Transcript
NCP5304 High Voltage, High and Low Side Driver The NCP5304 is a High Voltage Power gate Driver providing two outputs for direct drive of 2 N-channel power MOSFETs or IGBTs arranged in a half-bridge configuration. It uses the bootstrap technique to insure a proper drive of the High-side power switch. The driver works with 2 independent inputs with cross conduction protection.
http://onsemi.com MARKING DIAGRAMS
Features
•High Voltage Range: up to 600 V •dV/dt Immunity ±50 V/nsec •Gate Drive Supply Range from 10 V to 20 V •High and Low Drive Outputs •Output Source / Sink Current Capability 250 mA / 500 mA •3.3 V and 5 V Input Logic Compatible •Up to VCC Swing on Input Pins •Extended Allowable Negative Bridge Pin Voltage Swing to -10 V for Signal Propagation •Matched Propagation Delays between Both Channels •Outputs in Phase with the Inputs •Cross Conduction Protection with 100 ns Internal Fixed Dead Time •Under VCC LockOut (UVLO) for Both Channels •Pin-to-Pin Compatible with Industry Standards •These are Pb-Free Devices Typical Applications
1 SOIC-8 D SUFFIX CASE 751
8 P5304 ALYW G 1
NCP5304 AWLG YYWW
1 PDIP-8 P SUFFIX CASE 626 NCP5304 A L or WL Y or YY W or WW G or G
= Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb-Free Package
•Half-bridge Power Converters •Full-bridge Converters PINOUT INFORMATION IN_LO IN_HI VCC GND
1 2 3 4
8 7 6 5
VBOOT DRV_HI BRIDGE DRV_LO
8 Pin Package
ORDERING INFORMATION Device
Package
Shipping†
NCP5304PG
PDIP-8 (Pb-Free)
50 Units / Rail
NCP5304DR2G
SOIC-8 2500 / Tape & Reel (Pb-Free)
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.
© Semiconductor Components Industries, LLC, 2008
March, 2008 - Rev. 3
1
Publication Order Number: NCP5304/D
NCP5304 Vbulk
+
C1 D4
GND
Q1
Vcc
T1
C3 U1 8 IN_LO VBOOT 2 7 IN_HI DRV_HI 3 6 Vcc Bridge 4 5 GND DRV_LO 1
GND NCP1395
L1
Out+ +
C4
C3 Lf OutD2 C6
Q2
NCP5304
GND
D1
GND GND
R1 D3
GND
U2
Figure 1. Typical Application Resonant Converter (LLC type)
Vbulk
+
C1 C5
D4
GND
Q1
Vcc
C3
T1 U1 1 8 IN_LO VBOOT 2 7 IN_HI DRV_HI 3 6 Vcc Bridge 4 5 GND DRV_LO
GND NCP1395
L1
Out+ + C3 Out-
D2 C6
Q2
NCP5304
GND
D1
C4
GND GND
R1 D3
GND
U2
Figure 2. Typical Application Half Bridge Converter
VCC
VCC
VBOOT
UV DETECT
IN_HI PULSE TRIGGER
GND
IN_LO
LEVEL SHIFTER
GND
CROSS CONDUCTION PREVENTION
S Q R Q UV DETECT
DRV_HI
BRIDGE VCC
DRV_LO
DELAY
GND GND
GND
Figure 3. Detailed Block Diagram http://onsemi.com 2
NCP5304 PIN DESCRIPTIONS Pin No.
Pin Name
Pin Function
1
IN_LO
Logic Input for Low side driver output in phase
2
IN_HI
Logic Input for High side driver output in phase
3
VCC
Low side and main power supply
4
GND
Ground
5
DRV_LO
Low side gate drive output
6
BRIDGE
Bootstrap return or High side floating supply return
7
DRV_HI
High side gate drive output
8
VBOOT
Bootstrap power supply
MAXIMUM RATINGS Rating VCC VCC_transient
Symbol Main power supply voltage Main transient power supply voltage: IVCC_max = 5 mA during 10 ms
VBRIDGE
VHV: High Voltage BRIDGE pin
VBRIDGE
Allowable Negative Bridge Pin Voltage for IN_LO Signal Propagation to DRV_LO
Value
Unit
-0.3 to 20
V
23
V
-1 to 600
V
-10
V
VBOOT-VBRIDGE
VHV: Floating supply voltage
-0.3 to 20
V
VDRV_HI
VHV: High side output voltage
VBRIDGE - 0.3 to VBOOT + 0.3
V
VDRV_LO
Low side output voltage
-0.3 to VCC + 0.3
V
50
V/ns
-1.0 to VCC + 0.3
V
2
kV
200
V
dVBRIDGE/dt VIN_XX
Allowable output slew rate Inputs IN_HI, IN_LO ESD Capability: - HBM model (all pins except pins 6-7-8 in 8 pins package or 11-12-13 in 14 pins package) - Machine model (all pins except pins 6-7-8 in 8 pins package or 11-12-13 in 14 pins package) Latch up capability per Jedec JESD78
RqJA
TJ_max
°C/W
Power dissipation and Thermal characteristics PDIP-8: Thermal Resistance, Junction-to-Air SO-8: Thermal Resistance, Junction-to-Air
100 178
Maximum Operating Junction Temperature
+150
°C
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
http://onsemi.com 3
NCP5304 ELECTRICAL CHARACTERISTIC (VCC = Vboot = 15 V, VGND = Vbridge, -40°C < TJ < 125°C, Outputs loaded with 1 nF) TJ -40°C to 125°C Symbol
Min
Typ
Max
Units
Output high short circuit pulsed current VDRV = 0 V, PW v 10 ms (Note 1)
IDRVsource
-
250
-
mA
Output low short circuit pulsed current VDRV = Vcc, PW v 10 ms (Note 1)
Rating OUTPUT SECTION
IDRVsink
-
500
-
mA
Output resistor (Typical value @ 25°C) Source
ROH
-
30
60
W
Output resistor (Typical value @ 25°C) Sink
ROL
-
10
20
W
High level output voltage, VBIAS-VDRV_XX @ IDRV_XX = 20 mA
VDRV_H
-
0.7
1.6
V
Low level output voltage VDRV_XX @ IDRV_XX = 20 mA
VDRV_L
-
0.2
0.6
V
Turn-on propagation delay (Vbridge = 0 V)
tON
-
100
170
ns
Turn-off propagation delay (Vbridge = 0 V or 50 V) (Note 2)
tOFF
-
100
170
ns
Output voltage rise time (from 10% to 90% @ Vcc = 15 V) with 1 nF load
tr
-
85
160
ns
Output voltage fall time (from 90% to 10% @VCC = 15 V) with 1 nF load
tf
-
35
75
ns
Propagation delay matching between the High side and the Low side @ 25°C (Note 3)
Dt
-
20
35
ns
Internal fixed dead time (Note 4)
DT
65
100
190
ns
Minimum input width that changes the output
tPW1
-
-
50
ns
Maximum input width that does not change the output
tPW2
20
-
-
ns
Low level input voltage threshold
VIN
-
-
0.8
V
Input pull-down resistor (VIN < 0.5 V)
RIN
-
200
-
kW
High level input voltage threshold
VIN
2.3
-
-
V
Logic “1” input bias current @ VIN_XX = 5 V @ 25°C
IIN+
-
5
25
mA
Logic “0” input bias current @ VIN_XX = 0 V @ 25°C
IIN-
-
-
2.0
mA
DYNAMIC OUTPUT SECTION
INPUT SECTION
SUPPLY SECTION Vcc UV Start-up voltage threshold
Vcc_stup
8.0
8.9
9.9
V
Vcc_shtdwn
7.3
8.2
9.1
V
Vcc_hyst
0.3
0.7
-
V
Vboot_stup
8.0
8.9
9.9
V
Vboot UV Shut-down voltage threshold
Vboot_shtdwn
7.3
8.2
9.1
V
Hysteresis on Vboot
Vboot_shtdwn
0.3
0.7
-
V
IHV_LEAK
-
5
40
mA
Consumption in active mode (Vcc = Vboot, fsw = 100 kHz and 1 nF load on both driver outputs)
ICC1
-
4
5
mA
Consumption in inhibition mode (Vcc = Vboot)
ICC2
-
250
400
mA
Vcc current consumption in inhibition mode
ICC3
-
200
-
mA
Vboot current consumption in inhibition mode
ICC4
-
50
-
mA
Vcc UV Shut-down voltage threshold Hysteresis on Vcc Vboot Start-up voltage threshold reference to bridge pin (Vboot_stup = Vboot - Vbridge)
Leakage current on high voltage pins to GND (VBOOT = VBRIDGE = DRV_HI = 600 V)
1. 2. 3. 4. 5.
Parameter guaranteed by design Turn-off propagation delay @ Vbridge = 600 V is guaranteed by design See characterization curve for Δt parameters variation on the full range temperature. Timing diagram definition see Figure 7. Timing diagram definition see Figure 5 and Figure 6.
http://onsemi.com 4
NCP5304 IN_HI
IN_LO
DRV_HI
DRV_LO
Figure 4. Input/Output Timing Diagram
50%
IN_HI (IN_LO)
50%
tr
ton
90% DRV_HI (DRV_LO)
tf
toff 90%
10%
10%
Figure 5. Propagation Delay and Rise / Fall Time Definition
50%
IN_HI
50%
toff_HI ton_HI 90% DRV_HI 10% Matching Delay1=ton_HI-ton_LO Matching Delay2=toff_HI-toff_LO IN_LO
50%
50%
toff_LO
ton_LO 90%
DRV_LO 10%
Figure 6. Matching Propagation Delay
http://onsemi.com 5
NCP5304
IN_HI
IN_LO
DRV_HI
DRV_LO Internal Deadtime
Internal Deadtime
Figure 7. Input/Output Cross Conduction Output Protection Timing Diagram
http://onsemi.com 6
NCP5304 CHARACTERIZATION CURVES 140 TON, PROPAGATION DELAY (ns)
TON, PROPAGATION DELAY (ns)
140 120 TON High Side 100 80 60 40
TON Low Side
20 0 10
12
14
16
18
80 60 TON High Side 40 20
-20
0
40
60
80
100
TEMPERATURE (°C)
Figure 8. Turn ON Propagation Delay vs. Supply Voltage (VCC = VBOOT)
Figure 9. Turn ON Propagation Delay vs. Temperature
120
120
120
TOFF Low Side
100 80 60 TOFF High Side
40 20
12
14
16
18
100
TOFF Low Side
80 60 TOFF High Side
40 20 0 -40
20
-20
0
VCC, VOLTAGE (V)
20 40 60 80 TEMPERATURE (°C)
100
120
Figure 11. Turn OFF Propagation Delay vs. Temperature
Figure 10. Turn OFF Propagation Delay vs. Supply Voltage (VCC = VBOOT) 140
160 TOFF PROPAGATION DELAY (ns)
TON, PROPAGATION DELAY (ns)
20
VCC, VOLTAGE (V)
TOFF, PROPAGATION DELAY (ns)
TOFF, PROPAGATION DELAY (ns)
100
0 -40
20
140
0 10
TON Low Side 120
120 100 80 60 40 20 0
140 120 100 80 60 40 20 0
0
10
20
30
40
50
0
10
20
30
40
BRIDGE PIN VOLTAGE (V)
BRIDGE PIN VOLTAGE (V)
Figure 12. High Side Turn ON Propagation Delay vs. VBRIDGE Voltage
Figure 13. High Side Turn OFF Propagation Delay vs. VBRIDGE Voltage
http://onsemi.com 7
50
NCP5304 160
140 120 tr High Side
120
TON, RISETIME (ns)
TON, RISETIME (ns)
140
100 80 60 40
100 80 60
tr Low Side
20
14
16
18
0 -40
20
45
60
80
100
120
tf Low Side
40
60 tf Low Side
40 30
35 30 25 20
tf High Side
15
tf High Side
10
10
5 12
14
16
18
0 -40
20
-20
0
VCC, VOLTAGE (V)
20
40
60
80
100
120
TEMPERATURE (°C)
Figure 16. Turn OFF Falltime vs. Supply Voltage (VCC = VBOOT)
Figure 17. Turn OFF Falltime vs. Temperature
35
200 180
30
160 25
DEAD TIME (ns)
PROPAGATION DELAY MATCHING (ns)
40
Figure 15. Turn ON Risetime vs. Temperature
70
0 10
20
Figure 14. Turn ON Risetime vs. Supply Voltage (VCC = VBOOT)
50
20
0
TEMPERATURE (°C)
80
50
-20
VCC, VOLTAGE (V)
TOFF, FALLTIME (ns)
TOFF, FALLTIME (ns)
12
tr Low Side
40
20 0 10
tr High Side
20 15 10
140 120 100 80 60 40
5 0 -40
20 -20
0
20
40
60
80
100
0 -40
120
-20
0
20
40
60
80
100
TEMPERATURE (°C)
TEMPERATURE (°C)
Figure 18. Propagation Delay Matching Between High Side and Low Side Driver vs. Temperature
Figure 19. Dead Time vs. Temperature
http://onsemi.com 8
120
1.4
1.4
1.2
1.2
LOW LEVEL INPUT VOLTAGE THRESHOLD (V)
LOW LEVEL INPUT VOLTAGE THRESHOLD (V)
NCP5304
1 0.8 0.6 0.4 0.2 0 10
12
14
16
18
0.6 0.4 0.2
-20
0
20
40
60
80
100
120
VCC, VOLTAGE (V)
TEMPERATURE (°C)
Figure 20. Low Level Input Voltage Threshold vs. Supply Voltage (VCC = VBOOT)
Figure 21. Low Level Input Voltage Threshold vs. Temperature 2.5 HIGH LEVEL INPUT VOLTAGE THRESHOLD (V)
HIGH LEVEL INPUT VOLTAGE THRESHOLD (V)
0.8
0.0 -40
20
2.5
2
1.5
1
0.5
0 10
12
14
16
18
2.0
1.5
1.0
0.5
0.0 -40
20
-20
0
20
40
60
80
100
120
VCC, VOLTAGE (V)
TEMPERATURE (°C)
Figure 22. High Level Input Voltage Threshold vs. Supply Voltage (VCC = VBOOT)
Figure 23. High Level Input Voltage Threshold vs. Temperature
LOGIC “0” INPUT CURRENT (mA)
4 LOGIC “0” INPUT CURRENT (mA)
1.0
3.5 3 2.5 2 1.5 1 0.5 0 10
12
14
16
18
20
6 5.5 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 -40
VCC, VOLTAGE (V)
-20
0
20
40
60
80
100
TEMPERATURE (°C)
Figure 24. Logic “0” Input Current vs. Supply Voltage (VCC = VBOOT)
Figure 25. Logic “0” Input Current vs. Temperature
http://onsemi.com 9
12
NCP5304 10 LOGIC “1” INPUT CURRENT (mA)
LOGIC “1” INPUT CURRENT (mA)
8 7 6 5 4 3 2 1
6
4
2
0
0 10
12
14
16
18
20
-40
-20
0
40
60
80
100 120
VCC, VOLTAGE (V)
TEMPERATURE (°C)
Figure 27. Logic “1” Input Current vs. Temperature
LOW LEVEL OUTPUT VOLTAGE (V)
1.0
0.8
0.6
0.4
0.2
0 10
12
14
16
18
0.8
0.6
0.4
0.2
0.0 -40
20
-20
0
VCC, VOLTAGE (V)
20
40
60
80
100
120
TEMPERATURE (°C)
Figure 28. Low Level Output Voltage vs. Supply Voltage (VCC = VBOOT)
Figure 29. Low Level Output Voltage vs. Temperature
1.6
1.6 HIGH LEVEL OUTPUT VOLTAGE (V)
HIGH LEVEL OUTPUT VOLTAGE THRESHOLD (V)
20
Figure 26. Logic “1” Input Current vs. Supply Voltage (VCC = VBOOT) 1 LOW LEVEL OUTPUT VOLTAGE THRESHOLD (V)
8
1.2
0.8
0.4
0
1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0
10
12
14
16
18
20
VCC, VOLTAGE (V)
-40
20 40 60 TEMPERATURE (°C)
Figure 30. High Level Output Voltage vs. Supply Voltage (VCC = VBOOT)
Figure 31. High Level Output Voltage vs. Temperature
http://onsemi.com 10
-20
0
80
100
120
NCP5304 400
350
OUTPUT SOURCE CURRENT (mA)
OUTPUT SOURCE CURRENT (mA)
400 Isrc High Side
300 250 200 Isrc Low Side
150 100 50 0 10
12
14
16
18
Isrc High Side 300 250 200 150
Isrc Low Side
100 50 0 -40
20
-20
0
40
60
80
100 120
TEMPERATURE (°C)
Figure 32. Output Source Current vs. Supply Voltage (VCC = VBOOT)
Figure 33. Output Source Current vs. Temperature
OUTPUT SINK CURRENT (mA)
600 Isrc High Side
500 400
Isrc Low Side 300 200 100 0 10
Isrc High Side
500 400 300 Isrc Low Side 200 100 0
12
14
16
18
20
-40
-20
0
VCC, VOLTAGE (V)
20
40
60
80
100 120
TEMPERATURE (°C)
Figure 34. Output Sink Current vs. Supply Voltage (VCC = VBOOT)
Figure 35. Output Sink Current vs. Temperature
0.2
20 LEAKAGE CURRENT ON HIGH VOLTAGE PINS (600 V) to GND (mA)
HIGH SIDE LEAKAGE CURRENT ON HV PINS TO GND (mA)
20
VCC, VOLTAGE (V)
600 OUTPUT SINK CURRENT (mA)
350
0.16
0.12
0.08
0.04
0 0
100
200
300
400
500
600
15
10
5
0 -40
-20
0
20
40
60
80
100
HV PINS VOLTAGE (V)
TEMPERATURE (°C)
Figure 36. Leakage Current on High Voltage Pins (600 V) to Ground vs. VBRIDGE Voltage (VBRIGDE = VBOOT = VDRV_HI)
Figure 37. Leakage Current on High Voltage Pins (600 V) to Ground vs. Temperature (VBRIDGE = VBOOT = VDRV_HI = 600 V)
http://onsemi.com 11
120
NCP5304 100 VBOOT CURRENT SUPPLY (mA)
VBOOT SUPPLY CURRENT (mA)
100
80
60
40
20
0
0
4
8
12
16
80
60
40
20
0 -40
20
-20
0
60
80
100
120
Figure 39. VBOOT Supply Current vs. Temperature
240
400
200
VCC CURRENT SUPPLY (mA)
VCC SUPPLY CURRENT (mA)
40
TEMPERATURE (°C)
VBOOT, VOLTAGE (V)
Figure 38. VBOOT Supply Current vs. Bootstrap Supply Voltage
160 120 80 40 0 0
4
8
12
16
300
200
100
0 -40
20
-20
0
VCC, VOLTAGE (V)
9.8
8.8 UVLO SHUTDOWN VOLTAGE (V)
9.0
VCC UVLO Startup
9.4 9.2 9.0 8.8 8.6
VBOOT UVLO Startup
8.4 8.2 8.0 -40
-20
0
20
40
60
40
60
80
100
120
Figure 41. VCC Supply Current vs. Temperature
10.0
9.6
20
TEMPERATURE (°C)
Figure 40. VCC Supply Current vs. VCC Supply Voltage
UVLO STARTUP VOLTAGE (V)
20
80
100
120
VCC UVLO Shutdown
8.6 8.4 8.2 8.0 VBOOT UVLO Shutdown
7.8 7.6 7.4 7.2 7.0 -40
TEMPERATURE (°C)
-20
0
20
40
60
80
100
TEMPERATURE (°C)
Figure 42. UVLO Startup Voltage vs. Temperature
Figure 43. UVLO Shutdown Voltage vs. Temperature
http://onsemi.com 12
120
NCP5304 40 ICC+ IBOOT CURRENT SUPPLY (mA)
ICC+ IBOOT CURRENT SUPPLY (mA)
25 CLOAD = 1 nF/Q = 15 nC 20
15
10
5 RGATE = 0 R to 22 R 0
CLOAD = 2.2 nF/Q = 33 nC
35 30 25 20 15 10
RGATE = 0 R to 22 R 5 0
0
100
200
300
400
500
600
0
100
SWITCHING FREQUENCY (kHz)
Figure 44. ICC1 Consumption vs. Switching Frequency with 15 nC Load on Each Driver @ VCC = 15 V
300
400
500
600
Figure 45. ICC1 Consumption vs. Switching Frequency with 33 nC Load on Each Driver @ VCC = 15 V 120 ICC+ IBOOT CURRENT SUPPLY (mA)
70 ICC+ IBOOT CURRENT SUPPLY (mA)
200
SWITCHING FREQUENCY (kHz)
CLOAD = 3.3 nF/Q = 50 nC
60 50 40 30 20
RGATE = 0 R to 22 R
10 0
CLOAD = 6.6 nF/Q = 100 nC 100
RGATE = 0 R
80 RGATE = 10 R
60 40 RGATE = 22 R 20 0
0
100
200
300
400
500
600
0
SWITCHING FREQUENCY (kHz)
100
200
300
400
500
600
SWITCHING FREQUENCY (kHz)
Figure 46. ICC1 Consumption vs. Switching Frequency with 50 nC Load on Each Driver @ VCC = 15 V
Figure 47. ICC1 Consumption vs. Switching Frequency with 100 nC Load on Each Driver @ VCC = 15 V
http://onsemi.com 13
NCP5304 PACKAGE DIMENSIONS
SOIC-8 NB CASE 751-07 ISSUE AJ
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.
-XA 8
5
S
B
0.25 (0.010)
M
Y
M
1 4
K
-YG C
N
DIM A B C D G H J K M N S
X 45 _
SEATING PLANE
-Z-
0.10 (0.004) H
M
D 0.25 (0.010)
M
Z Y
S
X
J
S
SOLDERING FOOTPRINT*
1.52 0.060
7.0 0.275
4.0 0.155
0.6 0.024
1.270 0.050 SCALE 6:1
mm Ǔ ǒinches
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com 14
MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0 _ 8 _ 0.25 0.50 5.80 6.20
INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0 _ 8 _ 0.010 0.020 0.228 0.244
NCP5304 PACKAGE DIMENSIONS 8 LEAD PDIP CASE 626-05 ISSUE L
8
NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
5
-B1
4
F -A-
NOTE 2
L
C J
-T-
MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC --10_ 0.76 1.01
INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.070 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC --10_ 0.030 0.040
N
SEATING PLANE
D H
DIM A B C D F G H J K L M N
M
K
G 0.13 (0.005)
M
T A
M
B
M
The product described herein is covered by U.S. patents: 6,097,075; 7,176,723; 6,362,067. There may be some other patents pending. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email:
[email protected]
N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850
http://onsemi.com 15
ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your loca Sales Representative
NCP5304/D