsW¡Y × – ז W¡uP ¡æf[ú u¥ [ 12Ú 1999 æÙ$ ÙæÙ$ æÙ #À Æ f[‚t™ üxÍ ¨WŸ CqŸõ zG ™ “ªú CK •°. Ɗ:÷¿ üxÍ ¨WŸ CqŸõ zG£ :‚ ¨WŸ ô:"‚ 0† Ïô“Aéú ô ô"Y — ÿ ô"÷¿ uÛ L  èßð‚  Š ë:÷¿ CqŸõ zG ™ ,Y™ µý, Æ f[‚t™ backstepping Ÿªú Ì Š ; èßðú ôè‚ KAÜèř CqŸõ z G •°. Ÿªù ¨WŸ ô:"ú :<& ßÌ¢ CqŸ zGŸª 6, KAú ’ < Ÿ 栊 üÇì: Aú Ì “ M™°. Z¢, üxÍ :ÿCq ÁY üxÍ Cq Áú :Ì Š W³G½ ÝÝì „ ½ˆ U& ™ EÍ‚ê  9  Æ q#“ M™ ¨WŸ CqŸ zGŸªú C蠕°. üxÍ :ÿCqŸªú Ì Š ½ˆ „ ?Ý ¡ò‚ © Œf ™ ¨ú \© êÀ êEç¿ @ êõ ºÜèř C qŸ zGŸªú CK •°. ”ýL üxÍ CqŸªú Ì Š ?Ý ¡ò „ ½ˆ ‚ © Œf ™ ¨ ¾Ÿõ yý NL °L A L, ” –³ú \©èř CqŸ z GŸªú CK •°. CKý CqŸª :Ìý ¨WŸ èßð KAú òb’d’ Áú Ì Š ’< •÷6, F-16 üxÍ ¨WŸ ?Ýú Ì Š èqª Žú ½±¥÷ ¿ CKý CqŸª  ú *’ •°. sÅq : üxÍ ü±Cq, backstepping Ÿª, êEç¿, :ÿCq, Cq ¡¥ : 98416-525 i ò» #À ò» ” ò» v ò» tÁ i ii v vi 1 1.1 1.2 1.3 1.4 2 u •E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . u ô³ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . u 4Ì . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . f[ u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Backstepping 2.1 2.2 2.3 1 Ÿªú Ì¢ üxÍ ü±Cq ¨WŸ ?Ý . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.1 Ïô“Aé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.2 W³G½ ?Ý . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.3 Ïô“Aé uS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CqŸ zG „ KA ©u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.1 ŸÆ A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.2 CqŸ zG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.3   ©u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ½X èqª Ž . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 1 2 4 5 6 6 6 7 8 12 14 15 20 21 iii 3 êEç¿ú Ì¢ üxÍ :ÿ ü±Cq 3.1 3.2 3.3 3.4 4 W³G½ ?Ý ¡ò‚ ¢ –³ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . êEç¿ uS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CqŸ zG „ KA ©u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.1 ŸÆ A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.2 CqŸ zG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.3   ©u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ½X èqª Ž . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . üxÍ ü±Cq 4.1 4.2 CqŸ zG „ KA ©u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.1 ŸÆ A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.2 CqŸ zG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.3   ©u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ½X èqª Ž . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . @Á ÷L[¶ ¨WŸ ?Ý 5 A F-16 A.1 A.2 B C [?/! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W³G½ ?Ý . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . òb’d’ KA Á CqŸ „ Ïô“Aé yÛ C.1 2, 3 $‚t PÌý CqŸ yÛ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 27 28 30 31 31 38 39 46 46 47 47 51 52 59 61 64 64 64 69 71 71 iv $‚t PÌý CqŸ yÛ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ïô“Aé yÛ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.2 4 72 C.3 73 Abstract 75 ” ò» Aú Ì¢ üxÍ ü± CqŸ uS . . . . . . . . . . . . . . . . . . . . . 2.1 Two-timescale 2.2 Simulation result: Backstepping controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2 Simulation result: Backstepping controller (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 Simulation result: Backstepping controller (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2 Simulation result: Backstepping controller (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2 Simulation result: Backstepping controller (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1 3-layer 3.2 Simulation result: Adaptive backstepping controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2 Simulation result: Adaptive backstepping controller (continued) . . . . . . . . . . . . . . . . . . 42 3.2 Simulation result: Adaptive backstepping controller (continued) . . . . . . . . . . . . . . . . . . 43 3.2 Simulation result: Adaptive backstepping controller (continued) . . . . . . . . . . . . . . . . . . 44 3.2 Simulation result: Adaptive backstepping controller (continued) . . . . . . . . . . . . . . . . . . 45 4.1 Simulation result: Robust backstepping controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.1 Simulation result: Robust backstepping controller (continued) . . . . . . . . . . . . . . . . . . . . 55 4.1 Simulation result: Robust backstepping controller (continued) . . . . . . . . . . . . . . . . . . . . 56 4.1 Simulation result: Robust backstepping controller (continued) . . . . . . . . . . . . . . . . . . . . 57 4.1 Simulation result: Robust backstepping controller (continued) . . . . . . . . . . . . . . . . . . . . 58 êEç¿ uS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 13 29 v ò» 2.1 Ïô“Aé u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1 W³G½ e’ ?Ý ¡ò (%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.1 W³G½ e’ ?Ý ¡ò (%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 A.1 A.2 [?/!¿ uý ¨ A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W³G½ ?Ý º½ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 67 68 1 1.1 tÁ u •E Ɗ:÷¿ ¨WŸ Cqèßðú zG Ÿ æ©t™ ¨WŸ "A¢ ÏÌ\ׂ  °L A L, ” ÏÌ\ׂ © xÍÜý ?݂ ©t xÍCqŸªú :Ì Š Cq Ÿõ zG¢°. “ªù L;CqŸª, LîW“Aª, xÍ/:CqŸª #  N²• ° j¢ xÍCqŸªú PÌ£ ½ °™ $> °. ” # xÍÜý ?Ýù zG ÏÌ\×  – ‚t ¨WŸ Ïô"ú üp: AÝ& #Í4Ÿ :[‚, Iù Ï̖‹‚ © ÆA¢  ú uŸ æ©t™ Š  ÏÌ\ׂ  Š CqŸõ ŠÄ©t zG L, zGý Cq ú ¨WŸ ÏÌ\ׂ 0†t ºÜèˆb ¢°.  ¢ ³>ú •Ä Ÿ 栊 ˆÞxÍܟª (feedback linearization) ú Ì¢ üxÍ ¨WŸ Cq‚ [¢ u ØqP°. ˆÞxÍܟªù \׺½ Óù ;³º½õ Ì  Š üxÍ èßðú ôÆ¢ xÍèßð÷¿ ºÞ Š CqŸõ zG ™ Ÿª÷¿, ºÞ ý xÍèßð ¨WŸ ÏÌ\ׂ U “ MŸ :[‚ ¨WŸ Š  ÏÌ\ׂ  © ÆA¢  ú Ã$£ ½ ™ ³Æ CqŸõ u£ ½ °. ” # Ÿªú Ì Ÿ æ©t™ üxÍ èßð ô:"ú AÝ& NL qb  6, zero dynamics õ Cq£ ½ {Ÿ :[‚ nonminimum phase system  4ÙKAú Ã$£ ½ {°™ ³> °. Backstepping Ÿªù /– üxÍ :ÿCq‚ ÿÌü8t ߌ& u Øq“L  ™ üxÍ CqŸª °. Ÿªù GW: èßð‚ ©  Ù èßð \׺½õ \ Cq³÷¿ zA Š \Ù èßðú Cq ™ YAú ŠÄ ™ ,÷¿, nonminimum phase system  KAú Ã$£ ½ ÷6, üxÍ :ÿ „ Cq Áú :Ì Š üx 1 2 1.2 u ô³ Í èßð ÝÝìú L²£ ½ °™ $> °. ¨WŸ™ üx́ £ < I¦† Š  “ ]ý: º½‚ U Š ºÜ Ÿ : [‚ ” ô:"ú AÝ& ?Ý Ÿ Í q·°. 0†t ¨WŸ CqŸõ zG ™ E͂™ W³G½ ?Ý ¡ò, Z™ ½Ù ½ˆ –³ú L² ™ , |Å °. èßð  ¡ò# ºÜ, ½Ù pˆú L² Š ” –³ú ™èř Cq Á÷¿™ :ÿCq ÁY Cq Áú àú ½ °. :ÿCqŸªù èßð 4Ù º½# Ç& èßð  u‚ :¦¢ Cq ú ìè÷¿ 8A Š CqŸ uSõ ºÜèř “ª÷¿ ½ˆ‚ ¢  ô:  Ÿª †L £ ½ °. /–‚™ :ÿCqŸª ú ’ èř u® üxÍ èßð÷¿ :̂ ¢ u Øq“L ÷6, êEç¿ universal approximation "ú Ì¢ :ÿCqŸªê uüL °. CqŸªù ½ˆ Y èßð ?Ý ¡ò‚ ¢ –³ "A¢ ©æ K‚ š©°L A L, ” –‹ K ‚t ’Æ¢  ú uú ½ ™ CqŸõ zG ™ “ª÷¿ ½ˆ‚ ¢ ½ô:  Ÿª †L £ ½ °. 1.2 u ô³ ˆÞxÍܟªù Á:÷¿  Aüq ÷6 Š  Ûb‚ ÿÌüL ™ üxÍ è ßð CqŸª÷¿ üxÍ ¨WŸ Cq[C‚ê Gý PÌü}°. Meyer ® Hunt ™ Àý– â Cq[C‚, Lane Y Stengel ù ¨WŸ Cq[C‚ ;³ ˆÞxÍܟªú :Ì Š " A¢ ;³º½õ Cq •°. Hedrick Y Gopalswamy ™ sliding method õ :Ì Š ?Ý  ¡òõ L² •°. ” # ˆÞxÍܟªú ¨WŸ Cq[C‚ ”? :Ì£ E͂™, zero dynamics õ Cq£ ½ {Ÿ :[‚ nonminimum phase system  KAú Ã$£ ½ { L, W³G½ 2ò Z™ 3ò \ yÛ¨ ›Å °™ [C> Œf¢°. ˆÞxÍܟªú üxÍ ¨WŸ Cq[C‚ :Ì ™ Z °ô “ªù ¨WŸ ô:" ú Ì Š Ïô“Aéú  timescale ¿ uÛ L,  4Ùؒ® ½Ùؒ C 1, 2 3 1 tÁ 3 qŸõ u ™ “ª °. Two-timescale —ú Ì Š CqŸõ zG ™ YAù ¾ 3  ³G¿ uÛ£ ½ °. $9 ½Ùؒ‚t™ 4Ùؒ \׺½ p; q; r ú Cq³ ÷¿ zA Š, ; ;  sq• ˆ:ú 8[ êÀ p; q; r ‚ ¢ Ÿuˆ:ú GS¢°. 4 Ùؒ‚t™ \׺½ p; q; r ½Ùؒ‚t fý Ÿuˆ:ú 8[ êÀ ìC Cq ³ Æe; Æa; Ær ú GS¢°. :, 4Ùؒ Ïô" ½Ùؒ‚ ü© Í òŸ :[‚, 4Ùؒ \׺½ p; q; r ¿ sq• Ÿuˆ:ú 蓍 { AÝ& 8[£ ½ qt, ½Ùؒ‚t™ p; q; r  蓍 Šÿ‚ ¢ –³ #Í#“ M™°L A¢ °. 0†t “ªú PÌ Ÿ æ©t™ 4Ùؒ Ïô" ½Ùؒ Ïô"‚ ü © Í †b ¢°. ” # Ç&«“ ÂÙÛ ¨WŸ Cq‚ [¢ u‚t™ "»¢ ½ ¡: ©uYA { 4Ùؒ Cq ú ½Ùؒ Cq ð ?Û& À ÷¿ zA Š, ¨WŸ  ¢ two-timescale —ú T¢°L A •°. ¨WŸ Cq[C‚t two-timescale —‚ [¢ ½¡: ©uù Schumacher ® Khargonekar ‚ © ü ØqP°. ”ù 4Ùؒ èßð‚t AÝ¢ ‹ºÞ ØqP °L A L ,ú ½Ùؒ‚  Š ½Ùؒ \׺½® Cq³÷¿ uý èßðú u •°. ”ýL òb’d’ ¥½õ Ì Š èßð KAÜüŸ æ¢ 4٠ؒ /™ Cq ú @A •°. ” # ” u‚t zA¢ “ª‚ ¢ KA © uù Í Ä! L conservative  Ÿ :[‚, èßð KAú Ã$ Ÿ æ©t GSý 4 Ùؒ /™ Cq  Í v“3 ý°. 0†t ©u@Y‚ 0† CqŸõ zG£ EÍ ‚™ Cq³ jÜü$# ‚ [C Œf£   m°. ”ù Z¢ CqŸ z G „ ©uYA‚t ¨WŸ Cq8‚ © Œfý *, |³ „ 8³‚ ¢ –³ú Xè  ™ # °™ ù Aú  •°. ˆÞxÍܟªú :Ì ™ YA‚t Z °ô q²Óù CqÂ\ ü™ ¨WŸ èß ðú AÝ& NL qb ¢°™ , °. ” # ¨WŸ W³G½ù Š  “ º½‚  U Š ºÜ Ÿ :[‚ ¨WŸ èßð ô:"ú AÝ& ?Ý ™ ,ù Í q²Ï Æ °. Two-timescale —ú Ì¢ CqŸ EÍ, "A¢ W³G½ ÝÝ쁂 © ; 4, 5, 6 7 4 1.3 u 4Ì  èßð KAú 3 ý°™ , uý † °. èßð ?Ý ¡ò# ½ˆ – ³ú L² ™ üxÍ Cq Á÷¿t, :ÿCqÛb‚t™ Krsti¢ , CqÛb‚t™ Qu backstepping Ÿª‚ Ÿ#¢ uõ ½± •°. Funahashi, Hornik #ù °W êEç¿  üxÍ ¥½õ  AÝê¿ vÇ£ ½°™ ,ú½¡:÷¿ ’< •L, Farrell, Lewis #ù  ¢ universal approximation "ú Ì Š,  ³WY °W êEç¿ú üxÍ :ÿCqŸ¿ (nonparametric nonlinear direct adaptive controller) Ì ™ uõ ½± •°. ¨W CqÛb‚t™ Singh # wing-rock motion ú Cq ™Ú, Kim Y Rysdyk ¨WŸõ Cq ™ Ú :ÿ êEç ¿ú PÌ •°. 8 9, 10 11, 12 13, 14 15 16, 17 1.3 u 4Ì Æ f[‚t™ backstepping Ÿª‚ © üxÍ ¨WŸ CqŸõ zG ™ “ªú C K •°. ˆÞxÍܟªú Ì¢ Ɗ: üxÍ ¨WŸ CqŸ®™ µý, two-timescale Aú PÌ “ ML ³Æ òb’d’ ¥½õ Ì Š ½¡:÷¿ KAú ’< •°. Z¢, Cq8 # šê‚ © Œf ™ W³G½ * Ûú ? L² •÷6, KA ©u „ ’ °. üxÍ ¨WŸ E͂ minimum phase  "ú ½¡:÷¿ ’< ™ ,ù Í q²Ï Æ 6, Z¢, Ç L  ¨WŸ™ nonminimum phase  "ú “™ EÍ °. Œ, Ÿª ù zero dynamics  KAú Ã$ Ÿ q·°™ ³> °. ¢`, é (2.17), (2.18) Y v 2.1 ú U_Ã8, x ; x èßð‚ ¢ = “ "ú Œ>£ ½ °. é (2.17) ú Ã8 ¨WŸ šêõ y ™ \׺½ x x ú Cq ™ Cq ³÷¿ PÌþ ½ üú N ½ °. x èßð‚ ¢ x  ³±µ g ; g a ™ v 2.1 ‚ #Í& , ¤ ” ¾Ÿ h ‚ ü© Í ¾6 sC# ÆA ½u \ ¾Ÿõ °. 0 †t x èßðú Cq ™ Cq³÷¿t u ð x Ì :¦ °™ ,ú N ½ °. é (2.18) Y v 2.1 ú Ã8 x èßð‚ ¢ u  Cq³ ±µ g  ¾Ÿê Í ¾Ÿ :[‚, u x èßðú Cq ™ Cq³÷¿ :< °™ ,ú Ý £ ½ °. Œ, x èßð‚ 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 1 1 1 1 1 2 2 2 2 1 2 Backstepping xd1 + + Ÿªú Ì¢ üxÍ ü±Cq k1 Outer loop Controller xd2 + + k2 13 Inner loop Controller Flight Dynamics u x1 ; x2 x2 x1 ” 2.1 Two-timescale Aú Ì¢ üxÍ ü± CqŸ uS ¢ Cq³÷¿™ x , x èßð‚ ¢ Cq³÷¿™ u ͽ¢ "ú “¨°. Z¢, v 2.1 ú Ã8, x èßð‚ [´ý ¨ ¾Ÿ , x èßð‚ [´ý ¨ ¾ŸÃ°  Í ¾°™ ,ú Ý £ ½ °. ,ù ]ý:÷¿ x èßð x èßð‚ ü© òŸ : [‚  èßð timescale uÛþ ½ °™ ,ú y¢°. Menon, Bugajski, Snell #ù  ¢ two-timescale —ú Ì Š ¨WŸ CqŸõ u  ™ uõ ½± •°. ù ¨WŸ èßðú ô ô"ú ™ èßðY —ÿ ô"ú ™ èßð÷¿ Ûý L,  èßð‚ ¢ CqŸõ 0¿ zG •°. “ª ‚t™ ¨WŸ ô:"‚ 0† ô ô"ú ™ èßð÷¿ x èßðú, —ÿ ô" ú ™ èßð÷¿ x èßðú zA¢°. CqŸ™  ü# ؒ¿ uü™Ú, ½ Ùؒ‚t™ \׺½ x õ 蓍 { ¿ ºÜèÈ ½ °L A L, x < º xd õ 8[ êÀ —ÿ ô"ú ™ èßð‚ ¢ Cq³ xd õ zG¢°. 4Ùؒ ‚t™ x ½Ùؒ‚t fý <º xd õ 0† êÀ ô ô"ú ™ èßð‚ ¢ Cq³ u õ zG¢°. ” 2.1 ù two-timescale Aú Ì¢ CqŸ uSõ #Í6°. Ÿªù x èßð‚ ¢ Cq³÷¿ x õ PÌ Ÿ :[‚ ˆÞxÍܟªÃ° ¨W Ÿ ô:"‚ Ì :¦¢ CqŸ zG“ª †L £ ½ °. Ɗ:÷¿ CqŸõ zG£ : u õ Cq³÷¿ zA£ ½ ™ ,ù CqŸ u  ú ¿ ºÜèÈ ½ Ÿ :[ °. Two-timescale —ú Ì¢ ¨WŸ CqŸ zGYA 2 2 1 2 2 1 4, 5, 6 2 1 2 1 1 2 2 2 1 2 14 2.2 CqŸ zG „ KA ©u ‚t —ÿ ô"ú ™ èßð Cq³÷¿ \׺½ x õ zA£ ½ ™ ,ù, x è ßð Í òŸ :[‚ —ÿ ô"ú ™ èßð‚t x õ ¿ ºÜèÈ ½ ™ îYõ uú ½ °L A°Ÿ :[ °. 0†t CqŸªú :Ì¢ èßð KAú ½¡:÷¿ Ã$ Ÿ æ©t™ ô ô"ú ™ èßð Cq ú Í À ÷¿ z A©b ¢°. ” # ¨WŸ EÍ,  ¢ “ª‚ ¢ KA ©u@Y uù À ¾Ÿ C q ú :Ì£ E͂™, Cq³ jÜ $# ½¡:÷¿ ?Ýü“ Mù mù s7½ –‹ èßðú • Š ‚ [´ý [C Œf£ ½ °.  ¢ [C>ú •Ä Ÿ 栊 Æ f[‚t™ two-timescale Aú Ì “ ML backstepping Ÿªú Ì Š üxÍ ¨WŸ CqŸõ zG ™ “ªú CK¢°. Backstepping Ÿªú Ì Š CqŸõ zG ™ YA‚tê, ½Ùؒ‚t™ x õ Cq Ÿ æ  Š x õ \ ³÷¿ PÌ 6, 4Ùؒ‚t x õ Cq Ÿ æ© u õ Cq³÷¿ PÌ¢°. ” # two-timescale ú Ì¢ CqŸª‚t 4Ùؒ ô:" ½Ùؒ‚ ü©t Í òŸ :[‚ ½Ùؒ‚t™ ” –³ #Í#“ M™°L A ™ ,Y™ µý, Æ f[‚t™ 4Ùؒ èßð ô:"Y 蓍 Šÿ‚ ¢ –³ú L² Š CqŸõ zG L, x ; x ‚ © positive denite ¢ òb’d’ ¥½õ zA Š KAú ’<¢°. 0†t Ÿªù x õ Cq ™ Cq³÷¿ x õ PÌ¢°™ Q8‚t ¨W Ÿ ô:"‚ :¦¢ CqŸ zGŸª 6, x  ô"ú L² Ÿ :[‚ ; èßð  KAú Ã$ Ÿ 栊 üÇì: Aú Ì “ M™°™ $>ú “L °. 2 2 2 1 2 2 1 2 1 2 2 2.2.1 ŸÆ A CqŸ zG „ KA ©u‚ PÌý ŸÆ Aú Aý 8 °üY °. A Ÿuˆ: xd = [ d; d; d]T ™ ° Œ qE \½ cd > 0 ‚  Š °ü éú T¢° 2.1 . 1 , .  d x ; 1  x_ d1 ; xd1  cd (2.20) 2 Backstepping Ÿªú Ì¢ üxÍ ü±Cq 15 ŠŸt kk ù vector Óù matrix  2-norm ú y¢°. A ü± š³ „ ôSù ÆA ° . 2.2 V_ = 0; q_ = 0 (2.21) A °ü 0 U&¢° j j < m; j j < m ? ; ‚ © f ; f g ; f ; f a ; f ; g ; g a ; g ; h ù 6 ; ‚ © yÛ   ° A ˜X   ¾Ÿ™ °üY  C¢ý° . 2.3 1 1 2 2 3 1 1 2 , 1 . . 2.4 jj  m < 2 2.2.2 (2.22) CqŸ zG °üù CqŸ zGYA‚ ›Å¢ ÃSAý °. ÃSAý °ü 0 U&¢° j j  m; j j  m ; jj  m õ T ™ ? ; ;  ®   ‚  Š g ( ; ; ; ) ù  ° æ ÃSAý 2.1 ù g   Ž t¿ xÍëÆ ?ÛS&ú u Š ’<£ ½ °. CqŸõ zG Ÿ 栊 °üY ù ¡ò \׺½ z ; z 2 R õ ꢰ. ŠŸt xd ™ ½Ù‚t sq“™ x ‚ ¢ <º 6, xd ™ 8ó‚ zGþ x 8[©b  ™ < º °. . 2.1 invertible 1 . 1 1 1 1 3 2 2 2 z1 = x1 xd1 (2.23) z2 = x2 xd2 (2.24) é (2.17), (2.18) ‚ 0† ¡ò ô‹¡ù °üY  uý°. z_1 = x_ 1 x_ d1 = f ( ; ) + g ( ; ; ; )x + g a ( ; )x + h ( ; )u + f g ( ; ; ; ) x_ d 1 1 2 1 2 1 1 1 (2.25) 16 2.2 CqŸ zG „ KA ©u z_2 = x_ 2 x_ d2 = f ( ; ; p; q; r) + f a ( ; )x + g ( ; )u x_ d 2 2 2 2 (2.26) 2 X‚t tÁ¢ AY ÃSAýõ Ÿ#¿ CqŸõ zG¢ @Y™ °ü Aý¿ vÇý°. Aý é èßð ©™ (2.25), (2.26) 2.1 ÷¿ vÇü™ èßð‚t Cq³ u °üY  Aü8  ° uniformly ultimately bounded u = B2 1 ŠŸt xd; A \½ ° 2 2 ,  k2 z2 . g1a ( ; )T z1 g1 ( ; ; ; )T z1 A2  (2.27) 2 R31 ; B2 2 R33 ™ °üY  Aü6, k1 ; k2 ™ Cq ÷¿t j . xd2 = g1 ( ; ; ; ) 1  k1 z1 f1 ( ; ) f1g ( ; ; ; ) + x_ d1  (2.28) A2 = f2 ( ; ; p; q; r) + f2a ( ; )x2  @xd2  f1 ( ; ) + g1 ( ; ; ; )x2 + g1a ( ; )x2 + f1g ( ; ; ; ) @x1   @xd2 f3 (; )x2 g1 ( ; ; ; ) 1 k1 x_ d1 + xd1 @x3 @xd2 B2 = g2 ( ; ) h ( ; ) @x1 1 (2.29) (2.30) Z¢ ¡ò ½¶¢G™ k ; k õ S<¥÷¿  ¾Ÿ 4¿ C¢£ ½ ° , 1 . 2 ’< °üY ù òb’d’ ¥½õ L² . . V = 21 z1T z1 + 12 z2T z2 (2.31) $9, A 2.1 Y 2.4 õ Ì 8 ÃSAý 2.1 ‚ © V < d Æ : g invertible ¢ j \ ½ d U&¢°. 0†t V < d Æ :, °ü Ù#éú T ™ \½ cg U&¢°. 1 1 g1 ( ; ; ; ) 1  cg 1 1 1 (2.32) 2 Backstepping Ÿªú Ì¢ üxÍ ü±Cq 17 Z¢, A 2.3 ‚ © °ü Ù#éú T ™ j \½ c U&¢°. kg1a ( ; )k  cg a (2.33) kh1 ( ; )uk  ch 1 (2.34) kf1 ( ; )k  cf 1 (2.35) 1 f1 g ( ; ; ; )  cf g (2.36) d x (2.37) 1 _  cxd _1 1 æ é‚t kh ( ; )uk  ¾Ÿõ u ™ YA‚t™ u jÜ (saturation) üŸ :[‚ î¢  °™ Pìú Ì •°. é (2.32), (2.35), (2.36), (2.37) ú é (2.28) ‚ Ì 8, xd ° ü Ù#éú T¢°™ ,ú ÃÆ ½ °. 1 2 d x 2  cg h 1 1 k1 kz1 k + cf1 + cf1g + cxd i (2.38) _1 æ Ù#é (2.38) ù °ü KA ’ 0 Ÿ æ©t™ c < 1 ú T©b ¢°. c ù g a ; g  norm  U÷ ¿ ØqK ™Ú, é (2.17) ‚t g a ™ šê‚ © Œf ™ W³G½ ¨÷¿ Í  ù m U©“Ÿ :[‚ ” ¾Ÿ Í °. Æ f[‚t PÌý W³G½ ?Ýú Ì Š ½X:÷¿ GS¢ @Y c < 0:13 }°. é (2.44) ‚t V > kc c c c Æ : V_ < 0 t¿, z ; z ™ 6 °ü š¦ D ¿ “½ :÷¿ ½¶¢°. 1 1 1 1 1 1 1 ( 1 2 + 3 )2 4 1 (1 1) ( D = z1 ; z1 1 2 c c +c ) 2 R kz k + kz k  2(k (1 c ) 3 1 2 2 2 1 2 1 3 2 1 ) (2.49) Z¢, c ; c ; c ™ k ; k ‚ ë t¿, k ; k õ S< Š ½¶©æõ ¿ 3  ½ °. æ Aý™ W³G½õ AÝ& NL ™ E͂ üxÍ ¨WŸ ; ;  <ºú 8[£ ½ ™ CqŸõ zG£ ½ üú ‹^¢°. ”ýL CqŸõ :Ì 8 <º8[ ¡ò D ¿ ½¶ 6, ¡ò ¾Ÿõ zG S<£ ½ °™ Pìú Êu°. ŸU u® ™ µý æ Aý ’ xù <ºˆ:ú y¢°. ”‚t Ã" CKý Cqèßð‚ :Ìý ¨WŸ™ ‹ü „  <ºú Í  0† L ÷6, ˜y¤ù Is ù ¡ò©æ 4‚t <º ú  8[ L üú N ½ °. 1 2 22 2.3 ½X èqª Ž 500 480 V (ft/s) 460 440 420 400 380 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0 2 4 6 8 10 time (sec) 12 14 16 18 20 12 10 8 α (deg) 6 4 2 0 −2 −4 0.08 0.06 0.04 β (deg) 0.02 0 −0.02 −0.04 −0.06 −0.08 ” 2.2 Simulation result: Backstepping controller 2 Backstepping Ÿªú Ì¢ üxÍ ü±Cq 23 1.5 1 p (rad/sec) 0.5 0 −0.5 −1 −1.5 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0.3 0.2 q (rad/sec) 0.1 0 −0.1 −0.2 −0.3 −0.4 0.15 r (rad/sec) 0.1 0.05 0 −0.05 −0.1 ” 2.2 Simulation result: Backstepping controller (continued) 24 2.3 ½X èqª Ž 60 50 φ (deg) 40 30 20 10 0 −10 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0 2 4 6 8 10 time (sec) 12 14 16 18 20 30 20 θ (deg) 10 0 −10 −20 −30 −40 70 60 50 ψ (deg) 40 30 20 10 0 −10 ” 2.2 Simulation result: Backstepping controller (continued) 2 Backstepping Ÿªú Ì¢ üxÍ ü±Cq 25 15 δe (deg) 10 5 0 −5 −10 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0 2 4 6 8 10 time (sec) 12 14 16 18 20 15 δa (deg) 10 5 0 −5 −10 20 15 δr (deg) 10 5 0 −5 −10 −15 ” 2.2 Simulation result: Backstepping controller (continued) 26 2.3 ½X èqª Ž 7000 6000 5000 px (ft) 4000 3000 2000 1000 0 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0 2 4 6 8 10 time (sec) 12 14 16 18 20 2 4 6 8 10 time (sec) 12 14 16 18 20 5000 4000 py (ft) 3000 2000 1000 0 −1000 4 1.1 x 10 1.08 h (ft) 1.06 1.04 1.02 1 0 ” 2.2 Simulation result: Backstepping controller (continued) êEç¿ú Ì¢ üxÍ :ÿ ü±Cq 3 $‚t™ ¨WŸ èßð‚ Ì ™ ½ˆ # W³G½ ÝÝìú L² “ ML CqŸõ zG •°. ¨WŸ ô:"ù üx́  6, ¨WŸ Ïô‚™ Š  “ ]ý: Ç\ Ä! 3 Ì Ÿ :[‚ ¨WŸ AÝ¢ ½¡: ?Ýú u™ ,ù Í q²Ï Æ °. Z¢, two-timescale —ú Ì¢ üxÍ ¨WŸ CqŸ E͂™ W³G ½ ÝÝ쁂 © Cqèßð ÝKA©•°™ , uü}°. 0†t ¨WŸ C qŸõ zG£ :‚™ ½ˆ „ ÝÝì –³ú L² ™ , |Å °. $‚t™ : ÿCqŸªú êEç¿‚ ÿÌ Š  ¢ –³ú ™èř CqŸõ zG¢°. 2 8 W³G½ ?Ý ¡ò‚ ¢ –³ 3.1 $‚t™ šê Ïô“Aé‚ Â¢ ?Ý ¡òõ L²¢°. é (2.18) ‚t A ý f ( ; ; p; q; r); f a ( ; ); g ( ; ) ‚ ¢ ÝÝìú L² Š, 8Aý ¥½ ú  f^ ( ; ; p; q; r); f^ a ( ; ); g^ ( ; ) †L  8, 2 $‚t zG¢ Cq³ù °üY  vÇ ý°. 2 2 2 2 2 u^ = B^2 1 2 h k2 z2 g1a ( ; )T z1 g1 ( ; ; ; )T z1 A^2 i A^2 = f^2 ( ; ; p; q; r) + f^2a ( ; )x2  @xd2  f1 ( ; ) + g1 ( ; ; ; )x2 + g1a ( ; )x2 + f1g ( ; ; ; ) @x1   @xd2 f3 (; )x2 g1 ( ; ; ; ) 1 k1 x_ d1 + xd1 @x3 @xd2 B^2 = g^2 ( ; ) h ( ; ) @x1 1 27 (3.1) (3.2) (3.3) 28 3.2 êEç¿ uS æ éú é (2.42) ‚  8, èßð ?Ý ¡ò L²ü}ú : V_ °üY  vÇ ý°. V_ = k1 kz1 k2 + z1T g1a ( ; )xd2 + z1T h1 ( ; )^u + zT g a ( ; )T z + g ( ; ; ; )T z + A + B u^ + B u 2 = 1 1 1 1 2 2 2 B2 u  k1 kz1 k2 k2 kz2 k2 + z1T g1a ( ; )xd2 + z1T h1 ( ; )^u + z2T B2 [^u u] , k kz k 1 1 k2 kz2 k2 + z1T g1a ( ; )xd2 + z1T h1 ( ; )^u z2T  2 æ é‚t  = B [u u^] ¿ Aü}÷6, ,ù èßð ?Ý ¡ò‚ © Œf ™ ¨ °. Œ, f ( ; ; p; q; r); f a ( ; ); g ( ; ) ‚ ¢ ?Ý ¡ò‚ ©t, KA ’ 0 ‚ ©t °ü [Gõ T ™ ù§W ½ N ® \: @ ê W 2 RN N ; V 2 RN N U&¢° 2 3.1 (Universal Approximation Theorem) 1 , 2 +1 3 3 2 1 +1 2  = W T ~(V T xnn) + (xnn); . k(xnn )k  N 8 xnn in some input space (3.7) ’< ÷L[¶ 11, 12 ÷S. êEç¿  ¢ "ù universal approximation ÷¿ N²K °. ,ù êEç¿ Š  º½‚ U ™ Ä!¢ üxÍ ¥½õ :ù º½õ Ì Š AÝ& vÇ£ ½  . 30 3.3 CqŸ zG „ KA ©u °™ ,ú y 6, êEç¿ Š  Ûb‚ ÿÌüL ™ $ |Å¢ î °. 3.3 CqŸ zG „ KA ©u :ÿCqŸªù èßð ;³ [Gõ Ì Š "A¢ º½õ ìè÷¿ 8A ¥÷¿, èßð \×# ½Ù ÞE ºÜ Ì†ê ’Æ¢  ú uú ½ êÀ Cq èßð uSõ ºÜèř CqŸª °. Ÿªù 8A ™ º½‚ 0† ¾3 ”? :ÿCqŸª (direct adaptive control) Y ? :ÿCqŸª (indirect adaptive control) ¿ uÛ £ ½ °. ? :ÿCqŸªù èß𠺽õ ìè÷¿ 8A¢ °ü, 8Aý ìC º½†L A L CqŸ º½õ @A ™ Ÿª 6, ”? :ÿCqŸ ªù ”? CqŸ º½õ ìè÷¿ 8A ™ Ÿª °.  Ÿªú Ì Š Cq Ÿõ zG£ :‚™ Cqèßðú èßð‚# CqŸ º½¿ º½Ü ™ YA j¥ý°. 0†t Ÿªù ³¢ xÍèßðú |î÷¿ Œ;ü}°. Æ f[‚t™ üxÍ :ÿCqŸª (nonparametetric nonlinear adaptive control) ú Ì  Š CqŸõ zG¢°. Ÿªù èßð ;³ [Gõ Ì Š "A¢ ¥½ –P (function approximator) ¿ üxÍ ô:?Ýú vÇ ™ Ÿª °. CqŸõ zG£ : Cq èßðú º½Ü “ MŸ :[‚, Ÿªù Ä!¢ üxÍ èßð Cq‚ Ì :¦  °. X 3.1 <‚t™ W³G½ ÝÝ쁂 ©  ¨ 8 ý°™ ,ú ÕL, 3.2 <‚ t™ êEç¿  ¥½õ AÝ& vÇ£ ½ °™ ,ú Õ°. Æ f[‚t™ ¥ ½ –P¿ êEç¿ú zA Š, êEç¿ ;³ ÝÝ쁂 © Œf ™  ¨ ú \© êÀ êEç¿ º½õ ºÜèÇ°. Ÿªù èßð ]ý: º ½ I¨ ¥½ –P º½õ 8A¢°™ Q8‚t ”? :ÿCqŸª¿ Ûêþ ½ ê “, Ɗ: ”? :ÿCqŸªY™ µý Cqèßðú º½Ü Š vÇ “ M™°™ " °. 3 êEç¿ú Ì¢ üxÍ :ÿ ü±Cq 31 ŸÆ A 3.3.1 :ÿCqŸõ zG ™ YA‚t™ 2 $‚t PÌ¢ A 2.1  2.5 ® ¥Í °üY ù Aú Ì¢°. A êEç¿ ³÷¿™ xnn = [xd; x ; x ]T ú PÌ 6 ³ù qE N ‚   Š é ú TèÇ° A é ú T ™ \: @ ê™ î¢ 6 ” \¢©æ WM ; VM ú NL ° 3.1 1 (3.7) 3.2 1 , 2 . (3.7) , . kW kF  WM ; kV kF  VM (3.8) ŠŸt kkF ™ ±µ Frobenius normy ú y¢°. 3.3.2 CqŸ zG Aý 3.1 ‚ © êEç¿ W³G½ ÝÝ쁂 © Œf ™ ¨ú AÝ& vÇ  êÀ  ™ \: @ ê U&¢°. ” # CqŸõ zG ™ YA‚t™ ÝÝì ‚ © Œf ™ ¨  ‚ [¢ AÃõ uú ½ {Ÿ :[‚, Aý 3.1 ú T ™ \: @ ê W; V õ GS£ ½ {°. 0†t, Cqèßð‚™ é (3.7) ú T ™ \: ^ ; V^ ú Ì 6, KAú Ã$£ ½ êÀ zGý :ÿªY‚ © W; V ‚ ¢ 8A W ^ ; V^ ú ºÜèÇ°. W CqŸ‚™ 8A W^ ; V^ PÌüt¿ \: @ ê® 8A  ò ‚ ¢ – ³ Œf¢°. °ü ÃSAý™ KA ©uYA‚t \: @ ê® 8A  ò ‚ © Œf ™ –³ú #Í6°. ÃSAý Aý ú T ™ \: @ ê W; V ‚ ¢ 8A¡òõ  W~ = ^ ; V~ = V V^ †L A L Z = [W; V ] ¿ A  W W p 3.1 3.1 diag y Frobenius norm: k kF = A [ T A] tr A . 32 3.3 CqŸ zG „ KA ©u 8Aý @ ê W^ ; V^ ‚ ¢ êEç¿ ;³¡ò™ °üY  vèý° ^ T ~(V^ T xnn) W h  = W~ T ~(V^ T xnn) 0 (V^ T xnn)V^ T xnn ^ T 0 (V^ T xnn)V~ T xnn + w W . i (3.9) ŠŸt 0 (^z) = d~dz z z L w 2 R ™ °üY  Aý° 3 , . =^ ~ T  (V^ T xnn)V T xnn W T O(V~ T xnn) (xnn) w(t) = W 0 (3.10) Z¢ kwk ù qE j \½ Ci (i = 1; 2; 3; 4) ‚ © °ü Ù#éú T¢° , . kwk  C1 + C2 Z~ F + C3 Z~ F kx1 k + C4 Z~ F kx2 k (3.11) ’< sq• ³ xnn ‚  Š ù§W (hidden layer)  ;³¡ò™ °üY  vèý°. . ~~ = ~ ~^ = ~(V T xnn ) ~(V^ T xnn ) (3.12) é (3.12) ͺ ¨ú V^ T xnn ú Ÿu÷¿ ìÆ ›½ (taylor series) õ ; 8 °üY  °. d~ T nn ) = ~ (V^ xnn ) + ~( V Tx dz z=V^ T xnn V~ T xnn + O(V~ T xnn ) (3.13) æ éú é (3.12) ‚  8 ù§W ;³¡ò™ °üY  vÇý°. ~~ =  (V^ T xnn )V~ T xnn + O(V~ T xnn ) 0 (3.14) : ;³W (output layer)  ;³¡ò™ °üY  ý°. ^ T ~(V^ T xnn) W  = W^ T ~(V^ T xnn) W T ~(V T xnn) (xnn) h i = W~ T ~(V^ T xnn) W T ~(V T xnn) ~(V^ T xnn) (xnn) é (3.15) ‚ é (3.14), W = W~ + W^ ; V~ = V V^ ú  8 °üY °. ^ T ~(V^ T xnn ) W  = W~ T ~(V^ T xnn ) W~ T 0 (V^ T xnn)V~ T xnn (3.15) 3 êEç¿ú Ì¢ üxÍ :ÿ ü±Cq 33 ^ T  (V^ T xnn)V~ T xnn W W T O(V~ T xnn ) (xnn ) 0 h = W~ T ~(V^ T xnn ) 0 (V^ T xnn )V^ T xnn ^ T 0 (V^ T xnn)V~ T xnn + w W i (3.16) 0†t é (3.9) ’<ü}°. Z¢, sigmoid ¥½® ” yÛ (); ddzz sC# °™ PìY A 3.1 ú Ì  8, é (3.13) ‚t Lò¨ O °ü Ù#éú T¢°™ ,ú ÃÆ ½ °. ( ) O (V~ T xnn)  ~(V T xnn) + ~(V^ T xnn ) + 0 (V^ T xnn)V~ T xnn  c + c + c V~ kxnn k c V c+ ~ F + c kx k V~ F + c kx k V~ F F 1 (3.17) 2 ŠŸt c ™  j \½õ a 6, kAxk  kAkF kxk †™ "ú Ì •°. C, é (3.10) ‚ æ éú  L A 3.1 ú Ì 8 °ü [Géú uú ½ °. kw(t)k  W~ F cVM c + c kx1 k + c kx2 k    + WM c + c V~ F + c kx k V~ F + c kx k V~ F + N  C + C Z~ + C Z~ kx k + C Z~ kx k 1 1 2 3 F F 2 1 4 F (3.18) 2 æ ÃSAý™ @ ê 8A¡ò‚ © Œf ™ êEç¿ ;³¡ò é (3.9) ¿ vÇü6, ” ÆÙ w  ¾Ÿ é (3.11) ¿ C¢ý°™ ,ú Êu°. °ü ÃSAý™ CqŸ‚ PÌü™ &‚ [´ý ¨ v õ A L, KA ’<‚ › Å¢ é (3.22) õ ’<¢°. ÃSAý é Y °üY  Aý w 2 R ; v 2 R ;  2 R õ L²  3.2 3 (3.10) v= z2  kz2 k  +   3 . (3.19) 34 3.3    = kv ZM + Z^ F CqŸ zG „ KA ©u (kx k + kx k) 1 (3.20) 2 kv  max fC3 ; C4 g (3.21) ŠŸt  ù  j \½ L kv ™ æ —ú T ™ \½ ° : °ü Ù#é ¢° , , . i h z2T (w + v)  kz2 k C1 + C2 Z~ F + (3.22) ’< $9 é (3.19) õ Ì Š zT (w + v) õ vÇ 8 °üY °. . 2 (kz k ) kz k  +  z2T (w + v) = z2T w 2 2 (3.23) 2 æ é‚ é (3.11) ú  8 °ü éú uú ½ °. h z2T (w + v)  kz2 k C1 + C2 Z~ i + C Z~ F kx k + C Z~ F kx k F 3 1 4 2 (kz k ) kz k  +  2 2 2 (3.24) ¢`, Z~ = Z Z^ †™ A® é (3.20), (3.21) ú Ì 8 °ü [Géú uú ½ °. C3 Z~ kx1 k + C4 Z~ F kx2 k  kv Z Z^ F (kx1 k + kx2 k)   F (3.25) é (3.25) õ é (3.24) ‚  Š Aý 8 °üY °. h h C1 + i C2 Z  kz2 k C1 + i C2 Z z2T (w + v)  kz2 k C1 + C2 Z~ = kz k 2 h ~ ~ + F i (kz k ) kz k  +  2 2 2 F + kzkzk2k +   2 F + (3.26) 0†t é (3.22) ’<ü}°. X‚t tÁ¢ AY ÃSAýõ Ÿ#¿ :ÿCqŸõ zG ™ YA „ KA ©u‚ ¢ 4Ìú °ü Aý¿ vÇ¢°. 3 êEç¿ú Ì¢ üxÍ :ÿ ü±Cq Aý 3.2 é 35 ÷¿ vÇü™ èßðú L²  : Cq³ u ® :ÿªY ú°üY A 8 èßð©®êE翍@ ê™  ° (2.25), (2.26) (adaptive law) , ultimately bounded u = B^2 1 h . uniformly . g1a ( ; )T z1 g1 ( ; ; ; )T z1 A^2 k2 z2 æ é‚t A^ ; B^ ; v ™  é ê W^ ; V^ ù °ü :ÿªY‚ © GS¢° 2 (2.29), (2.30), (3.19) 2 i + W^ T ~(V^ T xnn) + v (3.27) ¿ Aü}° Z¢ êEç¿ @ . , . ^_ W V^_ h = w ~(V^ T xnn )z2T = ^ z2 v xnn  (V^ T xnn )T W  0  (V^ T xnn )V^ T xnn z2T 0 T i ^  w W (3.28)  v V^ (3.29) ŠŸt ; w ; v ™  j \½¿ ? zGº½ ° Z¢ ¡ò ½¶¢G™ k ; k ;  ú S<¥÷¿  ¾Ÿ 4¿ C¢£ ½ ° ’< °üY ù òb’d’ ¥½õ A . . , 1 2 . . V = 12 z1T z1 + 12 z2T z2 + 2 1 w h i ~ ~ + 1 tr V~ T V~ 2 v h i tr W T W (3.30) ¥½õ Ïô“Aé (2.25), (2.26) Y :ÿªY [Gé (3.28), (3.29) ‚ ©t yÛ¢ ù é (2.42) õ Ì Š °üY  u£ ½ °. V_ = k1 kz1 k2 + z1T g1a ( ; )xd2 + z1T h1 ( ; )u + zT g a ( ; )T z + g ( ; ; ; )T z + A + B u + B u h i h i + 1 tr W~ T W~_ + 1 tr V~ T V~_ 2 w 1 1 1 1 2 2 2 B2 u  v (3.31) æ é‚t u ™ èßð ?Ý ¡ò {™ EÍ \: Cq³ú #Í46 °üY  Aý°.  u = B2 1 k2 z2 g1a ( ; )T z1 g1 ( ; ; ; )T z1 A2  + W^ T ~(V^ T xnn) + v (3.32) 36 3.3 CqŸ zG „ KA ©u é (3.32) õ é (3.31) ‚  8 °üY °. V_ = k1 kz1 k2 k2 kz2 k2 + z1T g1a ( ; )xd2 + z1T h1 ( ; )u z2T  + z2T W^ T ~(V^ T xnn ) h i h i + zT v + 1 tr W~ T W~_ + 1 tr V~ T V~_ 2 w (3.33) v æ‚t  = B [u u] ¿ Aü}°. æ é‚ é (3.9), (3.28), (3.29) õ  8 °üY  °. 2 V_ = k1 kz1 k2 k2 kz2 k2 + z1T g1a ( ; )xd2 + z1T h1 ( ; )u + zT h h ~ T ~(V^ T xnn)  (V^ T xnn)V^ T xnn W 2 h 0 i ^ T  (V^ T xnn )V~ T xnn + w + v W 0 h + tr W~ T ~(V^ T xnn)zT 0 (V^ T xnn)V^ T xnn zT + W^     T + tr V~ T xnn 0 (V^ T xnn)T W^ z + V^ 2 i ii 2 (3.34) 2 Trace  " tryxT  = xT y ú :Ì 8, æ éù °üY  œ©•°. h i V_ = k1 kz1 k2 k2 kz2 k2 + z1T g1a ( ; )xd2 + z1T h1 ( ; )u + tr Z~T Z^ + z2T (w + v) h i h Z¢, tr Z~T Z^ = tr Z~T Z  8 °üY  ý°. i h i tr Z T Z ~ ~  Z~ ZM F 2 Z ~ F  —Y é (2.43), (3.22) õ Ì  2 2 + c3 ) +  Z~ ZM V_  k21 (1 c1 ) kz1 k2 k2 kz2 k2 + (2ck1 c(1 c) F + kz k 2 h C1 + k1 i C2 Z ~ F 1 + k2 k2 1  1 2 1 1 2 2 æ é‚t C = 5 2 cc c k c 2 3 1 ( 1 2 + 3 )2 2 1 (1 1) 2 2 2 1 1  C1 2 k2 2 ZM = 2 (1 c ) kz k 2 kz k 2 kz k + C kz k Z~ F + (2ck c(1+ cc)) + 2Ck +  + 2 2  ~ 2 Z 2 F 2 + Ck + ZM +  ¿ A 8 °üY °. 2 1 2 2 (3.35) 2 2 2 V_  k21 (1 c1 ) kz1 k2 k22 kz2 k2 + C2 kz2 k Z~ F 2 Z~ F + C5 2  Z ~ F  h ~ Z 2 F ZM i2 (3.36) 3 êEç¿ú Ì¢ üxÍ :ÿ ü±Cq = k2 (1 c1 ) kz1 k2 1 k2 4 kz k 2 2  4 37 ~ 3T 2 2 1 6 kz2 k 7 2 Z 2 4 Z~ F 6 5 4 F 32 3 k2 C2 7 6 kz2 k 7 C2  2 2 5 4 5 Z ~ +C 5 F (3.37) 0†t k  4C > 0 ú T êÀ k ;  õ zA 8, æ é P¥« ¨‚ j¥ý ±µ positive denite  t¿ °ü éú uú ½ °. 2 2 2 2 2 V_  k21 (1 c1 ) kz1 k2 k42 kz2 k2 4 Z~ F + C5 : 0 <  < min  k (1 ¿ °ü éú u3 ý°. 1 2 c1 ) ; k42 ; 4 min f w ; v g (3.38) õ T êÀ  õ xØ 8 /[:÷ V_  2V + C5 (3.39) æ é‚t V > C Æ : V_ < 0 t¿, z ; z ; Z~F ™ 6 °ü š¦ D ¿ “½:÷¿ ½ ¶¢°. 2  D = z1 ; z1 5 1 2 R ; Z~F 2 RN 3 2 N2 +2N2 +N3 kz 1+ 1 1 2 Z k + kz k + max f ; g ~ F  C w v 2 2 2 5  Z¢, c ; c ; c ; C ; ZM ;  ™ k ; k ‚ ë t¿, k ; k õ S< Š ½¶©æõ ¿ 3  ½ °. æ Aý™ W³G½ ?݂ ÝÝì ™ E͂ êEç¿ú Ì Š ; ;  <º ú 8[£ ½ ™ CqŸõ zG ™ YAú #Í6°. CqŸõ :Ì 8 <º8[ ¡ ò „ êEç¿ @ ê ¡ò D ¿ ½¶ 6, ¡ò ¾Ÿõ zG S<£ ½ °™ Pìú Êu°. Ɗ:÷¿ :ÿCqªY :Ìý èßðù ½ˆ, unmodeled dynamics „ èßð  º½ ô ºÜ‚ © ÝKA©— ½ °™ , uü}°.  ¢ Ç\ù ” Ù ‚ 0†t parameter drift, high-gain instability, fast adaptation, high-frequency instability ¿ uÛý 1 2 3 1 1 2 1 2 38 3.3 CqŸ zG „ KA ©u °. Æ f[‚t™  ¢ ³>ú •Ä Ÿ 栊 :ÿªY (robust adaptive law)  ¢ [ê -modication Ÿªú Ì •°. é (3.29), (3.28) ‚t  w W^ ;  v V^ ¨ù -modication Ÿª‚ © 8 ý ¨÷¿t èßð ?Ý ¡ò‚ © :ÿªY  º½ W^ ; V^ ŒS ™ ,ú ““ ™ ‹£ú  6,  ™ ” –³ú S< ™ zGº½ °. -modication Ÿª ½‚ switching-, -modication Ÿª #ú :Ì£ ½ ÷6 :Ìý Ÿ ª‚ 0†t ½¶—Y KA ’< YA SšB µ†•°. 20 20, 21   ©u 3.3.3 òb’d’¥½õ Ì ŠX<‚tzGýCqŸ‚©¡ò\׺½ z = [zT ; zT ]T ® êEç¿ @ ê 8A¡ò Z~  ©æõ îê . Aý é ¿ vÇü™ èßð‚t \׺½® êEç¿ iT h  ¡òº½ za = kzk ; Z~ F ™ °ü Ù#éú T¢° 1 2 (2.25), (2.26), (3.27), (3.28), (3.29) 3.3 . kza (t)k  r 1  21 (t t0 ) kza (t0 )k + e 2 p 2 C h1 2 3 1 i 2 e  1 (t t0 ) 5 2 (3.40) ŠŸt  = max f1; w ; v g;  = min f1; w ; v g ° Z¢ ¡òº½ za  L1 üY ° 1 . 2 , norm ù° . ( p C kza (t)k1 = max kza (t )k ; 22 3 1 0 ’< . 1 2 1  ) 5 (3.41) 2 kza k2  V  21 kza k2 t¿, é (3.39) ‚ © °ü Ù#é ¢°. 2 V_  2V + C5   kza k2 + C5 1 æ é‚ ÙÀ‚ Aýüq ™ Aý B.1 ú :Ì¢°. é (B.6) ‚ c =   ;  = C ; = 0 ú  8 °ü Ù#éú u™°. 1 1 1 2 1  ; c2 5 kza (t)k  r 1  21 (t t0 ) e kza (t0 )k + 2 p 2 C h1 2 3 1 2 5 i 2 e  1 (t t0 ) = 1 2 2  ; c3 = 3 êEç¿ú Ì¢ üxÍ :ÿ ü±Cq 39 p2 æ é‚t N ½ " kza(t)k ™ #Ÿ kza(t )k ‚t ½¶  C ÷¿ ³S’ , Z™ ³S™¢°. 0†t kza(t)k  / ù #Ÿ Y ½¶  / Y ÆX¢°. 0 2 3 1 5 2 é (3.40) ú Ã8, ¡ò \׺½ ½¶šêõ m Ÿ æ©t™  õ ¾3 zA©b ¢°™ ,ú N ½ °. 3.4 ½X èqª Ž zGý CqŸ  ú ’ Ÿ æ©t ½X èqª Žú ½± •°. #Ÿ \׺ ½ „ <ºˆ:ù 2.3< 4ÌY ÆX¢°. zGº½™ k = 3; k = 8;  = 0:2; kv = 0:153;  = 0:001; ZM = 0:6142; w = v = 30; N = 30 ÷¿ zA •°. W³G½ ?Ý  ¡ò™ ¿ f •L ” ¾Ÿ™ v 3.1 ‚ Aýüq °. ” 3.2 ™ v 3.1 ‚ Aýý W³G½ ?Ý ¡ò U& ™ EÍ èqª Ž @Y õ #Í6°. ”‚t >xù <ºˆ:ú y 6, ¡ >xù 2 $‚t îê¢ backstepping Ÿªú Ì¢ CqŸ èqª Ž @Y °. ìxù $‚t îê¢ :ÿCqŸõ PÌ ¢ EÍ èqª Ž @Y °. ”‚t Ã" W³G½ ÝÝ쁂 ¢ –³ú L²  “ ML CqŸõ zG •ú :‚™, W³G½ ?Ý ¡ò¿ © Cqèß𠁠 9 ý°™ ,ú N ½ °. Š8‚ êEç¿Y :ÿCqŸõ @¦¢ üxÍ :ÿCqŸ ™ W³G½ ?Ý ¡ò‚ ©  9  { Ÿuˆ:ú  8[ L üú N ½ °. 1 2 2 40 3.4 v 3.1 W³G½ e’ ?Ý ¡ò (%) W³G½ ¡ò W³G½ ¡ò W³G½ ¡ò Cl 79.6 Cm 207.0 Cn 180.1 Clp 16.0 Cmq 77.6 Cnp 86.7 Clr 148.9 CmÆe 146.2 Cnr 94.9 ClÆa 141.8 CnÆa 48.3 ClÆr 69.8 CnÆr 228.5 ½X èqª Ž êEç¿ú Ì¢ üxÍ :ÿ ü±Cq 41 520 500 480 V (ft/s) 460 440 420 400 380 360 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0 2 4 6 8 10 time (sec) 12 14 16 18 20 12 10 8 α (deg) 6 4 2 0 −2 −4 1 0.5 β (deg) 3 0 −0.5 −1 ” 3.2 Simulation result: Adaptive backstepping controller 42 3.4 ½X èqª Ž 1.5 p (rad/sec) 1 0.5 0 −0.5 −1 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0.3 0.2 q (rad/sec) 0.1 0 −0.1 −0.2 −0.3 −0.4 0.15 0.1 r (rad/sec) 0.05 0 −0.05 −0.1 −0.15 −0.2 ” 3.2 Simulation result: Adaptive backstepping controller (continued) êEç¿ú Ì¢ üxÍ :ÿ ü±Cq 43 60 50 40 φ (deg) 30 20 10 0 −10 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0 2 4 6 8 10 time (sec) 12 14 16 18 20 30 20 θ (deg) 10 0 −10 −20 −30 −40 70 60 50 ψ (deg) 3 40 30 20 10 0 ” 3.2 Simulation result: Adaptive backstepping controller (continued) 44 3.4 ½X èqª Ž 15 δe (deg) 10 5 0 −5 −10 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0 2 4 6 8 10 time (sec) 12 14 16 18 20 25 20 δa (deg) 15 10 5 0 −5 −10 −15 15 10 δr (deg) 5 0 −5 −10 −15 −20 ” 3.2 Simulation result: Adaptive backstepping controller (continued) êEç¿ú Ì¢ üxÍ :ÿ ü±Cq 45 7000 6000 4000 x p (ft) 5000 3000 2000 1000 0 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0 2 4 6 8 10 time (sec) 12 14 16 18 20 2 4 6 8 10 time (sec) 12 14 16 18 20 5000 3000 y p (ft) 4000 2000 1000 0 4 1.1 x 10 1.08 1.06 h (ft) 3 1.04 1.02 1 0 ” 3.2 Simulation result: Adaptive backstepping controller (continued) üxÍ ü±Cq 4 $‚t™ ½ˆ‚# W³G½ ÝÝ쁂 ¢ –³ú ™èş 栊 êEç¿ ú Ì¢ :ÿCqŸªú PÌ •°. $‚t™ üxÍ CqŸªú Ì Š ½ ˆ „ ÝÝ쁂 &¢ ü± Cqèßðú zG¢°. 3 4.1 CqŸ zG „ KA ©u CqŸªù ÝÝì \½, è, Z™ \׺½ ¥½¿ vÇü™ "A¢ –‹ 4‚ š©°L A L, ” –‹ 4‚t ’Æ¢  ú uú ½ ™ LAý Í× C qŸõ zG ™ Ÿª °. 0†t CqŸªú Ì Š CqŸõ zG£ :‚™ ÝÝ ì „ ½ˆ‚ ¢ –³ ¾Ÿõ yý @A©b ¢°. ÝÝ쁂 ¢ –³ CqŸõ zG£ : 8A¢ ©æõ «q#™ E͂™ Cqèß𠁠 „ KAú Ã$£ ½ {°. :ÿCqŸ èßð ;³ [Gõ Ì Š CqŸ º½õ { ºÜèÅê À zGü™ ,Y™ µý, CqŸ™ Cqèßð uSõ ºÜèœ M™°. ¨WŸ Cq[C‚t™ ÏÌ\× š¦‚  Š H1 ® ù xÍ CqŸª÷ ¿ zGý Cq ú ¨WŸ \׺½‚ 0† àŠ PÌ ™  ߀‰ (gain scheduling) Ÿª Gý PÌü}°. ® µý Æ f[‚t™ ÷L[¶ 10  @Yõ Ì  Š üxÍ ü±CqŸõ zG •°. Æ f[‚t zG¢ Cq¨ù W³G½ Ý Ý쁂 © Œf ™ ¨ú \© êÀ ºÜ ™ " °. 46 4 üxÍ ü±Cq 47 ŸÆ A 4.1.1 CqŸõ zG ™ YA‚t™ 2 $‚t PÌ¢ A 2.1  2.5 ® ¥Í W³G½ ÝÝì „ ½ˆ‚ © Œf ™ ¨ ¾Ÿõ C¢ ™ °ü Aú Ì¢°. A W³G½ ÝÝì „ ½ˆ‚ © Œf ™ ¨ i  ¾Ÿ™ yÛ  ¢ ¥½ Æi (x) : R 7! R Z™ \½ Æi ¿ C¢ü6 ” ¥½ Z™ \½ Æi õ NL ° , 4.1 3 3 , . ki k  Æi ; i = 1; 2 4.1.2 (4.1) CqŸ zG °ü ÃSAý™ ÝÝ쁂 © Œf ™ ¨ú \© êÀ ºÜ ™ Cq¨  —ú #Í46 KA ’ 0 t¿ k k k k + '  1 ¢°. 0†t éú Ì 8 é (4.2) Tý°™ ,ú Ö3 ÃÆ ½ °. é (4.3) ú ’< Ÿ æ© °üY   “ EÍõ L² . c, kk  ' 8 L, kk > ' 8 k k 3 '3 = k k 3 '3  k k  ' k k3 + 3 '3 k k3 + 3 '3 k k 3 '3 = 3 '3 k k3  '  ' 2  ' k k k k3 + 3 '3 k k2 k k3 + 3 '3 t¿, é (4.3) ’<ü}°. (4.2) (4.3) 48 4.1 CqŸ zG „ KA ©u W³G½ ÝÝì „ ½ˆ‚ © Œf ™ ¨ú i (i = 1; 2) ¿ A 8, é (2.25), (2.26) ‚ © ¡òô‹¡ù °üY  vÇý°. z_1 = f1 ( ; ) + g1 ( ; ; ; )x2 + g1a ( ; )x2 + h1 ( ; )u + f g ( ; ; ; ) x_ d +  1 1 (4.4) 1 z_2 = f2 ( ; ; p; q; r) + f2a ( ; )x2 + g2 ( ; )u x_ d2 + 2 (4.5) X‚t tÁ¢ AY ÃSAýõ Ÿ#¿ CqŸõ zG¢ @Yõ Aý 8 °ü Aý® °. Aý é ¿ vÇü™ èßð‚t Cq³ u °üY  Aü8 è ßð ©™  ° (4.4), (4.5) 4.1 , exponentially attractive u = B2 1 ŠŸt xd; A \½ ° 2 2  k2 z2 . g1a ( ; )T z1 g1 ( ; ; ; )T z1 A2 + v2  (4.6) 2 R31 ; B2 2 R33 ™ °üY  Aü6, k1 ; k2 ™ Cq ÷¿t j . xd2 = (g1 ( ; ; ; ) + g1a ( ; )) 1  k1 z1 f1 ( ; ) f1g ( ; ; ; ) + x_ d1 + v1 A2 = f2 ( ; ) + f2a ( ; )x2  @xd2  f1 ( ; ) + g1 ( ; ; ; )x2 + g1a ( ; )x2 + f1g ( ; ; ; ) @x1 @xd2 f (; )x2 @x3 3    @v1 d d @v1 1 (g1( ; ; ; ) + g1a ( ; )) k1 I3 + @xd x_ 1 + x1 + @' '_ 1 @xd2 B2 = g2 ( ; ) h ( ; ) @x1 1  (4.7) (4.8) (4.9) &‚ [´ý ¨ v ; v ™ °üY  Aý° 1 . 2 v1 = 1 k1 k2 Æ k1 k3 + 3 '3 1 (4.10) 4 üxÍ ü±Cq 49 2 v2 = k2 k + ' Æ2 (4.11) ŠŸt  = z Æ ;  = z Æ ; ' = exp t 6 ;  ™ zGº½¿t j \½ ° ”ýL Æ ; Æ ™ A ú T ™ ¥½ Z™ \½ ° 1 1 1 1 2 , 2 2 4.1 2 . . ’< °üY ù òb’d’ ¥½õ L² . . V = 12 z1T z1 + 12 z2T z2 (4.12) é (4.4), (4.7) ú é (4.12) ‚  8 °üY °.  @V  f1 ( ; ) + g1 ( ; ; ; )xd2 + g1a ( ; )xd2 + h1 ( ; )u + f1g ( ; ; ; ) x_ d1 + 1 V_ = @z 1 @V + (g ( ; ; ; ) + g ( ; )) x xd  + @ V z_ @z1 @V = @z [ 1 = 1a 1 2 @z2 2 k1 z1 + h1 ( ; )u + 1 + v1 ] + 2 @V (g ( ; ; ; ) + g1a ( ; )) x2 @z1 1 xd2  @V + @z z_ 2 2 k1 kz1 k2 + z1T (h1 ( ; )u + 1 + v1 ) + z1T g1 ( ; ; ; )z2 + z1T g1a ( ; )z2 + z2T z_2 (4.13) æ é‚ é (4.5), (4.8), (4.9) õ  8 °üY °. V_ = k1 kz1 k2 + z1T (h1 ( ; )u + 1 + v1 ) + z1T g1 ( ; ; ; )z2 + z1T g1a ( ; )z2  + zT f ( ; ; p; q; r) + f a ( ; )x + g ( ; )u 2 2 2 @xd2 x_ @x1 1 = 2 @xd2 x_ @x3 3 @xd2 d x_ @xd1 1 2 @xd2 d x @ x_ d1 1  @xd2 '_ @' k1 kz1 k2 + z1T (h1 ( ; )u + 1 + v1 ) + z1T g1 ( ; ; ; )z2 + z1T g1a ( ; )z2 + zT [A + B u] 2 = 2 2 k1 kz1 k2 + z1T (h1 ( ; )u + 1 + v1 ) + zT g ( ; ; ; )T z + g a ( ; )T z + A + B u +   2 1 1 1 1 2 2 2 (4.14) 50 4.1 CqŸ zG „ KA ©u æ é‚ é (4.6) ú  8 °üY °. V_ = k1 kz1 k2 k2 kz2 k2 + z1T (h1 ( ; )u + 1 + v1 ) + z2T (2 + v2 ) = k1 kz1 k2 k2 kz2 k2 + z1T  0   + v + zT ( + v ) 1 1 2 2 (4.15) 2 ŠŸt 0 , h ( ; )u +  °. æ é‚t h ( ; )u õ y“¨÷¿ s Š 0 ú A  •™Ú, h ( ; )u ™ ]ý:÷¿ ¨WŸ Cq8‚ © Œf ™ * Ûú y Ÿ :[ ‚ ” ¾Ÿ Í It y“¨÷¿ L²©ê Cqèß𠁠‚ À –³ú yX“ M™ °. æ é‚ é (4.10), (4.11) ú  L, A 4.1 ú :Ì 8 °üY °. 1 1 1 1 1 1 z1T 1 k1 k2 Æ k1 k3 + 3 exp 3t 1 V_ = k1 kz1 k2 k2 kz2 k2 + z1T 01 + z2T 2  k1 kz1 k2 k2 kz2 k2 + k1 k = k1 kz1 k2 k2 k1 k4 z2T 2 k2 k +  exp t Æ2 k2 k2 k2 k +  exp t + k k t t kz k + k k  exp t + kkkk+ exp exp t k k +  exp 2 2 1 1 3 k1 k + 3 exp 3 3 3 3 3 2 t 2 3 2 (4.16) æ é‚ ÃSAý 4.1 ú :Ì 8 °üY °. V_  k1 kz1 k2 k2 kz2 k2 + 2 exp t (4.17) : 0 <  < min fk ; k g õ T êÀ  õ xØ 8 /[:÷¿ °ü éú u3 ý°. 1 2 V_  2V + 2 exp t (4.18) 0†t èßð ©™ exponentially attractive  °. æ Aý™ W³G½ ?݂ ÝÝì ™ E͂ üxÍ CqŸªú :Ì Š ; ;  <ºú 8[£ ½ ™ CqŸõ zG ™ YAú #Í6°. Z¢, ÝÝì „ ½ˆ ‚ © Œf ™ ¨ ¾Ÿõ yý 8A£ ½ ú :, CqŸõ :Ì 8 <º8[ ¡ò 0 ÷¿ ½¶¢°™ ,ú Êu°. ¢`, æ Aý‚t™ °üY ù A 8 üq P Ìü}°. 4 üxÍ ü±Cq 51 A °ü 0 U&¢° j j  m; j j  m; jj  m õ T ™ ? ; ;  ®   ‚  Š g ( ; ; ; )+ g a ( ; ) ™  ° . 4.2 1 invertible 1 . ÃSAý 2.1 ‚t N ½ " g ( ; ; ; ) ™ invertible  °. Z¢, g a ( ; ) ™ šê p; q; r ‚ © Œf ™ W³G½ *Û÷¿t, v ‚ Aýý , ¤ g ( ; ; ; ) ‚ ü© ” ¾Ÿ Í Ÿ :[‚ g ( ; ; ; ) + g a ( ; ) ¨‚t –³ Í °. 0†t æ ® ù Aú Ì£ ½ °. 1 1 1 1 4.1.3 1   ©u òb’d’¥½õ Ì Š, X<‚tzGýCqŸ‚©¡ò\׺½ z = [zT ; zT ]T  ©æõ îê . 1 Aý é ü Ù#éú T¢° 4.2 (4.4), (4.5), (4.6), (4.7), (4.8), (4.9) 2 ¿ vÇü™ èßð‚t ¡ò \׺½ z ™ ° . kz(t)k  e (t t0 ) kz p (t )k + 22 1 e 0  t0 h 2 e  (t t0 ) 2 e (t t0 ) i (4.19) ’< é (4.18) ‚ © °ü Ù#é ¢°. . V_  2V + 2 exp t æ é‚ ÙÀ‚ Aýüq ™ Aý B.1 ú :Ì¢°. é (B.6) ‚ c = c = 2; =  ú  8 °ü Ù#éú u™°. 1 kz(t)k  e (t t0 ) kz p (t )k + 22 1 e 0  t0 h 2 e  (t t0 ) 2 2 e (t t0 ) 1 2 ; c3 = ;  = i é (4.19) õ Ã8, ¡ò \׺½ ½¶šêõ m Ÿ æ©t™ ;  õ ¾3 zA©b ¢° ™ ,ú N ½ °. 52 4.2 4.2 ½X èqª Ž ½X èqª Ž zGý CqŸ  ú ’ Ÿ æ©t ½X èqª Žú ½± •°. #Ÿ \׺½ „ <ºˆ:ù 2.3< 4ÌY ÆX¢°. zGº½™ k = 3; k = 8;  = 0:05;  = 0:1 ¿ z A •°. W³G½ ?Ý ¡ò™ ¿ f •L, ” ¾Ÿ™ v 4.1 ‚ Aýüq °. ” 4.1 ù v 4.1 ‚ Aýý W³G½ ?Ý ¡ò U& ™ EÍ èqª Ž @Y õ #Í6°. ”‚t >xù <ºˆ:ú y 6 ¡ >xù 2$‚t îê¢ backstepping Ÿªú Ì¢ CqŸ èqª Ž @Y °. ìxù $‚t îê¢ CqŸõ PÌ ¢ EÍ èqª Ž @Y °. ”‚t Ã" CqŸª‚ ¢ Cqèßðù W³ G½ ?Ý ¡ò U& ™ EÍ‚ê  9  { Ÿuˆ:ú  8[ L üú N ½ °. 1 2 4 üxÍ ü±Cq 53 v 4.1 W³G½ e’ ?Ý ¡ò (%) W³G½ ¡ò W³G½ ¡ò W³G½ ¡ò Cx 63.6 Cy 109.4 Cz 118.2 Cxq 30.0 Cyp 70.0 Czq 46.2 CxÆe 63.6 Cyr 55.7 CzÆe 114.2 Cl 53.1 CyÆa 110.4 Cn 60.6 Clp 51.2 CyÆr 108.3 Cnp 136.3 Clr 45.9 Cm 74.2 Cnr 46.1 ClÆa 118.2 Cmq 54.9 CnÆa 129.5 ClÆr 46.2 CmÆe 72.2 CnÆr 58.7 54 4.2 ½X èqª Ž 550 500 V (ft/s) 450 400 350 300 250 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0 2 4 6 8 10 time (sec) 12 14 16 18 20 20 α (deg) 15 10 5 0 −5 0.6 β (deg) 0.4 0.2 0 −0.2 −0.4 ” 4.1 Simulation result: Robust backstepping controller üxÍ ü±Cq 55 0.8 0.6 p (rad/sec) 0.4 0.2 0 −0.2 −0.4 −0.6 −0.8 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0.3 0.2 q (rad/sec) 0.1 0 −0.1 −0.2 −0.3 −0.4 0.25 0.2 0.15 r (rad/sec) 4 0.1 0.05 0 −0.05 −0.1 ” 4.1 Simulation result: Robust backstepping controller (continued) 56 4.2 ½X èqª Ž 60 50 φ (deg) 40 30 20 10 0 −10 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0 2 4 6 8 10 time (sec) 12 14 16 18 20 40 30 20 θ (deg) 10 0 −10 −20 −30 −40 80 ψ (deg) 60 40 20 0 −20 ” 4.1 Simulation result: Robust backstepping controller (continued) üxÍ ü±Cq 57 15 δe (deg) 10 5 0 −5 −10 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0 2 4 6 8 10 time (sec) 12 14 16 18 20 15 δa (deg) 10 5 0 −5 −10 25 20 15 δr (deg) 4 10 5 0 −5 −10 −15 ” 4.1 Simulation result: Robust backstepping controller (continued) 58 4.2 ½X èqª Ž 6000 5000 px (ft) 4000 3000 2000 1000 0 0 2 4 6 8 10 time (sec) 12 14 16 18 20 0 2 4 6 8 10 time (sec) 12 14 16 18 20 2 4 6 8 10 time (sec) 12 14 16 18 20 5000 4000 py (ft) 3000 2000 1000 0 −1000 4 1.15 x 10 h (ft) 1.1 1.05 1 0.95 0 ” 4.1 Simulation result: Robust backstepping controller (continued) @Á 5 Æ f[‚t™ üxÍ ¨WŸ CqŸõ zG ™ “ªú CK L, CKý zG“ª‚ ¢ ¨WŸ èßð KAú ½¡:÷¿ ©u •°. "&, üxÍ :ÿCq ÁY üx Í Cq Áú :Ì Š ?Ý ¡ò „ ½ˆ‚ © &¢ "ú #Í4™ ¨WŸ C qŸ zG“ªú C蠕°. Z¢, Æ f[‚t CK¢ CqŸ zGŸªú F-16 üxÍ ¨W Ÿ ?݂ :Ì Š ½X èqª Žú ½±¥÷¿, ”  ú *’ •°. ” @Yõ A ý 8 °üY °. 1. 2. ¨WŸ W³G½ ?Ý ¡ò „ ½ˆ U& “ M™°L A L, backstepping Ÿª‚ © üxÍ ¨WŸ CqŸõ zG ™ “ªú CK •°. Ÿªù ŸU ‚ üxÍ ¨WŸ CqŸ‚ PÌüqµÏ ˆÞxÍܟªY µý, W³G½ Lò y Û¨ú PÌ “ M÷6 nonminimum phase system ‚ê :Ì£ ½ °™ " °. Z¢, /–‚ PÌü™ timescale separation Aú Ì¢ ¨WŸ CqŸ zGŸªY µ ý KAú ’< Ÿ æ© üÇì: Aú PÌ “ M™°. Œ, Æ f[‚t CK ¢ üxÍ ¨WŸ CqŸ zGŸªù ¨WŸ ô:"ú :<& ßÌ¢ CqŸ zG Ÿª 6, CqŸ zGŸª :Ìý ¨WŸ èßð KAú ½¡:÷¿ ’<£ ½ °™ $> °. üxÍ :ÿCq ÁY êEç¿ú Ì Š ¨WŸ W³G½ ?Ý ¡ò „ ½ ˆ‚ © &¢ üxÍ ¨WŸ CqŸõ zG ™ “ªú CK •°. Ÿªù êEç¿ universal approximation "ú Ì Š êEç¿ ½ˆ „ ?Ý ¡ ò‚ © Œf ™ ¨ú AÝ& vÇ£ ½ °L A L, êEç¿ ;³ ½ 59 60 ˆ „ ?Ý ¡ò‚ © Œf ™ ¨ú \© êÀ êEç¿ @ êõ :ÿC qªY‚ © ºÜèř Ÿª °. W³G½ ?Ý ¡ò „ ½ˆ U& ™ E ͂ê <º8[ ¡ò uniformly ultimately bounded  °™ ,ú ’< •°. 3. üxÍ Cq Áú Ì Š ¨WŸ W³G½ ?Ý ¡ò „ ½ˆ‚ © & ¢ üxÍ ¨WŸ CqŸõ zG ™ “ªú CK •°. Ÿªù ½ˆ „ ?Ý ¡ò‚ © Œf ™ ¨ ¾Ÿ "A¢ ©æ K‚ j¥ý°L A L, ” –‹ K ‚t &¢ "ú #Í4™ CqŸõ zG ™ Ÿª °. W³G½ ?Ý ¡ò „ ½ˆ U& ™ E͂ê <º8[ ¡ò exponentially attractive  °™ ,ú ’<  •°. °üY ù u ³ó ½±üqb ¢°L fý°. Æ f[‚t üxÍ ¨WŸ ?Ý  CqŸõ zG£ :‚™ ¨WŸ Ïô“Aé üxÍ ¨ú \© (cancellation)  L KA ú æ¢ xÍ Cq¨ú 8  •°. Ïô“Aé  ¨ù ¨WŸ ô‹¡: "ú #Í4 L ÷t¿ üxÍ ¨ KAú ©X™ Å÷¿ Ì “™ M™°. 0†t üxÍ ¨ú \© ™ Í× CqŸõ zG Ÿ ð™, \׺½ ºÜ‚ 0ô W³G½ ºÜ " ú ßÌ $# °ô Í× òb’d’ ¥½õ Ì Š ¨WŸ ]ý: "ú ?Û& ßÌ ™ CqŸõ zG ™ “ªú u©b £ , °. Z¢, Æ f[‚t™ :ÿCq® CqŸªú Ì Š W³G½ ¡ò‚ © &¢ "ú #Í4™ CqŸõ zG  •°. Cqèßð &‚ –³ú yX™ ř¿™ ÝÝì ½‚ unmodeled dynamics °. ¨WŸ E͂™ “Ÿ „ ôŸ ô‹¡: "‚ ©  JÜþ ½ ÷t¿,  ¢ –³‚ © &¢ "ú #Í4™ CqŸõ zG ™ ,ú 8ó u© b £ , °. ÷L[¶ [1] Meyer, G., Su, R., and Hunt, L. R., Application of Nonlinear Transformation to Automatic Flight Control, Automatica, Vol. 20, No. 1, 1984, pp. 103107. [2] Lane, S. H. and Stengel, R. F., Flight Control Design Using Non-linear Inverse Dynamics, Automatica, Vol. 24, No. 4, 1988, pp. 471483. [3] Hedrick, J. K. and Gopalswamy, S., Nonlinear Flight Control Design via Sliding Methods, Journal of Guidance, Control, and Dynamics, Vol. 13, No. 5, 1990, pp. 850858. [4] Menon, P., Badgett, M., and Walker, R., Nonlinear Flight Test Trajectory Controllers for Aircraft, Journal of Guidance, Control, and Dynamics, Vol. 10, No. 1, 1987, pp. 6772. [5] Bugajski, D. J. and Enns, D. F., Nonlinear Control Law with Application to High Angle-ofAttack Flight, Journal of Guidance, Control, and Dynamics, Vol. 15, No. 3, 1992, pp. 761767. [6] Snell, S. A., Enns, D. F., and Garrard Jr., W. L., Nonlinear Inversion Flight Control for a Supermaneuverable Aircraft, Journal of Guidance, Control, and Dynamics, Vol. 15, No. 4, 1992, pp. 976984. [7] Schumacher, C. and Khargonekar, P. P., Stability Analysis of a Missile Control System with a Dynamic Inversion Controller, Journal of Guidance, Control, and Dynamics, 1998, pp. 508515. 61 Vol. 21, No. 3, 62 [8] Schumacher, C. and Khargonekar, P. P., Missile Autopilot Designs Using Gain Scheduling and Dynamic Inversion, H1 Control with Journal of Guidance, Control, and Dynamics, Vol. 21, No. 2, 1998, pp. 234243. [9] Krsti¢, M., Kanellakopoulos, I., and Kokotovi¢, P., Nonlinear and Adaptive Control Design, John Wiley and Sons, New York, 1995. [10] Qu, Z., Robust Control of Nonlinear Uncertain Systems, John Wiley and Sons, New York, 1998. [11] Funahashi, K., On the Approximate Realization of Continuous Mapping by Neural Networks, Neural Networks, Vol. 2, No. 3, 1989, pp. 183192. [12] Hornik, K., Stinchcombe, M., and White, H., Multilayer Feedforward Networks are Universal Approximators, Neural Networks, Vol. 2, No. 5, 1989, pp. 359366. [13] Farrell, J. A., Stability and Approximator Convergence in Nonparametric Nonlinear Adaptive Control, IEEE Transactions on Neural Networks, Vol. 9, No. 5, Sept. 1998, pp. 10081020. [14] Lewis, F. L., Yesildirek, A., and Liu, K., Multilayer Neural-Net Robot Controller with Guaranteed Tracking Performance, IEEE Transactions on Neural Networks, Vol. 7, No. 2, March 1996, pp. 388399. [15] Singh, S. N., Yim, W., and Wells, W. R., Direct Adaptive and Neural Control of Wing-Rock Motion of Slender Delta Wings, Journal of Guidance, Control, and Dynamics, Vol. 18, No. 1, 1995, pp. 2530. [16] Kim, B. S. and Calise, A. J., Nonlinear Flight Control Using Neural Networks, Guidance, Control, and Dynamics, Vol. 20, No. 1, 1997, pp. 2633. Journal of ÷L [¶ 63 [17] Rysdyk, R. T. and Calise, A. J., Adaptive Model Inversion Flight Control for Tilt-Rotor Aircraft, Journal of Guidance, Control, and Dynamics, Vol. 22, No. 3, 1999, pp. 402407. [18] Stevens, B. L. and Lewis, F. L., Aircraft Control and Simulation, John Wiley and Sons, New York, 1992. [19] Morelli, E. A., Global Nonlinear Parametric Modeling with Application to F-16 Aerodynamics, Tech. rep., NASA Langley Research Center, 1998. [20] Ioannou, P. A. and Sun, J., Robust Adaptive Control, Prentice Hall, New Jersey, 1996. [21] Narendra, K. S. and Annaswamy, A. M., Stable Adaptive Systems, 1989. [22] Khalil, H. K., Nonlinear Systems, Prentice Hall, New Jersey, 1996. Prentice Hall, New Jersey, Appendix A F-16 ¨WŸ ?Ý [?/! A.1 F-16 ¨WŸ ôLA _vG (body xed axis) ‚ ¢ [?/!™ °üY °. Ix = 9496 slug  ft2 Iy = 55814 slug  ft2 Iz = 63100 slug  ft2 Ixz = 982 slug  ft2 Ii ™ [?/!¿ uý ¨÷¿t v A.1 ‚ Aýüq °. A.2 W³G½ ?Ý WŸ‹¡: *Y ?/!™ °üY  ‹ü, ˜y¤, šê, Cq³‚ ¢ ¥ ½¿ vèý°. F-16 ¨WŸ W³G½ ?Ýù ÷L[¶ 19  Òõ Ì •÷6, Æ f [‚t™ Cq³ W³G½ ?݂ xÍ:÷¿ vÇý°L A •°. CxT CyT CzT ClT = Cx( ) + CxÆe Æe + 2cqV Cxq ( ) (A.1) = Cy + CyÆa Æa + CyÆr Ær + 2bpV Cyp ( ) + 2brV Cyr ( ) = Cz ( ; ) + CzÆe Æe + 2cqV Czq ( ) = Cl ( ; ) + ClÆa ( ; )Æa + ClÆr ( ; )Ær + 2bpV Clp ( ) + 2brV Clr ( ) 64 (A.2) (A.3) (A.4) A F-16 ¨WŸ ?Ý 65 = Cm( ) + CmÆe ( )Æe + 2cqV Cmq ( ) CmT (A.5) = Cn( ; ) + CnÆa ( ; )Æa + CnÆr ( ; )Ær + 2bpV Cnp ( ) + 2brV Cnr ( ) CnT (A.6)  W³G½ ¨ù °ü é÷¿ GSü6,  º½ ½X™ v A.2 ‚ Aýüq  °. W³G½õ GS£ :‚™ ‹ü, ˜y¤, Cq8 ºæ ³æ¿ radian ú PÌ¢ °. Cx = [ a1 ; a2 ; a3 ; a4 ][ 1; ; 2 ; 3 ]T CxÆe =a Cxq = [ b ; b ; b ; b ; b ][ 1; ; ; ; ]T 5 1 2 3 4 2 5 3 4 Cy = c1 CyÆa =c 2 CyÆr =c 3 Cyp = [ d ; d ; d ; d ][ 1; ; ; ]T Cyr = [ e ; e ; e ; e ][ 1; ; ; ]T 1 1 2 3 2 2 4 3 3 2 4 3 Cz = [ f1 ; f2 ; f3 ; f4 ; f5 ][ 1; ; 2 ; 3 ; 4 ]T  (1 2 ) CzÆe =f Czq = [ g ; g ; g ; g ; g ][ 1; ; ; ; ]T 6 1 2 3 4 2 5 3 4 Cl = [ h1 ; h2 ; h3 ; h4 ; h5 ; h6 ; h7 ; h8 ][ ; ; 2 ; 2 ; 2 ; 3 ; 4 ; 2 2 ]T Clp = [ i1 ; i2 ; i3 ; i4 ][ 1; ; 2 ; 3 ]T Clr = [ j ; j ; j ; j ; j ][ 1; ; ; ; ]T 1 2 3 4 2 5 3 4 ClÆa = [ k ; k ; k ; k ; k ; k ; k ][ 1; ; ; ; ; ; ]T ClÆr = [ l ; l ; l ; l ; l ; l ; l ][ 1; ; ; ; ; ; ]T 1 1 2 2 3 3 4 4 5 5 6 6 7 7 2 2 2 3 2 2 66 A.2 W³G½ ?Ý Cm = [ m1 ; m2 ; m3 ][ 1; ; 2 ]T CmÆe = [ m ; m ; m ][ 1; ; ]T Cmq = [ n ; n ; n ; n ; n ; n ][ 1; ; ; ; ; ]T 4 1 5 2 6 2 3 4 5 2 6 3 4 5 Cn = [ o1 ; o2 ; o3 ; o4 ; o5 ; o6 ; o7 ][ ; ; 2 ; 2 ; 2 ; 2 2 ; 3 ]T Cnp = [ p1 ; p2 ; p3 ; p4 ; p5 ][ 1; ; 2 ; 3 ; 4 ]T Cnr = [ q ; q ; q ][ 1; ; ]T 1 2 2 3 CnÆa = [ r ; r ; r ; r ; r ; r ; r ; r ; r ; r ][ 1; ; ; ; ; ; ; ; CnÆr = [ s ; s ; s ; s ; s ; s ][ 1; ; ; ; ; ]T 1 1 2 2 3 3 4 4 5 5 6 6 7 8 9 2 10 2 2 3 2 3 3 ; 3 ]T A F-16 ¨WŸ ?Ý 67 v A.1 [?/!¿ uý ¨ A 2 Ixz I1 = Iz (IIxzIzIyI)+ 2 xz +Iz ) I2 = IxzI(xIIxz IIyxz 2 I3 = Ix IzIz Ixz 2 I4 = Ix IIzxzIxz 2 I5 = IzIyIx I6 = IIxzy I7 = I1y 2 Ixz I8 = Ix (IIxxIzIyI)+ 2 xz I x I9 = Ix Iz Ixz 2 7:7012  10 2:7548  10 1:0548  10 1:6415  10 9:6040  10 1:7594  10 1:7917  10 7:3361  10 1:5873  10 1 2 4 6 1 2 5 1 5 68 A.2 v a b 1:943367  10 2 4:833383  10 1 2:903457  10 1 6:075776  10 1 c d e f g h i j 1:145916  100 1:006733  10 1 1:378278  10 1 8:071648  10 1 8:399763  100 3:054956  10 1 4:126806  10 1 1 6:250437  10 2 1:463144  10 1 2:635729  10 2 1:4798  10 2 1:192672  10 1 k l m n o 2:978850  10 1 4:516159  10 1 8:0630  10 2 5:159153  10 2:993363  10 1 r 2 1:189633  10 1 4:354000  10 1 5:776677  10 1 1:189974  10 1 6:067723  10 1 4:073901  10 2 2:192910  10 2 7:4523  10 2 1 4:211369  100 3:464156  10 0 3:746393  10 1 4:928702  10 1 5:0185  10 1 2:677652  10 2 3:298246  10 1 3:698756  10 1 1:167551  10 1 2:107885  10 4:404302  10 3:348717  10 2 1:373308  10 1:588105  10 8:115894  10 3:337476  10 2:141420  10 4:276655  10 2 5:199526  10 1 1:004297  10 1 1:237582  10 0 1 2 1 1:156580  10 1:642479  10 2 9:035381  10 1 7:422961  101 1 4:260586  100 6:923267  100 4:177702  10 9:162236  100 3:292788  102 6:848038  102 0 4:775187  100 1:672435  10 1:026225  101 2 1:357256  10 1:098104  10 1:101964  10 9:100087  10 1 2:835451  10 1:247721  10 0 7:391132  10 0 0 3:253159  10 2 3:152901  10 3 3:7756  10 15 3:213068  10 1 1:579864  10 2 3:598636  101 0 2:411750  102 1 0 2 0 s 6:016057  10 8:679799  10 6:988016  10 1:131098  101 0 0 q 8:644627  100 6:594004  10 0 p 1 3:554716  10 0 4:120991  102 2:136104  10 1 1:058583  10 2:172952  10 W³G½ ?Ý º½ 4:132305  10 1 4:080244  102 A.2 W³G½ ?Ý 1 0 4:851209  10 1 5:817803  10 2 5:2543  10 1 2:247355  102 2:003125  10 1 8:476901  10 1 1:926178  10 1 7:641297  10 1 6:233977  10 2 4:013325  100 6:573646  10 3 2:302543  10 3:535831  10 1 1 2:512876  10 1 2:514167  10 2 2:038748  10 1 òb’d’ KA Á Appendix B A °ü 0 ® T = T (Æ) > 0 U& 8 yۓAé x_ = f (t; x)  © x(t) ™  ° B.1 uniformly ultimately bounded . kx(t0)k < Æ =) kx(t)k  B; 8t  t0 + T; 8Æ 2 (0; d) A  B.2 °ü 0 ® = (Æ) U& 8yۓAé x_ = f (t; x) x=0ù  ° equilibrium point exponentially attractive kx(t0 )k < Æ =) kx(t)k  (Æ)e Aý B.1 (B.1) . 8t  t0 ; 8Æ 2 (0; d) (t t0 ) ; \׺½ x 2 Rn ‚ ¢ °ü èßðú L²  (B.2) . x_ = f (t; x) ? x 2 Rn ‚  Š V (x) °ü [Géú T ™ òb’d’ ¥½†L  8 , c1 kxk2  V (x)  c2 kxk2 (B.3) @V f (t; x)  c3 kxk2 + e t @x (B.4) èßð ©™ °ü Ù#éú T¢° (i) cc = EÍ . 3 2 kx(t)k  r c2 e c1 r c t t ) 0 c kx(t0 )k + c (t 2 t0 ) e 1 c t t ) 0 c r kx(t0 )k + c c c2 c e 1 3 2 3 2 2( c t c 3 2 2 (B.5) (ii) cc 6= EÍ 3 2 r kx(t)k  cc2 e 1 3 2 2( 69 t0 h 2 e (t t0 ) 2 e c t t )i 0 c 3 2 2( (B.6) 70 ŠŸt c ; c ; c ; ; ™ j \½ ° ’< òb’d’ ¥½ è‚ ¢ yÛ V_ ™ é (B.3), (B.4) ‚ © °ü Ù#éú T¢ °. 1 2 . 3 . V_  cc3 V + e ^¿Ï ¥½ W = pV ¿ A 8 W_ = t 1 pV_ V 2 t¿, W_ ù °ü Ù#éú T¢°. p W_  2cc3 W + 2 e t 2 1 æ é‚ Comparison Lemma õ :Ì 8 W (t) ™ °ü Ù#éú T¢°. 22 W (t)  e c t t ) 0 c p Zt W (t0 ) + 2 e c t t ) 0 c p W (t0 ) + (t2 t0 ) e 3 2 2( (i) cc = EÍ 3 2 W (t)  e 3 2 2( t0 c t ) c e 2  d 3 2 2( c t c 3 2 2 (ii) cc 6= EÍ 3 2 h i c W (t0 ) + p c c2 c e t e (t t ) e c (t t ) 3 2 Z¢, kx(t)k  Wpc(t) L W (t0)  pc2 kx(t0)k t¿ kx(t)k ™ °ü Ù#éú T¢°. W (t)  e (i) = EÍ c t t ) 0 c 3 2 2( 2 0 0 2 3 2 2 0 1 c3 c2 kx(t)k  r c2 e c1 c t t ) 0 c 3 2 2( r kx(t0 )k + c (t 2 t0 ) e 1 c t c 3 2 2 (ii) cc 6= EÍ 3 2 kx(t)k  r c2 e c1 c t t ) 0 c 3 2 2( r kx(t0 )k + c c c2 c e 1 3 2 t0 h 2 e (t t0 ) 2 e c t t )i 0 c 3 2 2( CqŸ „ Ïô“Aé yÛ Appendix C C.1 2, 3 2, 3 $‚t PÌý CqŸ yÛ $‚t PÌý xd ¨ù é (2.28) ‚t °üY  zGü}°. 2 xd2 = g1 ( ; ; ; ) 1  f1 ( ; ) f1g ( ; ; ; ) + x_ d1 k1 z1  , R (x ; x ) s (x ; x ) 1 1 3 1 1 3 æ é‚t xd õ R (x ; x ) 2 R  ; s (x ; x ) 2 R  ¿ A •°. :, é (2.29), (2.30) ‚t PÌý @x@xd 2 R  ; @x@xd 2 R  ¨ù °üY  GSý°.y 1 2 = =   3 3 3 3 3 2 1 @xd2 @x1 @xd2 @x3 1 @R1 (x1 ;x3 ) s 1 @ @R1 (x1 ;x3 ) s 1 @ 1 3 2 3 (x ; x ) 1 1 2 @R1 (x1 ;x3 ) s 1 @ 3 3 1 3  (x ; x ) 1 3 @R1 (x1 ;x3 ) s 1 @ @s (x ; x ) (x ; x ) 0  + R (x ; x ) @x 1 3 3 1 1 1 3 æ é yÛ¨ù °üY °. @R1 (x1 ; x3 ) @ @R1 (x1 ; x3 ) @ @R1 (x1 ; x3 ) @ @R1 (x1 ; x3 ) @ @s1 (x1 ; x3 ) @x1 @s1 (x1 ; x3 ) @x3 y x 2 Rm ; y 2 Rn Æ: , @y @x ™( i; j 1 1  @s (x ; x ) (x ; x ) + R (x ; x ) @x 1 3 3 3 @g1 ( ; ; ; ) R1 (x1 ; x3 ) @ = R1(x1; x3) @g1 ( ;@ ; ; ) R1(x1; x3) = R1(x1; x3) @g1 ( ;@ ; ; ) R1(x1; x3) = R1(x1; x3) @g1 ( ;@ ; ; ) R1(x1; x3) ; ; ) = k1 I33 @f1@x( ; ) @f1g ( ; @x1 1 @f1g ( ; ; ; ) = @x3 @y ) ¨ @xi  ±µú y¢° j = R1 (x1 ; x3 ) n m 71 . 1 1 3 1 1 1 3 72 C.2 4 C.2 4 $‚t PÌý CqŸ yÛ $‚t PÌý CqŸ yÛ 4 $‚t PÌý xd ¨ù é (4.7) ‚t °üY  zGü}°. 2 xd2 = (g1 ( ; ; ; ) + g1a ( ; )) 1  k1 z1 f1 ( ; ) f1g ( ; ; ; ) + x_ d1 + v1  , R (x ; x ) s (x ; x ) 2 1 3 2 1 3 æ é‚t xd õ R (x ; x ) 2 R  ; s (x ; x ) 2 R  ¿ A •°. :, é (4.8), (4.9) ‚ t PÌý @x@xd 2 R  ; @x@xd 2 R  ¨ù °üY  GSý°. 2 2 2 1 @xd2 @x1 @xd2 @x3 = =   1 3 3 @R2 (x1 ;x3 ) s 2 @ @R2 (x1 ;x3 ) s 2 @ 3 3 2 1 3 3 1 3 2 2 3 (x ; x ) 1 3 3 @R2 (x1 ;x3 ) s 2 @  (x ; x ) 1 3 @R2 (x1 ;x3 ) s 2 @ @s (x ; x ) (x ; x ) 0  + R (x ; x ) @x 1 3 3 1 2 1 3 2 1  @s (x ; x ) (x ; x ) + R (x ; x ) @x 1 3 2 1 3 3 æ é yÛ¨ù °üY °. @R2 (x1 ; x3 ) @ @R2 (x1 ; x3 ) @ @R2 (x1 ; x3 ) @ @R2 (x1 ; x3 ) @ @s(x1 ; x3 ) @x1 @s(x1 ; x3 ) @x3 Z¢, v 1 = = = = = = @g1 ( ; ; ; ) + g1a ( ; ) R2 (x1 ; x3 ) @ @g ( ; ; ; ) + g1a ( ; ) R2 (x1 ; x3 ) 1 R2 (x1 ; x3 ) @ @g ( ; ; ; ) + g1a ( ; ) R2 (x1 ; x3 ) 1 R2 (x1 ; x3 ) @ @g ( ; ; ; ) + g1a ( ; ) R2 (x1 ; x3 ) 1 R2 (x1 ; x3 ) @ @f1 ( ; ) @f1g ( ; ; ; ) @v1 k1 I33 + @x @x1 @x1 1 @f1g ( ; ; ; ) @x3 R2 (x1 ; x3 ) 2 R31 ù é (4.10) ‚t °üY  zGü}°. v1 = :, @x@v 1 1 1 k1 k2 Æ k1 k3 + 3 '3 1 2 R33 ù °üY  GSý°. @v1 @x1 I33 + 21 1T 3 k1k3 1 1T Æ1 Æ 1 + 3 k1 k + 3 '3 (k1 k3 + 3 '3)2 = k k 1 2 1 k1 k2 @Æ1 k1 k3 + 3 '3 @x1 3 2 1 1 3 C CqŸ „ Ïô“Aé yÛ C.3 73 Ïô“Aé yÛ Ïô“Aé yÛ¨ù °üY  GSý°. 2 3 6sin tan 0 @g ( ; ; ; ) 6 = 666 cos 0 @ 4 0 0 cos tan 7 7 sin 777 5 0 1 2 @g1 ( ; ; ; ) @ = 6 6 6 6 6 4 2 cos cos2 0 0 3 0 0 0 7 7 sin cos2 cos 777 5 0 0 60 6 @g ( ; ; ; ) 6 = 660 0 @ 4 0 cos  tan  1 2 @g1 ( ; ; ; ) @ @g1a ( ; ) @ 0 = 0 0 6 6 6 6 6 4 = 4Sm 0 0 2 6 6 6 6 6 6 6 6 6 6 6 6 4 2 @g1a ( ; ) @ = 6 S 6 6 4m 664 3 0 0   sin cos2 3 0 0   cos cos2 sin  tan  7 7 7 7 7 5 7 7 7 7 7 5 0 0 1 Cz ( )c q C A sin @Cxq ( ) c+ cos @Czq ( ) c cos @ cos @ cos cos B @ 0 yp b cos @C@ ( ) B @ Cx ( )c q sin sin Cxq ( )c cos sin 0 0 sin Cyp ( )b 0 cos @Cxq ( ) @ c 3 sin cos 0 1 sin Czq ( )c C sin sin A @Czq ( ) c @ 0  0  cos sin Cxq ( )c+ cos2 Czq ( )c sin sin cos2 cos cos Cxq ( )c 0 cos 7 7 7 7 7 7 7 7 @C ( ) y r @ b7 7 7 7 5 sin cos Czq ( )c  0 sin Cyr ( ) 0 3 7 7 7 b7 7 5 74 C.3 0 2 1 Cz ( ; )qS C A sin @Cx ( ) cos @Cz ( ; ) qS + qS cos @ cos @ cos cos @f1 ( ; ) @ B 6 6 @ 6 6 60 6 6 sin sin [T +C ( )qS ] x 6B 6@ 6 @Cx ( ) qS 6 cos sin @ 6 4 1 = mV 0 2 @f1 ( ; ) @ 60 6 6 6B 6@ 6 6 6 4 1 = mV 2 @f1g ( ; ; ; ) @ = g V = g V sin sin cos2 = g V = g V [T + Cx( )qS ] + cos sin cos2 C z 3 ( )qS 3 (cos sin  sin cos  cos ) 7 7 sin sin sin  + cos cos  sin  cos sin cos  cos 777 5 0 6 6 6 6 6 4 3 (sin sin  + cos cos  cos ) 7 7 cos cos sin  sin cos  sin  sin cos cos  cos 777 5 0 6 6 6 6 6 4 sin cos2 3 (sin sin  cos sin  cos ) 7 7 cos sin sin  + cos cos  cos  + sin sin sin  cos 777 5 0 6 6 6 6 6 4 1 cos 2 @f1g ( ; ; ; ) @ 7 7 7 7 17 7 7 cos sin Cz ( ; )qS 7 C7 A7 @Cz ( ; ) qS 7 sin sin @ 7 5 0 2 @f1g ( ; ; ; ) @ 3 sin cos 17 7 7 cos cos [T +Cx ( )qS ] sin Cy ( )qS sin cos Cz ( ; )qS 7 C7 A7 @Cy ( ) @Cz ( ; ) qS 7 + cos @ qS sin sin @ 7 5 1 cos 2 @f1g ( ; ; ; ) @ [T +Cx ( )qS ] Ïô“Aé yÛ 3 (sin cos  cos cos  sin ) 7 7 cos sin cos  cos sin  sin  + sin sin cos  sin 777 5 0 6 6 6 6 6 4 1 cos Abstract Nonlinear adaptive ight control law and nonlinear robust ight control law are proposed. First, backstepping controller is used to stabilize all state variables simultaneously without two-timescale assumption that separates the fast dynamics, involving the angular rates of the aircraft, from the slow dynamics that includes angle of attack, sideslip angle, and bank angle. The proposed method makes good use of the characteristics of the ight dynamics, and the closed-loop stability can be proved without unrealistic restriction. Uncertainties of the aerodynamic coefcients are also considered. An adaptive controller based on neural networks and a robust controller are used to compensate for the effect of the aerodynamic modeling error. The neural networks' parameters are adjusted to offset the error term by stable adaptive laws. A robust control law is designed to compensate for the error term with an assumption that the size of the error term is known. The closed-loop stability of the error states is examined by the Lyapunov theory, and it is shown that the error states exponentially converge to a compact set. Finally, a nonlinear simulation of F-16 aircraft maneuver is performed to demonstrate the performance of the proposed control laws. Keywords : nonlinear ight control, backstepping, neural networks, adaptive control, robust control Student Number : 98416-525 75