Transcript
AVTECH
ELECTROSYSTEMS
N A N O S E C O N D
P.O. BOX 265 OGDENSBURG, NY U.S.A. 13669-0265 TEL: (315) 472-5270 FAX: (315) 883-1328
LTD.
W A V E F O R M E L E C T R O N I C S S I N C E 1 9 7 5
TEL: 1-800-265-6681 FAX: 1-800-561-1970 e-mail:
[email protected] http://www.avtechpulse.com/
INSTRUCTIONS
MODEL AV-153C-B 0 to ±90V AMPLITUDE HIGH-VOLTAGE FUNCTION GENERATOR AND VARIABLE-GAIN LINEAR AMPLIFIER WITH IEEE 488.2 AND RS-232 CONTROL
SERIAL NUMBER: ____________
X
BOX 5120, LCD MERIVALE OTTAWA, ONTARIO CANADA K2C 3H4 TEL: (613) 226-5772 FAX: (613) 226-2802
2
WARRANTY Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.
TECHNICAL SUPPORT Phone: 613-226-5772 or 1-800-265-6681 Fax: 613-226-2802 or 1-800-561-1970 E-mail:
[email protected] World Wide Web: http://www.avtechpulse.com
3 TABLE OF CONTENTS WARRANTY.................................................................................................................... 2 TECHNICAL SUPPORT.................................................................................................. 2 TABLE OF CONTENTS.................................................................................................. 3 INTRODUCTION............................................................................................................. 5 AVAILABLE OPTIONS............................................................................................................. 5
HIGH-VOLTAGE PRECAUTIONS.................................................................................. 6 SPECIFICATIONS........................................................................................................... 7 EUROPEAN REGULATORY NOTES............................................................................. 8 EC DECLARATION OF CONFORMITY....................................................................................8 DIRECTIVE 2002/95/EC (RoHS).............................................................................................. 8 DIRECTIVE 2002/96/EC (WEEE)..............................................................................................8
INSTALLATION............................................................................................................. 10 VISUAL CHECK...................................................................................................................... 10 POWER RATINGS.................................................................................................................. 10 CONNECTION TO THE POWER SUPPLY............................................................................ 10 PROTECTION FROM ELECTRIC SHOCK.............................................................................11 ENVIRONMENTAL CONDITIONS.......................................................................................... 11 LABVIEW DRIVERS............................................................................................................... 12
FUSES........................................................................................................................... 13 AC FUSE REPLACEMENT..................................................................................................... 13 DC FUSE REPLACEMENT..................................................................................................... 14 FUSE RATINGS...................................................................................................................... 14
FRONT PANEL CONTROLS........................................................................................ 15 REAR PANEL CONTROLS........................................................................................... 17 GENERAL INFORMATION........................................................................................... 18 WAVESHAPE SELECTION.................................................................................................... 18 SINE, TRIANGLE, AND SQUARE WAVE GENERATION......................................................18 PULSE GENERATION............................................................................................................ 19 AMPLIFY MODE..................................................................................................................... 19 PREVENTING DAMAGE.........................................................................................................20 DC OFFSET.............................................................................................................................20
-PANB BURST MODE OPTION.................................................................................... 21
4 LOCAL MODE......................................................................................................................... 21 REMOTE MODE......................................................................................................................21 SYNC OUTPUT....................................................................................................................... 22
OPERATIONAL CHECK............................................................................................... 23 PROGRAMMING YOUR PULSE GENERATOR........................................................... 26 KEY PROGRAMMING COMMANDS......................................................................................26 ALL PROGRAMMING COMMANDS...................................................................................... 28
MECHANICAL INFORMATION..................................................................................... 30 TOP COVER REMOVAL......................................................................................................... 30 RACK MOUNTING.................................................................................................................. 30 ELECTROMAGNETIC INTERFERENCE................................................................................30
MAINTENANCE............................................................................................................ 31 REGULAR MAINTENANCE.................................................................................................... 31 CLEANING.............................................................................................................................. 31
OTHER INFORMATION................................................................................................ 32 APPLICATION NOTES........................................................................................................... 32 MANUAL FEEDBACK.............................................................................................................32
WIRING DIAGRAMS..................................................................................................... 33 WIRING OF AC POWER.........................................................................................................33 PCB 158K - LOW VOLTAGE POWER SUPPLY, 1/3.............................................................34 PCB 158K - LOW VOLTAGE POWER SUPPLY, 2/3.............................................................35 PCB 158K - LOW VOLTAGE POWER SUPPLY, 3/3.............................................................36 HIGH-VOLTAGE DC POWER SUPPLIES..............................................................................37 PCB 170 - HIGH-VOLTAGE POWER SUPPLY..................................................................... 38 PCB 104D - KEYPAD / DISPLAY BOARD, 1/3...................................................................... 39 PCB 104D - KEYPAD / DISPLAY BOARD, 2/3...................................................................... 40 PCB 104D - KEYPAD / DISPLAY BOARD, 3/3...................................................................... 41 WIRING OF TIMING BOARDS (UNITS WITH -PANB OPTION)............................................42
PERFORMANCE CHECK SHEET................................................................................ 43 Manual Reference: Z:\officefiles\instructword\av-151-153\AV-153C-B,PANBoptional,edition1.odt. Last modified May 4, 2006. Copyright © 2006 Avtech Electrosystems Ltd, All Rights Reserved.
5 INTRODUCTION The AV-153C-B is a high-performance GPIB and RS232-equipped function generator that can produce square, sine, triangle, and pulse outputs at frequencies up to 30 kHz, with peak amplitudes of 0 to 90V. For the sine, triangle, and square wave modes, this produces peak-to-peak amplitudes of up to 180V. The AV-153C-B will drive load impedances of 100 Ω or higher. When supplied with an external voltage input, the AV-153C-B may be used as a DC to 30 kHz variable-gain linear amplifier. The gain is variable from +1 to +45. The AV-153C-B features front panel keyboard and adjust knob control of the output pulse parameters along with a four line by 40 character back-lit LCD display of the output amplitude, waveshape, and frequency. The instrument includes memory to store up to four complete instrument setups. The operator may use the front panel or the computer interface to store a complete “snapshot” of all key instrument settings, and recall this setup at a later time. This instrument is intended for use in research, development, test and calibration laboratories by qualified personnel. AVAILABLE OPTIONS -PANB Option: The -PANB option allows the generation of a burst of 1-500 cycles of sine, square, triangle, or pulse waveforms. This burst may be triggered by pressing a front-panel pushbutton, or by computer command. -R5 Option: This is the optional rack-mounting kit. The R5 rack-mount kit may also be ordered separately. -TNT Option: Adds a rear-panel Ethernet connector, providing Telnet or Web-based remote control from a network.
6 HIGH-VOLTAGE PRECAUTIONS CAUTION: This instrument provides output voltages as high as ±90 Volts, so extreme caution must be employed when using this instrument. The instrument should only be used by individuals who are thoroughly skilled in high voltage laboratory techniques. The following precaution should always be observed: 1. Keep exposed high-voltage wiring to an absolute minimum. 2. Wherever possible, use shielded connectors and cabling. 3. Connect and disconnect loads and cables only when the amplifier is turned off. 4. Keep in mind that all cables, connectors, oscilloscope probes, and loads must have an appropriate voltage rating. 5. Do not attempt any repairs on the instrument, beyond the fuse replacement procedures described in this manual. Contact Avtech technical support (see page 2 for contact information) if the instrument requires servicing.
7 SPECIFICATIONS
Model:
AV-153C-B1
Maximum amplitude & maximum peak output2:
0 to ± 90 Volts
DC offset2:
0 to ± 90 Volts
Load resistance:
≥ 100 Ω 3
Outout resistance : (in series with output)
5 Ω, approx.
Average output power:
90 Watts maximum
Minimum frequency:
1 Hz
Maximum frequency:
30 kHz
Square wave rise time6: Waveforms: Amplifier mode:
3 us Sine, square, triangle, pulse, and amplifier mode. Input amplitude for maximum output: ± 2 Volts (1 kΩ input impedance)
Pulse width (FWHM): Burst mode:
GPIB / RS-232 control1: Telnet / Ethernet control8:
5 us to 500 ms. 80% max. duty cycle. Optional . This allows the generation of a burst of 1-500 cycles of sine, square, triangle, or pulse waveforms. This burst may be triggered by pressing a front-panel pushbutton, or by computer command. 7
Standard on -B units. Optional. See http://www.avtechpulse.com/options/tnt for details.
Connectors: Power requirement: Dimensions:
BNC 100 - 240 Volts, 50 - 60 Hz 100 mm x 430 mm x 375 mm
3.9” x 17” x 14.8” (H x W x D)
1) -B suffix indicates IEEE-488.2 GPIB and RS-232 control of amplitude and frequency. See http://www.avtechpulse.com/gpib/ for details. 2) Peak output = amplitude + offset. The amplitude and offset can not be set to maximum at the same time, or the peak output rating will be exceeded. 3) The non-zero output impedance (ROUT) will reduce the maximum output amplitude slightly when operating into low load impedances. That is, VOUT =
VSET × RLOAD / (RLOAD + ROUT), where VSET is the programmed amplitude and RLOAD is the load resistance. 4) The || symbol means “in parallel with”. 5) Contact the factory (
[email protected]) for characterization of frequency or rise time under other load conditions. 6) The non-zero rise time will also distort the sine and triangle waveforms when operating near the maximum rated frequency. All rise times are
measured on a 20%-80% basis. 7) Add the suffix -PANB to the model number to specify the burst mode option. 8) Add the suffix -TNT to the model number to specify the Telnet / Ethernet control option.
8 EUROPEAN REGULATORY NOTES EC DECLARATION OF CONFORMITY We
Avtech Electrosystems Ltd. P.O. Box 5120, LCD Merivale Ottawa, Ontario Canada K2C 3H4
declare that this pulse generator meets the intent of Directive 89/336/EEC for Electromagnetic Compatibility. Compliance pertains to the following specifications as listed in the official Journal of the European Communities: EN 50081-1 Emission EN 50082-1 Immunity and that this pulse generator meets the intent of the Low Voltage Directive 72/23/EEC as amended by 93/68/EEC. Compliance pertains to the following specifications as listed in the official Journal of the European Communities: EN 61010-1:2001
Safety requirements for electrical equipment for measurement, control, and laboratory use
DIRECTIVE 2002/95/EC (RoHS) This instrument is exempt from Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the Restriction of the use of certain Hazardous Substances (RoHS) in electrical and electronic equipment. Specifically, Avtech instruments are considered "Monitoring and control instruments" (Category 9) as defined in Annex 1A of Directive 2002/96/EC. The Directive 2002/95/EC only applies to Directive 2002/96/EC categories 1-7 and 10, as stated in the "Article 2 - Scope" section of Directive 2002/95/EC. DIRECTIVE 2002/96/EC (WEEE) European customers who have purchased this equipment directly from Avtech will have completed a “WEEE Responsibility Agreement” form, accepting responsibility for
9 WEEE compliance (as mandated in Directive 2002/96/EC of the European Union and local laws) on behalf of the customer, as provided for under Article 9 of Directive 2002/96/EC. Customers who have purchased Avtech equipment through local representatives should consult with the representative to determine who has responsibility for WEEE compliance. Normally, such responsibilities with lie with the representative, unless other arrangements (under Article 9) have been made. Requirements for WEEE compliance may include registration of products with local governments, reporting of recycling activities to local governments, and financing of recycling activities.
10 INSTALLATION VISUAL CHECK After unpacking the instrument, examine to ensure that it has not been damaged in shipment. Visually inspect all connectors, knobs, liquid crystal displays (LCDs), and the handles. Confirm that a power cord, a GPIB cable, and two instrumentation manuals (this manual and the “Programming Manual for -B Instruments”) are with the instrument. If the instrument has been damaged, file a claim immediately with the company that transported the instrument. POWER RATINGS This instrument is intended to operate from 100 - 240 V, 50 - 60 Hz. The maximum power consumption is 220 Watts. Please see the “FUSES” section for information about the appropriate AC and DC fuses. This instrument is an “Installation Category II” instrument, intended for operation from a normal single-phase supply. CONNECTION TO THE POWER SUPPLY An IEC-320 three-pronged recessed male socket is provided on the back panel for AC power connection to the instrument. One end of the detachable power cord that is supplied with the instrument plugs into this socket. The other end of the detachable power cord plugs into the local mains supply. Use only the cable supplied with the instrument. The mains supply must be earthed, and the cord used to connect the instrument to the mains supply must provide an earth connection. (The supplied cord does this.) Warning: Failure to use a grounded outlet may result in injury or death due to electric shock. This product uses a power cord with a ground connection. It must be connected to a properly grounded outlet. The instrument chassis is connected to the ground wire in the power cord. The table below describes the power cord that is normally supplied with this instrument, depending on the destination region:
11 Destination Region
Description
Manufacturer
Part Number
Continental Europe
European CEE 7/7 “Schuko” 230V, 50Hz
Volex (http://www.volex.com)
17850-C3-326
Qualtek (http://www.qualtekusa.com)
319004-T01
United Kingdom
BS 1363, 230V, 50Hz
Qualtek (http://www.qualtekusa.com)
370001-E01
Switzerland
SEV 1011, 2 30V, 50Hz
Volex (http://www.volex.com)
2102H-C3-10
Israel
SI 32, 220V, 50Hz
Volex (http://www.volex.com)
2115H-C3-10
North America, and all other areas
NEMA 5-15, 120V, 60 Hz
Qualtek (http://www.qualtekusa.com)
312007-01
PROTECTION FROM ELECTRIC SHOCK Operators of this instrument must be protected from electric shock at all times. The owner must ensure that operators are prevented access and/or are insulated from every connection point. In some cases, connections must be exposed to potential human contact. Operators must be trained to protect themselves from the risk of electric shock. This instrument is intended for use by qualified personnel who recognize shock hazards and are familiar with safety precautions required to avoid possibly injury. In particular, operators should: 6. Keep exposed high-voltage wiring to an absolute minimum. 7. Wherever possible, use shielded connectors and cabling. 8. Connect and disconnect loads and cables only when the instrument is turned off. 9. Keep in mind that all cables, connectors, oscilloscope probes, and loads must have an appropriate voltage rating. 10. Do not attempt any repairs on the instrument, beyond the fuse replacement procedures described in this manual. Contact Avtech technical support (see page 2 for contact information) if the instrument requires servicing. Service is to be performed solely by qualified service personnel. ENVIRONMENTAL CONDITIONS This instrument is intended for use under the following conditions: 1. indoor use; 2. altitude up to 2 000 m; 3. temperature 5 °C to 40 °C;
12 4. maximum relative humidity 80 % for temperatures up to 31 °C decreasing linearly to 50 % relative humidity at 40 °C; 5. Mains supply voltage fluctuations up to ±10 % of the nominal voltage; 6. no pollution or only dry, non-conductive pollution. LABVIEW DRIVERS A LabVIEW driver for this instrument is available for download on the Avtech web site, at http://www.avtechpulse.com/labview. A copy is also available in National Instruments' Instrument Driver Library at http://www.natinst.com/.
13 FUSES This instrument contains four fuses. All are accessible from the rear-panel. Two protect the AC prime power input, and two protect the internal DC power supplies. The locations of the fuses on the rear panel are shown in the figure below:
Fuses #1 and #2 (AC fuses)
Fuse #4 (DC fuse)
Fuse #3 (DC fuse)
AC FUSE REPLACEMENT To physically access the AC fuses, the power cord must be detached from the rear panel of the instrument. The fuse drawer may then be extracted using a small flat-head screwdriver, as shown below:
Pry out the fuse drawer using a screwdriver.
Fuse Drawer
14 DC FUSE REPLACEMENT The DC fuses may be replaced by inserting the tip of a flat-head screwdriver into the fuse holder slot, and rotating the slot counter-clockwise. The fuse and its carrier will then pop out. FUSE RATINGS The following table lists the required fuses: Fuses
Nominal Mains Voltage 115 V
#1, #2 (AC) 230 V #3 (DC)
N/A
#4 (DC)
N/A
Rating 1.6A, 250V, Time-Delay 1.0A, 250V, Time-Delay 1.0A, 250V, Time-Delay 6.3A, 250V, Time-Delay
Recommended Replacement Part Case Size Littelfuse Part Digi-Key Stock Number Number 5×20 mm
021801.6HXP
F2424-ND
5×20 mm
0218001.HXP
F2419-ND
5×20 mm
0218001.HXP
F2419-ND
5×20 mm
021806.3HXP
F2428-ND
The recommended fuse manufacturer is Littelfuse (http://www.littelfuse.com). Replacement fuses may be easily obtained from Digi-Key (http://www.digikey.com) and other distributors.
15 FRONT PANEL CONTROLS 1
2
3
6
5
4
1. POWER Switch. This is the main power switch. When turning the instrument on, there may be a delay of several seconds before the instrument appears to respond. 2. OVERLOAD Indicator. When the instrument is powered, this indicator is normally green, indicating normal operation. If this indicator is yellow, an internal automatic overload protection circuit has been tripped. If the unit is overloaded (by operating at an exceedingly high duty cycle or by operating into a very low impedance), the protective circuit will disable the output of the instrument and turn the indicator light yellow. The light will stay yellow (i.e. output disabled) for about 5 seconds after which the instrument will attempt to re-enable the output (i.e. light green) for about 1 second. If the overload condition persists, the output will be disabled again (i.e. light yellow) for another 5 seconds. If the overload condition has been removed, the instrument will resume normal operation. This overload indicator may flash yellow briefly at start-up. This is not a cause for concern. Note that the output stage will safely withstand a short-circuited load condition. 3. OUT Connector. This BNC connector provides the main output signal, into load impedances of > 100Ω. Caution: Voltages as high as ±90V may be present on the center conductor of this output connector. Avoid touching this conductor. Connect to this connector using standard coaxial cable, to ensure that the center conductor is not exposed. 4. SYNC OUT. This connector supplies a SYNC output that can be used to trigger other equipment, particularly oscilloscopes. This signal has an approximate amplitude of +3 Volts to RL > 1 kΩ with a pulse width of approximately 100 ns. 5. LIQUID CRYSTAL DISPLAY (LCD). This LCD is used in conjunction with the keypad to change the instrument settings. Normally, the main menu is displayed, which lists the key adjustable parameters and their current values. The
16 “Programming Manual for -B Instruments” describes the menus and submenus in detail. 6. KEYPAD. Control Name MOVE CHANGE × 10 ÷ 10 +/EXTRA FINE ADJUST
Function This moves the arrow pointer on the display. This is used to enter the submenu, or to select the operating mode, pointed to by the arrow pointer. If one of the adjustable numeric parameters is displayed, this increases the setting by a factor of ten. If one of the adjustable numeric parameters is displayed, this decreases the setting by a factor of ten. If one of the adjustable numeric parameters is displayed, and this parameter can be both positive or negative, this changes the sign of the parameter. This changes the step size of the ADJUST knob. In the extrafine mode, the step size is twenty times finer than in the normal mode. This button switches between the two step sizes. This large knob adjusts the value of any displayed numeric adjustable values, such as frequency, pulse width, etc. The adjust step size is set by the "EXTRA FINE" button. When the main menu is displayed, this knob can be used to move the arrow pointer.
17 REAR PANEL CONTROLS
4
6
1
3
TRIG RS-232
GPIB
5
2
1. AC POWER INPUT. An IEC-320 C14 three-pronged recessed male socket is provided on the back panel for AC power connection to the instrument. One end of the detachable power cord that is supplied with the instrument plugs into this socket. 2. AC FUSE DRAWER. The two fuses that protect the AC input are located in this drawer. Please see the “FUSES” section of this manual for more information. 3. DC FUSES. These two fuses protect the internal DC power supplies. Please see the “FUSES” sections of this manual for more information. 4. TRIG. When the AV-153C-B is set to operate in the amplifier mode, the externallygenerated input signal is applied to this connector. The maximum input voltage is ±2V. The input impedance of this input is 1 kΩ. (Depending on the length of cable attached to this input, and the source driving it, it may be desirable to add a coaxial 50 Ohm terminator to this input to provide a proper transmission line termination. The Pasternack (www.pasternack.com) PE6008-50 BNC feed-thru 50 Ohm terminator is suggested for this purpose.) 5. GPIB Connector. A standard GPIB cable can be attached to this connector to allow the instrument to be computer-controlled. See the “Programming Manual for -B Instruments” for more details on GPIB control. 6. RS-232 Connector. A standard serial cable with a 25-pin male connector can be attached to this connector to allow the instrument to be computer-controlled. See the “Programming Manual for -B Instruments” for more details on RS-232 control.
18 GENERAL INFORMATION WAVESHAPE SELECTION The front-panel “SHAPE” menu or the “sour:func” computer command can be used to set the output waveform to one of five possible modes: SINE – This mode generates a bipolar sinusoidal signal with 50% duty cycle. TRIANGLE – This mode generates a bipolar triangle-wave signal with 50% duty cycle. SQUARE – This mode generates a bipolar square-wave signal with 50% duty cycle. PULSE – This mode generates a unipolar pulse signal, with adjustable pulse width. AMPLIFY – This mode causes the instrument to amplify an externally-generated signal. SINE, TRIANGLE, AND SQUARE WAVE GENERATION When set to the SINE, TRIANGLE, or SQUARE modes, the output frequency and peak amplitude are controlled from the front panel (or by computer command). The output signal is these modes is bipolar (i.e., the signal swings from a positive value to an approximately equal negative amplitude), and the duty cycle is nominally 50% (i.e., time that the signal is positive is equal in length to the time that the signal is negative.) These waveforms are illustrated below:
Sine
Peak voltage: 0 to 90V
Triangle
Square
A SYNC output is provided on the front-panel. This provides a 100 ns, 3V signal for triggering oscilloscopes or other equipment. In these modes, the delay (or relative phase) between the main output and the SYNC output is not adjustable.
19 PULSE GENERATION The AV-153C-B can also act as a pulse generator, with variable delay between the SYNC output and the main output. In this mode, the pulse width may be varied over a wide range (5 us to 500 ms), and the amplitude may be varied from 0 to +90V. (Negative pulses can not be generated directly. However, they can be generated indirectly by adding a negative DC offset. See the offset discussion below.) The maximum duty cycle (100% x Pulse Width / Period) is 80%. The outputs in this mode are shown below, assuming that the delay is set to a positive value: SYNC OUT (generated by the internal oscillator)
100 ns, FIXED 3V, FIXED
DELAY > 0
PULSE WIDTH
PEAK AMPLITUDE, VARIABLE
MAIN OUTPUT
If the delay is negative, the order of the SYNC and OUT pulses is reversed: 100 ns, FIXED
SYNC OUT (generated by the internal oscillator)
3V, FIXED DELAY < 0 PULSE WIDTH
MAIN OUTPUT
PEAK AMPLITUDE, VARIABLE
AMPLIFY MODE When the AMPLIFY mode is enabled, AV-153C-B may be used as a DC-30 kHz variable-gain linear amplifier. The maximum gain is +45. The maximum input signal is ±2V. The gain is adjusted by varying the amplitude setting, which corresponds to the output that would be obtained for a +2V input. (For instance, to obtain a gain of +15, set the amplitude to +30V. If a -0.8V signal is applied, for instance, the actual output would be -12V, not +30V.) The required voltage input signal is applied at TRIG for this mode of operation.
20 This mode is illustrated below:
INPUT VOLTAGE, ON "TRIG" CONNECTOR
OUTPUT VOLTAGE, ON "OUT" CONNECTOR
ARBITRARY WAVEFORM, VIN, ± 2V MAXIMUM
VOUT = VIN × GAIN, GAIN = +1 TO +45, ADJUSTABLE. ± 90V MAXIMUM.
PREVENTING DAMAGE Always ensure that the load resistance is 100 Ohms or higher. This instrument does include protection circuitry to monitor the average and peak power being consumed in the output circuitry. However, if it is possible for the load to fail to a short circuit, it is recommended that the instrument be protected by adding at least 100 Ohms of resistance in series with the device under test. The maximum output current will be limited to approximately 1.1 Amps under shortcircuit conditions. Short circuit conditions should not be allowed to persist for more than a few minutes, or the resulting thermal stresses may shorten the lifetime of the output stage. DC OFFSET In all modes, a DC offset may be added to the output signal. The DC offset can be set between -90V and +90V. The total output (amplitude + offset) can not exceed ±90V.
21 -PANB BURST MODE OPTION The -PANB option allows the generation of a burst of 1-500 cycles of sine, square, triangle, or pulse waveforms. This burst may be triggered by pressing a front-panel pushbutton, or by computer command. Beware that the instrument generates a burst output every time the pulse count (N) is changed (e.g., when the pulse:count command is sent, or when the pulse count is adjusted from the front panel). LOCAL MODE The number of waveform cycle in each burst can be controlled from the front panel. The display normally shows “N=xxx” (xxx may range from 0 to 500), where N is the number of cycles in each burst. When N=0, the instrument generates the output signal continuously – that is, the burst mode is disabled. When N>0, the instrument is in burst mode. A burst may be triggered by pressing the “SINGLE PULSE” pushbutton. A burst is also triggered any time that the value of the pulse count (N) is changed. For instance, when the ADJUST knob is rotated when the pulse count menu is displayed, a burst will be generated each time N increments or decrements. If this triggering is undesirable, set the amplitude to zero before adjusting the pulse count, and return the amplitude to the desired value after the pulse count is set properly. REMOTE MODE When controlling the instrument from the GPIB or RS-232 ports, the burst mode is controlled using the “pulse:count” command. Sending “pulse:count 0” disables the burst mode. That is, the instrument generates the output signal continuously. Sending “pulse:count xxx”, where xxx is a number between 1 and 500, triggers a burst with xxx cycles of the output waveform. The front-panel “SINGLE PULSE” pushbutton remains active in the remote mode. Pressing the “SINGLE PULSE” pushbutton after a “pulse:count” command will generate a burst, using the most recent pulse count setting.
22 SYNC OUTPUT In non-bursted operation, a 100 ns wide SYNC pulse is generated for each waveform cycle. This behaviour changes for burst mode operation. In this mode, a single SYNC pulse is generated for each burst, rather than each waveform cycle. The SYNC pulse width is equal to the duration of the burst. This simplifies the triggering of oscilloscopes. The delay feature is disabled for pulse waveforms in the burst mode.
23 OPERATIONAL CHECK This section describes a sequence to confirm the basic operation of the instrument. It should be performed after receiving the instrument. It is a useful learning exercise as well. Before proceeding with this procedure, finish reading this instruction manual thoroughly. Then read the “Local Control” section of the “Programming Manual for -B Instruments” thoroughly. The “Local Control” section describes the front panel controls used in this operational check - in particular, the MOVE, CHANGE, and ADJUST controls. AVTECH FUNCTION GENERATOR MAIN OUTPUT CONNECTOR
REAL-TIME OSCILLOSCOPE SCOPE PROBE CHANNEL A TEST LOAD, 100 Ω, 90 Watts, non-inductive
AC POWER
TRIG INPUT
SYNC OUTPUT
Basic Test Arrangement 1. Connect a non-inductive 100 Ω, 90 W test load between the OUT connector and ground. (Note: wirewound resistors are very inductive. Avoid them. Factory tests are conducted using an Ohmite TAP600K100E 100 Ω, 600 Watt resistor bolted to a water-cooled heatsink. See www.ohmite.com for information on TAP600 resistors. These resistors may be purchased readily at www.digikey.com.) If desired, a higher-resistance, lower-power load may be used to simplify the test. The required load power rating for a given resistance is 8100 / RLOAD, where RLOAD is in Ohms. Confirm that the oscilloscope and the test load are rated for ±90 Volt operation. 2. Connect a cable from the SYNC connector to the TRIG input of an oscilloscope. Set the oscilloscope to trigger externally. 3. Connect an oscilloscope probe to the load. On the oscilloscope, set the vertical scale to 50 V/div, and the horizontal scale to 50 us/div. 4. Turn on the AV-153C-B. The main menu will appear on the LCD.
24 5. To set the AV-153C-B to trigger from the internal clock at a PRF of 10 kHz: a) The arrow pointer should be pointing at the frequency menu item. If it is not, press the MOVE button until it is. b) Press the CHANGE button. The frequency submenu will appear. Rotate the ADJUST knob until the frequency is set at 10 kHz. c) Press CHANGE to return to the main menu. 6. To set the waveshape to a sinusoid: a) Press the MOVE button until the arrow pointer is pointing at the shape menu item. b) Press the CHANGE button. The delay submenu will appear. c) 200VPress MOVE until the arrow pointer is pointing at the “SINE” choice. d) Press CHANGE to return to the main menu. 7. At this point, nothing should appear on the oscilloscope. 8. To enable the output: a) Press the MOVE button until the arrow pointer is pointing at the output menu item. b) Press the CHANGE button. The output submenu will appear. c) Press MOVE until the arrow pointer is pointing at the “ON” choice. d) Press CHANGE to return to the main menu. 9. To change the output amplitude: a) Press the MOVE button until the arrow pointer is pointing at the amplitude menu item. b) Press the CHANGE button. The amplitude submenu will appear. Rotate the ADJUST knob until the amplitude is set at +90V. c) Observe the oscilloscope. You should see a 10 kHz, 90V peak (180V peak-topeak) sine wave. d) Press CHANGE to return to the main menu.
25 This completes the operational check. If additional assistance is required: Tel: (613) 226-5772 Fax: (613) 226-2802 Email:
[email protected]
26 PROGRAMMING YOUR PULSE GENERATOR KEY PROGRAMMING COMMANDS The “Programming Manual for -B Instruments” describes in detail how to connect the pulse generator to your computer, and the programming commands themselves. A large number of commands are available; however, normally you will only need a few of these. Here is a basic sample sequence of commands that might be sent to the instrument after power-up, using the internal trigger source: *rst sour:func sin frequency 1000 Hz output on volt 50 volt:low -10
(resets the instrument) (selects a sine wave output) (sets the frequency to 1000 Hz) (turns on the output) (sets the amplitude to 50 V) (sets the offset to -10 V)
To generate a pulse output, use: *rst sour:func pulse frequency 1000 Hz pulse:width 10 us pulse:delay 1 us output on volt 50 volt:low -10
(resets the instrument) (selects a unipolar pulse output) (sets the frequency to 1000 Hz) (sets the pulse width to 10 us) (sets the delay to 1 us) (turns on the output) (sets the amplitude to 50 V) (sets the offset to -10 V)
To amplify an external signal, use: *rst sour:func amp output on volt 50 volt:low -10
(resets the instrument) (enables the amplifier mode) (turns on the output) (sets the gain to 50 / 2 = 25) (sets the offset to -10 V)
To generate a burst of sine wave cycles (requires -PANB option), use: *rst sour:func sin frequency 1000 Hz pulse:count 7
(resets the instrument) (selects a sine wave output) (sets the frequency to 1000 Hz) (disables continuous output mode – no burst though, because the amplitude is zero)
27 output on volt 50 pulse:count 7
(turns on the output) (sets the amplitude to 50 V) (generates a burst of 7 sine wave cycles)
These commands will satisfy 90% of your programming needs.
28 ALL PROGRAMMING COMMANDS For more advanced programmers, a complete list of the available commands is given below. These commands are described in detail in the “Programming Manual for -B Instruments”. (Note: this manual also includes some commands that are not implemented in this instrument. They can be ignored.) Keyword LOCAL OUTPut: :[STATe] :PROTection :TRIPped? REMOTE [SOURce]: :FREQuency [:CW | FIXed] :FUNCtion :[SHAPe] :PULSe :PERiod :WIDTh :DELay :COUNt :VOLTage [:LEVel] [:IMMediate] [:AMPLitude] :LOW :PROTection :TRIPped? STATUS: :OPERation :[EVENt]? :CONDition? :ENABle :QUEStionable :[EVENt]? :CONDition? :ENABle SYSTem: :COMMunicate :GPIB :ADDRess :SERial :CONTrol :RTS :[RECeive] :BAUD :BITS :ECHO :PARity :[TYPE] :SBITS :ERRor :[NEXT]?
Parameter
Notes
[query only]
AMPlify | PULSe | SINusoid | SQUare | TRIangle | IN [units with burst mode option only]
[query only]
[query only, always returns "0"] [query only, always returns "0"] [implemented but not useful]
[query only, always returns "0"] [query only, always returns "0"] [implemented but not useful]
ON | IBFull | RFR 1200 | 2400 | 4800 | 9600 7|8 EVEN | ODD | NONE 1|2 [query only]
29 :COUNT? :VERSion? TRIGger: :SOURce *CLS *ESE *ESR? *IDN? *OPC *SAV *RCL *RST *SRE *STB? *TST? *WAI
[query only] [query only] INTernal | EXTernal | MANual | HOLD | IMMediate [no query form] [query only] [query only] 0|1|2|3 0|1|2|3
[no query form] [no query form] [no query form] [query only] [query only] [no query form]
30 MECHANICAL INFORMATION TOP COVER REMOVAL If necessary, the interior of the instrument may be accessed by removing the four Phillips screws on the top panel. With the four screws removed, the top cover may be slid back (and off). Always disconnect the power cord and allow the instrument to sit unpowered for 10 minutes before opening the instrument. This will allow any internal stored charge to discharge. There are no user-adjustable internal circuits. For repairs other than fuse replacement, please contact Avtech ([email protected]) to arrange for the instrument to be returned to the factory for repair. Service is to be performed solely by qualified service personnel. Caution: High voltages are present inside the instrument during normal operation. Do not operate the instrument with the cover removed. RACK MOUNTING A rack mounting kit is available. The -R5 rack mount kit may be installed after first removing the one Phillips screw on the side panel adjacent to the front handle. ELECTROMAGNETIC INTERFERENCE To prevent electromagnetic interference with other equipment, all used outputs should be connected to shielded loads using shielded coaxial cables. Unused outputs should be terminated with shielded coaxial terminators or with shielded coaxial dust caps, to prevent unintentional electromagnetic radiation. All cords and cables should be less than 3m in length.
31 MAINTENANCE REGULAR MAINTENANCE This instrument does not require any regular maintenance. On occasion, one or more of the four rear-panel fuses may require replacement. All fuses can be accessed from the rear panel. See the “FUSES” section for details. CLEANING If desired, the interior of the instrument may be cleaned using compressed air to dislodge any accumulated dust. (See the “TOP COVER REMOVAL” section for instructions on accessing the interior.) No other cleaning is recommended.
32 OTHER INFORMATION APPLICATION NOTES Application notes are available on the Avtech web site, at http://www.avtechpulse.com/appnote. MANUAL FEEDBACK Please report any errors or omissions in this manual, or suggestions for improvement, to [email protected]. Thanks!
WIRING DIAGRAMS WIRING OF AC POWER 3
4
Do not attempt any repairs on this instrument beyond the fuse replacement procedures described in the manual. Contact Avtech if the instr ument requires servicing. Service is to be perf or med solely by qualified service personnel.
SS+
BD2 PCB104D KEYPAD BOARD ( -BUNITS ONLY) 22-01- 1022, 08-56- 0110. RTV SEAL.
TO ENCODER
1b
2b
G
L
N
19002-0001
C2 - GRN C1 - RE D
TO PCB 108
X6 TP S1 8 0 -1 3
D
2
1a
2a A1 - BROWN A2 - BLUE
5
TP VP 1 03 -2 4 0 04 2 X3
G
+V
G2
1
+V
+V
-V
+V 2
3
4
-V
-V
5
6
7
8
TEM P OV AU X
-V
1 0 4D
G
A3 - BLACK A4 - WHITE
1 3
G5 G3 G1
G6 B2 - RED
N
3
TO LCD
L N
6
X1 P OW ER S W ITCH S W 32 5 -ND ( CW IND US TRIES GRS -4 0 22 -0 0 1 3 )
1 2 3 4 5 6
G4
TO LCD
R O Y G
1
Y B
A K
5
1
2
D
+V +V +V -V -V -V
B1 - RE D
W ARN ING
2
L
1
C
C
+ J8
+ 1 0V + 1 5V -1 5 V -5 V +5 V GN D GN D +5 V +5 V J2 20 AWG
+ 2 4, NO OLO GN D P OS OLO OLO G ND NEG O LO /+ IN J3 GN D
W IRE LENGTHS (CM )
J6 C A P B AN K GN D EXT +P S IN GN D -IN / + OU T GN D + 1 2V O LO GN D
C3 - PU R C4 - GR N
J10
+ 2 4V , NO O LO + 2 4V , NO O LO GN D +5 V +5 V -5 V -1 5 V + 1 5V + 1 5V + 1 0V J1
20 OR 24 AWG
20 AWG
20 AW G, ALPHA 3073, UL STYLE 1015 (600 Vrms) G2 - GREEN/YELLOW, 20.5 G3 - GREEN/YELLOW, 20.5 G5 - GREEN/YELLOW, 35
J4
24 AWG +
S1 A S1 B DC / S 2 A S2 B DC G ND C H S G ND
X2 CORCOM 6 EGG1 -2 P OW ER ENTRY MOD ULE
GN D GN D GN D
20 AWG
J9 - FAN
X4 P CB 1 5 8K
A K
B
J7
W HT B LK R ED
GR N
AM B
GR N
AM B
B
24 AW G, BELDEN 83003, MIL-W -16878/4 (600 Vrms)
CHANGES REQUIRED ON PCB 158K:
X5 VCC LED MOUNT
A1 - BROWN, 58.5 A2 - BLUE, 56.5 A3 - BLACK, 67.5 A4 - WHITE, 67.5
G1 - GREEN, 16 G4 - GREEN, 25 G6 - GREEN, 55
PCB 158K
AU X EN J11
D1 P395-ND LED
20 AW G, BELDEN 83008, MIL-W -16878/4 (600 Vrms)
B1 - RED, 26 B2 - RED, 55
AMBER GN D J5 GREEN
A
CHS GND
C1 - RED, 23.5 C2 - GRN, 23.5 C3 - PUR, 45 C4 - GRN, 45
1) REMOVE R15 (DISABLE INT PS) 2) INSTALL R17 = ZERO OHMS (ENABLE EXT PS) 3) INSTALL R8 = 0.025 OHM S (HIGH CURRENT MOD). 4) INSTALL C2 = 220uF, 16V, P5139-ND (SLOW ER OLO) 5) INSTALL R2 = 22 AY (FOR CAP BANK CHARGING) 6) INSTALL K5 = G2RL-14-DC24 (FOR CAP BANK DISCHARGING) 7) INSTALL K2, K6 = AQZ102 (HIGH CURRENT M OD) 8) REMOVE R13, R23 (HIGH CURRENT MOD)
A
AV-153C-B AC POWER SUPPLY (QC7 HARNESS) Printed
Revision
4-May-2006
1E
Z: \mjc files\circuits\av-11X-15X\FUNC.ddb - AV-153C-B\153C AC v1.sch 1
2
3
4
5
6
PCB 158K - LOW VOLTAGE POWER SUPPLY, 1/3 1
2
3
4
5
6
D
D
p cb 158 k _ ov p p cb 158 k _ ov p .sch
C +1 5V -1 5 V
C
+1 5V GN D -1 5 V
BU+ P-OU T # 1
J3 6 5 4 3 2 1 64 04 4 5 -6 J4 8 7 6 5 4 3 2 1
p cb 158 k _ switchin g p cb 158 k _ switchin g .sch
-1 5 V
P-OU T # 2 N- OUT CAPBANK
64 04 4 5 -8
AMBER GREEN P-OU T # 3
1 2 3
B
J5 6 4 045 6 -3
1 2
+1 5V B
BU+ EXT NEG IN +1 5V GN D -1 5 V P-OU T # 1
J7 6 4 04 56 -2
A
A Title
Date
LOW VOLTAGE DC/DC POWER SUPPLY Rev ision
13-Sep-2005
Z: \mjcfiles\pcb\158\switching60hz.ddb - 158K\pcb158k.sch 1
2
3
4
5
6
PCB 158K - LOW VOLTAGE POWER SUPPLY, 2/3 1
2
3
D
4
5
6
D
B
X
TP6 TEST-LOO P
4
TP3 TEST-LOO P
3
6 4 04 4 5 -6 J6 S1 A 1 S1 B, OR D C 2 S2 A, O R DC 3 S2 B 4 5 6
1 2
A A
F3 8 3 08 3 5 FUSEHO LDER
L5 BU+
43 4- 13 -1 0 0 M C2 0 47 uF,5 0V
C2 1 2 .2u F R2 0 C2 2 10K 1 0 00 uF,3 5 V (P5 16 9 -ND )
C1 6
C19 4 7uF,5 0V
D7 1 .5 K E3 9 A
1 0 00 u F,3 5 V (P5 16 9 -ND )
J1 0
1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9
J2 6 4 04 4 5 -9
C
+1 0V +1 5V +1 5V -1 5 V -5 V +5 V +5 V GN D +2 4V +2 4V
C
J1 1 -6 4 04 5 6 -0
R5 0 , FOR 78 2 4 BYPA SS. N ORMA LLY IN STA LLED.
3 2 1 64 04 5 6 -3
U2 7 8 10
P-OU T # 1 Vo u t
3
+1 0V C1 4 7 uF,3 5V
2
1
2
4 3 4- 13 -1 0 1 M C8 2 .2 u F
C
1
+ +
4
3
4 3 4- 13 -1 0 1 M C6 2 .2 u F
C1 3 4 7 uF,5 0V
B
J8 2 2 -0 4- 10 2 1
C4 4 7 uF,3 5V
L2
ASTRODY NE FEC1 5-24 D 15 DC-D C
3
2
-1 5 V
1 2
-
L1
5
Vo u t
1 2
U1
B
Vin
C7 4 7 uF,5 0V
GN D
Vin GN D
1
U5 7 8 24 (NO T NO RMALLY INSTALLED)
J9 64 04 4 5 -2
+1 5V C3 4 7 uF,3 5V
X6 TIE-DO WN-3 50
U4
2
-
C 1
+ +
A
L4
5
4 3 4- 13 -1 0 1 M C1 2 2 .2 u F
4
-5 V C5 4 7 uF,3 5V
L3
3
4 3 4- 13 -1 0 1 M C1 1 2 .2 u F
ASTRODY NE FEC1 5-24 D 05 DC-D C
-1 5 V
-1 5 V
+1 5V
+1 5V
GN D
+5 V C9 4 7 uF,3 5V
A Title
Date
DC/DC, AND OVER-VOLTAGE PROTECTION Rev ision
13-Sep-2005
Z: \mjcfiles\pcb\158\switching60hz.ddb - 158K\pcb158k_ovp.sch 1
2
3
4
5
6
PCB 158K - LOW VOLTAGE POWER SUPPLY, 3/3 1
2
3
4
5
6
R2 1 1 .5 K O Y
CAPBANK C23 1 000 u F,35 V (P5 16 9 -ND )
1 N5 3 0 5
L6 27 1 1
HV WA RN ING
R1 7
D SHO RTS OU T B ASE WHEN C HAR GING. 4
0 , IF OLO USES EXT PS. N OT N ORMA LLY IN STA LLED.
3
EXT
R1 5 K4 RELA Y - PS7 2 00 1 D4 0 .1 u F R4 150
Vin
C25 4 7uF,5 0V
NO T N ORMALLY USED (0 .02 5 O HM, WLA R02 5 FCT-N D)
2
X
B
U3 7 8 12
C2 6
4
1 2
TP4
3
A A
F2 8 3 08 3 5 FUSEHO LDER
R8
1 N5 3 0 5
3
Vou t
P-OU T # 3
GN D
0 , IF OLO USES IN T PS. NORMALLY I NSTALLED .
C1 0 4 7 uF,5 0V 2
BU+
1
D
X2
D8
D6
K5 TEST-LOO P
3
D5 3
2
5
2 5 CTQ 04 0 I N 29 4 -10 51 -N D (S7 01 ) HEATSIN K
TEST-LOO P
1
OPT. 22 A Y
TP5 1
U6
R2
4 2
GN D
2 3
1
I+ I+
4
OPT. G 2RL-1 4 -DC2 4
GN D
8
OU T
K1
7 6
II-
4
2
MA X4 7 1
P-OU T # 1
+
-
+
-
3
P-OU T # 2
5
N/C
1
AQ Z10 2
C
300
8
1 2 0 OY
5 .1 K
K2
K3 4
D9
DISAB LE AT PO WER -OFF
D2
1 N4 1 4 8
R2 3
1
+
2
4 R2 4
6 5 4
R2 2
+ +
-
+
-
470 4
N- OUT
R1 3 4 7 0, IF NO K 2 . NO RMALLY INSTALLED .
OPT. A QZ10 2
+1 5V
D1 1 N4 7 3 6A
C1 5
0 .1 uF R1 1 4 .7 K
R7 75K
4 2 6 5 7
1 TP2
Q1 A MPQ 22 2 2
1
3
C14 4 7uF,3 5V
TEST-LOO P R9 ROLO
6 4 04 5 6 -2
C2
C18
C17 0 .1 u F
RESET TRIG THR OU T CON T DI S
B
+1 5V 3
GN D
MC1 4 5 5 (A NY 15V, NON-C MOS 555)
R1 2 1K
AMBER
6 80
V+
R1 8 1 .2 K R1 6 1 .2 K
GREEN Q1B MPQ 222 2
5
R27 51
R19
U7 8
DISAB LE OLO WHEN CH ARG IN G.
2 1
GR OU ND TO ENA BLE OLO
+
R6
1
1 2 3 J11
-
2
OPT. A QZ10 2
R26 1 .2 K
TO AU X
+
Q1 C MPQ 22 2 2
C2 4 4 7 uF,3 5V
K7 OPT. A QV2 2 1
-
0 , IF -1 5V SWITCHED BY OLO. N OT N ORMA LLY I NSTA LLED .
3
12
300
+1 5V
B
14
51
2
470
R2 5
+
R1
-1 5 V
K6 1 N4 1 4 8
3
NEG IN
1
+1 5V DISAB LE AT PO WER -ON (+15V LAGS HV BY 500 ms)
3
-
+ 4 7 0, IF NO K 6 . NO RMALLY INSTALLED . AQ Z10 2
1 N4 7 3 3A
D1 0
C
R1 0
7
R1 4
Q1 D MPQ 22 2 2
10
R3
TP1 X3 6 -32 MOUN T
X4 6 -32 MOUN T
X1 KEY STON E 6 2 1 BRACKET
2 2 0u F,16 V (P5 1 39 -N D)
TEST-LOO P OPT. 1 0 00 u F,3 5V (P5 16 9 -N D)
A
-1 5 V
X1 0 6 -32 MOUN T
-1 5 V
A
X5 TRIMPOT ACCESS Title
+1 5V
+15V Date
GN D
OVER-CURRENT PROTECTION Rev ision
13-Sep-2005
Z: \mjcfiles\pcb\158\switching60hz.ddb - 158K\pcb158k_swit ching.sch 1
2
3
4
5
6
HIGH-VOLTAGE DC POWER SUPPLIES 1
2
3
4
1 /4 C2 4 -P1 2 5 , WITH PCB 1 70 UV 1 USE J234-ND SPACER
D
GN D +2 4V
170
GN D +2 4V
+HV UV G ND
170
SSR EN VC
GN D GN D
D
HV HV
-H V UV G ND
GN D GN D
CH S GND R7 = 5K, 3266W R6 = NOT USED R4 = NOT USED R5 = ZERO R3 = NOT USED R2 = ZERO R1 = NOT USED
D2 = 1N4937A D3 = 1N4937A D4 = NOT USED D5 = NOT USED
6
1 /4 C2 4 -N1 2 5, WITH PCB 1 7 0 UV 2 USE J234-ND SPACER
HV HV
SSR EN VC
5
R8 = R9 = R10 = R11 =
CH S GND
3.3 OY 100K OY NOT USED NOT USED
R7 = 5K, 3266W R6 = NOT USED R4 = ZERO R5 = NOT USED R3 = NOT USED R2 = NOT USED R1 = ZERO
D2 = NOT USED D3 = NOT USED D4 = 1N4937A D5 = 1N4937A
R8 = R9 = R10 = R11 =
3.3 OY 100K OY NOT USED NOT USED
C
C
B
+
J10
J8
J2 20 AWG
20 OR 24 AWG
24 AWG
+ FAN 1 DC P9 76 8 -ND ( BY PS) FAN -
+
J6 C A P B AN K GN D EXT +PS IN GN D -IN / +OU T GN D +1 2V O LO GN D
+2 4, NO OLO GN D POS OLO OLO G ND NEG O LO /+IN J3 GN D
+1 0V +1 5V -1 5 V -5 V +5 V GN D GN D +5 V +5 V
+2 4V , NO O LO +2 4V , NO O LO GN D +5 V +5 V -5 V -1 5 V +1 5V +1 5V +1 0V J1
S1 A S1 B DC / S2 A S2 B DC G ND CH S G ND
X1 PCB 1 5 8K
GN D GN D GN D
20 AWG
J4 B
20 AWG
J9 - FAN + FAN 2 P9 76 8 -ND ( BY PG )
DC FAN
A K
-
J7 AMBER GN D J5 GREEN
AU X EN J11
PCB 1 5 8K
A
A Title
Date
AV-153C-B HIGH VOLTAGE POWER SUPPLY Revision
4-May-2006
1A
Z: \mjc files\circuits\av-11X-15X\FUNC.ddb - AV-153C-B\153C HV v3.sch 1
2
3
4
5
6
PCB 170 - HIGH-VOLTAGE POWER SUPPLY 1
2
3
J3 2 1
D
4
D5
D4
1 N4 9 3 7
1 N4 9 3 7
5
6
J4 2 1
6 4 04 45 -2
D
6 4 04 4 5-2 D3
D2 X3
1 N4 9 3 7 R8 1 00 OY
1 N4 9 3 7
HV WA RN ING
R9 BLEED R1 0
R1 1
BLEED
BLEED
X1
HV WA RN ING UV 1
18 17
X2
C
C
CASE
OU T
0
15 16
HV WA RN ING
7 6 5 4 3 2 1
14 13 12 11 10 9 8
GN D ULTRAVO LT C PS
R6
J1
R4
1 2
B
B
D1 1 N4 7 5 0
R5
TOP VIEW
CW
6 4 04 4 5 -2
W
R3
R2
R1
J2 +24V OLO ENA BLE AMP IN
CC W
C1 2 .2 u F CER
R7 5 K, 3 2 6 6W
3 2 1 6 4 04 5 6 -3
A
A Title
Date
UV-C CONTROL PCB Rev ision
28-Oct-2004
P: \pcb\170\uv-c control.Ddb - Documents\PCB170.sch 1
2
3
4
5
6
1
PCB 104D - KEYPAD / DISPLAY BOARD, 1/3 1
2
3
4
5
6
D
D
AH E10 G- ND, Mfg 49 9 9 10 -1, 1 0 pin straig h t h ead er J5 1 2 3 4 5 6 7 8 9 10
C
C
LCD-BUTT LCD-BUTT.SCH SDA SCL GN D VCC VCC-LED BACKLIG HT
ENCOD ER ENCOD ER.SCH SDA SCL GN D VCC
B
I2 C_ INT SING LE PULSE
B
BACKLIG HT
A
A Title
Date
PANEL TOP-LEVEL SCHEMATIC Rev ision
17-Dec-2004
P: \pcb\104d\ keypad-2004.DDB - Documents\Panelbrd.prj 1
2
3
4
5
6
PCB 104D - KEYPAD / DISPLAY BOARD, 2/3 1
2
3
4
5
6
U4 A VCC
C1 0 PIN3
U7 1 2 3 4 5 6 7 8
Q1 PIN3 1 MMBT2 2 2 2A PIN3 0 PIN2 9 PIN2 8
1 2
15K
VCC
VCC 16 15 14 13 12 11 10 9
A0 VCC A1 SDA A2 SCL P0 IN T P1 P7 P2 P6 P3 P5 GN D P4
MM7 4H C1 4 N
4
D
3
MM7 4H C1 4 N U4 C C1 2 6
5 2 .2 u F MM7 4H C1 4 N U4 D
12 34
SCLK /TCK GN D MO DE/TMS
C9
VCC
PIN1 5 PIN1 6 PIN1 7 PIN1 8 PIN1 9 PIN2 0 PIN2 1 PIN2 5 PIN2 6 PIN2 7 PIN2 8
CLK0 /I O TDO CLK1 /I 1 IO 8 IO 2 4 IO 16 IO 0 TCK IO 9 IO 1 0 IO 1 1 IO 1 2 IO 1 3 IO 1 4 IO 1 5 VCC IO 1 7 IO 1 8 IO 1 9 IO 2 0
1 23
C3
GN D GN D
11 35 33 14 36 24 2 13 15 16 17 18 19 20 21 22 25 26 27 28
GN D GN D
PIN6
VCC
C1 3 0 .1u F
2 .2 u F PIN3 7 PIN4 1
4 -1 0 33 2 1-0 , 1 x40 br eak away h ead er str ip X4
C
C15 0 .1 u F
C1 1 PIN4
PIN5
ispEN /N C SDI/TDI SDO /TDO VCC
C4 0 .1 u F
PIN3 8
PCF8 5 7 4A PN
J8 6 4 04 5 6 -2
C2 0 .1 u F
GN D
U4 B
29 30 31 32 37 38 39 40 41 42 43 44 3 4 5 6 7 8 9 10
IO 2 1 IO 2 2 IO 2 3 TMS IO 25 IO 26 IO 27 IO 28 IO 29 IO 30 IO 31 VCC IO 1 IO 2 IO 3 IO 4 IO 5 IO 6 IO 7 TDI
PIN2 9 PIN3 0 PIN3 1
PIN3 PIN4 PIN5 PIN6 PIN7 PIN8 PIN9
9 2 .2 u F MM7 4H C1 4 N U4 E
PIN3 7 PIN3 8 PIN3 9 PIN4 0 PIN4 1 PIN4 2 PIN4 3
C7 PIN7
10
11
X6
2 .2 u F
VCC VCC
PIN39 PIN40
RED, +5 V
U4 F
ORA NGE, B YELLOW, A GREEN, G ND
C6 PIN8
12
13 2 .2 u F MM7 4H C1 4 N
6 0 0EN -12 8 -CN1
U1 E C1 SING LE PULSE
M4 A 5- 32 /32 JC U6
10
11 2 .2 u F MM7 4H C1 4 N
0 .1 u F
RN2
VCC
PIN2 6 PIN2 5 PIN4 2 PIN2 1
U3 1 2 3 4 5 6 7 8
A0 VCC A1 SDA A2 SCL P0 IN T P1 P7 P2 P6 P3 P5 GN D P4
C
MM7 4H C1 4 N 1 2 3 4 5
VCC
B
8
VCC 16 15 14 13 12 PIN2 7 11 10 9
RN1 8 7 6 5 4 3 2 1
RN3 4 6 08 X -1- 47 3
1 2 3 4 5 6 7 8
B 1 2 3 4 5 6 7 8
R1
VCC
1 2 .2 u F
R4 15K
D
2
4 6 08 X -2- 10 1
4 6 08 X -2- 101
VCC
J7 AU X OV TEMP
3 2 1
X5 8 2 -6 01 -8 1 , 6 b u tto n k ey p ad
6 4 04 5 6 -3
PCF8 5 7 4A PN
MO VE 1A U2 VCC PIN1 6 PIN1 5 PIN4 3 PIN9
1 2 3 4 5 6 7 8
A0 VCC A1 SDA A2 SCL P0 IN T P1 P7 P2 P6 P3 P5 GN D P4
VCC 16 15 14 13 12 11 10 9
PIN2 0 PIN1 9 PIN1 8 PIN1 7
6A
2B
5A
3B
4A
X1 0
SDA SCL I2 C_ INT
2A
6B
/10 5B
X2 8 2 -1 01 -7 1 , 1 b u tto n k ey p ad +/1A
PCF8 5 7 4A PN
A
CHA NGE 1B
1B
3A
EXTRA FI NE 4B
R2 1 0 0K
A Title
VCC
Date
ENCODER, BUTTONS, AND PLD Rev ision
17-Dec-2004
P: \pcb\104d\ keypad-2004.DDB - Documents\ENCODER.SCH 1
2
3
4
5
6
PCB 104D - KEYPAD / DISPLAY BOARD, 3/3 1
2
3
4
5
6
VCC VCC C5 0 .1 u F
GN D
C8 2 2 uF
D
D
VCC
U5 1 2 3 4 5 6 7 8
PAD 3 PAD 4 LED+ LED-
A0 VCC A1 SDA A2 SCL P0 IN T P1 P7 P2 P6 P3 P5 GN D P4
VCC 16 15 14 13 12 11 10 9
SDA SCL
PCF8 57 4A PN C
U1 A
LCD POW ER
C
U1 C
1
2
5
6
MM7 4H C1 4 N
MM7 4H C1 4 N
U1 D
U1 F
VCC U1 B 3
4
9
MM7 4H C1 4 N
8
MM7 4H C1 4 N
13
RN4
R3 2 .7 OH M, 2W VCC
12
MM7 4H C1 4 N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
VCC 16
4 8 16 P-0 0 2- 10 2
B
B X1 0 A
4 -4 0 MOUN T X3 X1 4 -40 MOUN T
4 -40 MOUN T X9 X8 4 -4 0 MOUN T
VCC
2 4 6 8 10 12 14 16
K
DB6 DB4 DB2 DB0 R/W VEE VCC NC
1 3 5 7 9 11 13 15
DB7 DB5 DB3 DB1 E1 RS VSS E2
A HE1 6G -ND , Mf g 4 99 9 10 -3 , 1 6 p in str aig h t head er
A
A Title
Date
LCD CIRCUITS, MECHANICAL Rev ision
17-Dec-2004
P: \pcb\104d\ keypad-2004.DDB - Documents\LCD-BUTT.SCH 1
2
3
4
5
6
WIRING OF TIMING BOARDS (UNITS WITH -PANB OPTION) 1
2
3
4
5
BD3 OP 1 B MAIN BOA RD, P CB 1 0 8M4
VP RF VS P ARE W HT BLK RED
D
6
ACT GN D LNK
D S YN C
TRIG OUT
26-LINERIBBON << INDEX WIRE
TR IG
EA
C
NO C NC
S M A2
S M A1 , -C SY NC
BD1 P AN B DA UGH TERBOA RD
C
GA TE, TRIG N OT U SED !
EAIN IN T RN G EXT
X1 EXT TRIG RG-174
+ 1 5V O N/OF F + 5 V ON/OFF MA IN OU T S YN C OU T EXT TRIG GA TE XRLY 1 XRLY 2 (D UA L P W ) XRLY 3 (V -I) XRLY 4 (EO ) XRLY 5 AMP LRNG 0 AMP LRNG 1 AMP LRNG 2 AMP LRNG 3 AMP LRNG 4 O.LED O.EA O.S INE O.TRI O.S QU O.LOG IC O.ZOU T O.P OL S P ARE, 0- 10 V P W , 0 -1 0V OF F S ET, 0 -1 0 V AMP LI TU DE, 0 -1 0 V
GA TE
28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
P1 P IN 5 /6 BLUE
P IN 1 1 P2
9-PIN POWER HARNESS
BD2 PAN B BURS T
ORANGE
B
B
OU T
CON N1
M1
OU T
IN GN D GN D + HV GN D -H V GN D
UV G ND + HV UV G ND -H V
10 PIN RIBBON CABLE RED INDEX WIRE
BLUE 9-PIN POWER HARNESS
S YN C X2
ORANGE
CH SGND A
A
1 5 3C P G, MTA V 1 Title
Date
AV-153C-B-PANB Revision
4-May-2006
1A
Z: \mjc files\circuits\av-11X-15X\FUNC.ddb - AV-153C-B\153C-PANB wiring V1. sch 1
2
3
4
5
6
43 PERFORMANCE CHECK SHEET