Preview only show first 10 pages with watermark. For full document please download

Nonlinear Eigenvalue Problems: Theory And Applications

   EMBED


Share

Transcript

Nonlinear Eigenvalue Problems: Theory and Applications David Bindel1 Department of Computer Science Cornell University 3 March 2016 1 Joint work with Amanda Hood Arizona 1 / 41 The Computational Science & Engineering Picture Application Analysis Computation MEMS Linear algebra HPC / cloud Smart grids Approximation theory Simulators Networks Symmetry + structure Little languages Arizona 2 / 41 Why eigenvalues? Arizona 3 / 41 Why eigenvalues? The polynomial connection The optimization connection The approximation connection The Fourier/quadrature/special function connection The dynamics connection Arizona 4 / 41 Vibrations are everywhere, and so too are the eigenvalues associated with them. As mathematical models invade more and more disciplines, we can anticipate a demand for eigenvalue calculations in an ever richer variety of contexts. – Beresford Parlett, The Symmetric Eigenvalue Problem Arizona 5 / 41 Why eigenvalues? As a student in a first ODE course: y=eλt v y 0 − Ay = 0 −−−−−−−−→ (λI − A)v = 0. Me: “How do I compute this?” p(λ) = det(λI − A) = 0. And then I learned better... Arizona 6 / 41 Eigenvalues or polynomial roots? The cosy relationship that mathematicians enjoyed with polynomials suffered a severe setback in the early fifties when electronic computers came into general use. Speaking for myself I regard it as the most traumatic experience in my career as a numerical analyst. — J. H. Wilkinson Representation matters. Arizona 7 / 41 Why nonlinear eigenvalues? y=eλt v y 0 − Ay = 0 −−−−−−−−→ (λI − A)v = 0 y=eλt v y 00 + By 0 + Ky = 0 −−−−−−−−→ (λ2 I + λB + K)v = 0 y=eλt v y 0 − Ay − By(t − 1) = 0 −−−−−−−−→ (λI − A − Be−λ )v = 0 y=eλt v T (d/dt)y = 0 −−−−−−−−→ T (λ)v = 0 Higher-order ODEs Dynamic element formulations Delay differential equations Boundary integral equation eigenproblems Radiation boundary conditions Arizona 8 / 41 Big and little v=y 0 y 00 + By 0 + Ky = 0 −−−−−→  0    v B K v + =0 y −I 0 y      B K v (λ I + λB + K)u = 0 −−−−−→ λI + =0 −I 0 u 2 v=λu Tradeoff: more variables = more linear. Arizona 9 / 41 My motivation  T (ω)v ≡ K − ω 2 M + G(ω) v = 0 Arizona 10 / 41 My motivation  T (ω)v ≡ K − ω 2 M + G(ω) v = 0 Wanted: Perturbation theory justifying a terrible estimate of G(ω) Arizona 11 / 41 The big picture T (λ)v = 0, v 6= 0. where T : Ω → Cn×n analytic, Ω ⊂ C simply connected Regularity: det(T ) 6≡ 0 Nonlinear spectrum: Λ(T ) = {z ∈ Ω : T (z) singular}. What do we want? Qualitative information (e.g. no eigenvalues in right half plane) Error bounds on computed/estimated eigenvalues Assurances that we know all the eigenvalues in some region Arizona 12 / 41 Solver strategies T (λ)v = 0, v 6= 0. A common approach: 1 Approximate T locally (linear, rational, etc) 2 Solve approximate problem. 3 Repeat as needed. How should we choose solver parameters? What about global behavior? What can we trust? What might we miss? Arizona 13 / 41 Analyticity to the rescue T (λ)v = 0, v 6= 0. where T : Ω → Cn×n analytic, Ω ⊂ C simply connected Regularity: det(T ) 6≡ 0 Nonlinear spectrum: Λ(T ) = {z ∈ Ω : T (z) singular}. Goal: Use analyticity to compare and to count Arizona 14 / 41 Winding and Cauchy’s argument principle Γ Ω Z 0 1 f (z) WΓ (f ) = dz 2πi Γ f (z) = # zeros − # poles Arizona 15 / 41 Winding, Rouché, and Gohberg-Sigal |f | |f + g| Γ Ω Analytic Winding # Theorem sΓ f, g : Ω → C R f 0 (z) 1 2πi Γ f (z) dz T, E : Ω → Cn×n  R 1 −1 0 tr 2πi Γ T (z) T (z) dz Rouché (1862): |g| < |f | on Γ =⇒ same # zeros of f, f + g Gohberg-Sigal (1971): kT −1 Ek < 1 on Γ =⇒ same # eigs of T, T + E Arizona 16 / 41 Comparing NEPs Suppose T, E : Ω → Cn×n analytic Γ ⊂ Ω a simple closed contour T (z) + sE(z) nonsingular ∀s ∈ [0, 1], z ∈ Γ Then T and T + E have the same number of eigenvalues inside Γ. Pf: Constant winding number around Γ. Arizona 17 / 41 Nonlinear pseudospectra Λ (T ) ≡ {z ∈ Ω : kT (z)−1 k > −1 } 20 15 10 5 0 −5 −10 −15 −20 −20 −15 −10 −5 0 Arizona 5 10 15 20 18 / 41 Pseudospectral comparison U Ω Ω E analytic, kE(z)k <  on Ω . Then Λ(T + E) ∩ Ω ⊂ Λ (T ) ∩ Ω Also, if U a component of Λ and U¯ ⊂ Ω , then |Λ(T + E) ∩ U | = |Λ(T ) ∩ U | Arizona 19 / 41 Pseudospectral comparison U Ω Ω Most useful when T is linear Even then, can be expensive to compute! What about related tools? Arizona 20 / 41 The Gershgorin picture (linear case) A = D + F, D = diag(di ), ρi = X j |fij | ρ2 ρ1 ρ3 d1 d2 Arizona d3 21 / 41 Gershgorin (+) Write A = D + F , D = diag(d1 , . . . , dn ). Gershgorin disks are:     X Gi = z ∈ C : |z − di | ≤ |fij | .   j Useful facts: Pf: S Spectrum of A lies in m i=1 Gi S i∈I Gi disjoint from other disks =⇒ contains |I| eigenvalues. S A − zI strictly diagonally dominant outside m i=1 Gi . Eigenvalues of D − sF , 0 ≤ s ≤ 1, are continuous. Arizona 22 / 41 Nonlinear Gershgorin Write T (z) = D(z) + F (z). Gershgorin regions are     X Gi = z ∈ C : |di (z)| ≤ |fij (z)| .   j Useful facts: Spectrum of T lies in Sm i=1 Gi S Bdd connected component of m i=1 Gi strictly in Ω =⇒ same number of eigs of D and T in component =⇒ at least one eig per component of Gi involved Pf: Strict diag dominance test + continuity of eigs Arizona 23 / 41 Example I: Hadeler T (z) = (ez − 1)B + z 2 A − αI, A, B ∈ R8×8 20 15 10 5 0 −5 −10 −15 −20 −20 −15 −10 −5 0 Arizona 5 10 15 20 24 / 41 Comparison to simplified problem Bauer-Fike idea: apply a similarity! T (z) = (ez − 1)B + z 2 A − αI T˜(z) = U T T (z)U = (ez − 1)DB + z 2 I − αE = D(z) − αE Gi = {z : |βi (ez − 1) + z 2 | < ρi }. Arizona 25 / 41 Gershgorin regions 20 15 10 5 0 −5 −10 −15 −20 −20 −15 −10 −5 0 Arizona 5 10 15 20 26 / 41 A different comparison Approximate ez − 1 by a Chebyshev interpolant: T (z) = (ez − 1)B + z 2 A − αI T˜(z) = q(z)B + z 2 A − α T (z) = T˜(z) + r(z)B Linearize T˜ and transform both: T˜(z) 7→ DC − zI T (z) 7→ DC − zI + r(z)E Restrict to Ω = {z : |r(z)| < }: ˆ i = {z : |z − µi | < ρi }, Gi ⊂ G Arizona ρi = X j |eij | 27 / 41 Spectrum of T˜ 10 8 6 4 2 0 −2 −4 −6 −8 −10 −10 −8 −6 −4 −2 0 Arizona 2 4 6 8 10 28 / 41 ˆ i for  < 10−10 G 10 8 6 4 2 0 −2 −4 −6 −8 −10 −10 −8 −6 −4 −2 0 Arizona 2 4 6 8 10 29 / 41 ˆ i for  = 0.1 G 10 8 6 4 2 0 −2 −4 −6 −8 −10 −10 −8 −6 −4 −2 0 Arizona 2 4 6 8 10 30 / 41 ˆ i for  = 1.6 G 10 8 6 4 2 0 −2 −4 −6 −8 −10 −10 −8 −6 −4 −2 0 Arizona 2 4 6 8 10 31 / 41 Example II: Resonance problem V0 a b ψ(0) = 0   d2 − 2 +V −λ ψ =0 on (0, b), dx √ ψ 0 (b) = i λψ(b), Arizona 32 / 41 Reduction via shooting ψ(0) = 0,  V0 R0a (λ)  a R0a (λ)    ψ(0) ψ(a) = , ψ 0 (0) ψ 0 (a)    ψ(b) ψ(b) Rab (λ) 0 = 0 , ψ (b) ψ (b) b Rab (λ) √ ψ 0 (b) = i λψ(b) Arizona 33 / 41 Reduction via shooting First-order form:     du 0 1 ψ(x) = u, where u(x) ≡ 0 . V −λ 0 ψ (x) dx On region (c, d) where V is constant: u(d) = Rcd (λ)u(c),   Rcd (λ) = exp (d − c)  0 1 V −λ 0 Reduce resonance problem to 6D NEP:     R0a (λ) −I 0 u(0)  0    Rab (λ)  −I  u(a) = 0. T (λ)uall ≡   1 0 0√ 0  u(b) 0 0 0 −i λ 1 Arizona 34 / 41 Expansion via rational approximation Consider the equation     A B u − λI =0 C D v Partial Gaussian elimination gives the spectral Schur complement  A − λI − B(D − λI)−1 C u = 0 Idea: Given T (λ) = A − λI − F (λ), find a rational approximation F (λ) ≈ B(D − λI)−1 C. Arizona 35 / 41 Expansion via rational approximation u(0) u(a) u(b) × Arizona =0 .. . 36 / 41 Analyzing the expanded system Tˆ(z) is a Schur complement in K − zM So Λ(Tˆ) is easy to compute. Or: think T (z) is a Schur complement in K − zM + E(z) Compare Tˆ(z) to T (z) or compare K − zM + E(z) to K − zM Arizona 37 / 41 Analyzing the expanded system Q: Can we find all eigs in a region not missing anything? Concrete plan ( = 10−8 ) T = shooting system Tˆ = rational approximation Find region D with boundary Γ s.t. D ⊂ Ω (i.e. kT − Tˆk <  on D) Γ does not intersect Λ (T ) =⇒ Same eigenvalue counts for T , Tˆ =⇒ Eigs of Tˆ in components of Λ (T ) Converse holds if D ⊂ Ω/2 Can refine eigs of Tˆ in D via Newton. Arizona 38 / 41 Resonance approximation 50 −10 −6 0 40 −8 −8 −6 −4 −2 20 −1 0 30 10 −10 −10 0 0 −20 0 −1 −30 0 50 100 150 200 Arizona 250 300 −6 −10 −8 −6 −4 −2 −50 −50 −8 0 −40 350 400 39 / 41 Resonance approximation 2 −2 −6 −4 0 1 0 0 0 −10 −8 −2 −1 0 −6 −4 −2 −3 −2 −8 −5 −10 −8 −6 −10 −4 −4 −2 0 Arizona 2 4 6 8 10 40 / 41 For more Localization theorems for nonlinear eigenvalues. David Bindel and Amanda Hood, SIAM Review 57(4), Dec 2015 Arizona 41 / 41