Transcript
AVTECH
ELECTROSYSTEMS
N A N O S E C O N D
P.O. BOX 265 OGDENSBURG, NY U.S.A. 13669-0265
W A V E F O R M E L E CT RO NIC S S I N C E 1 9 7 5
TEL: 888-670-8729 (USA & Canada) or +1-613-686-6675 (Intl) FAX: 800-561-1970 (USA & Canada) or +1-613-686-6679 (Intl)
[email protected]
-
LTD.
http://www.avtechpulse.com/
INSTRUCTIONS
MODEL AVR-3-PW-TEK2-B 0 - 250V, 0 - 5A, 10 ns RISE TIME PULSE GENERATOR FOR CURRENT PROBE TESTING
SERIAL NUMBER: ____________
X
BOX 5120, LCD MERIVALE OTTAWA, ONTARIO CANADA K2C 3H4
2
WARRANTY Avtech Electrosystems Ltd. warrants products of its manufacture to be free from defects in material and workmanship under conditions of normal use. If, within one year after delivery to the original owner, and after prepaid return by the original owner, this Avtech product is found to be defective, Avtech shall at its option repair or replace said defective item. This warranty does not apply to units which have been dissembled, modified or subjected to conditions exceeding the applicable specifications or ratings. This warranty is the extent of the obligation assumed by Avtech with respect to this product and no other warranty or guarantee is either expressed or implied.
TECHNICAL SUPPORT Phone: 888-670-8729 (USA & Canada) or +1-613-686-6675 (International) Fax: 800-561-1970 (USA & Canada) or +1-613-686-6679 (International) E-mail:
[email protected] World Wide Web: http://www.avtechpulse.com
3 TABLE OF CONTENTS WARRANTY......................................................................................................................2 TECHNICAL SUPPORT...................................................................................................2 TABLE OF CONTENTS....................................................................................................3 INTRODUCTION...............................................................................................................5 SPECIFICATIONS.............................................................................................................6 REGULATORY NOTES....................................................................................................7 FCC PART 18.......................................................................................................................... 7 EC DECLARATION OF CONFORMITY..................................................................................7 DIRECTIVE 2002/95/EC (RoHS).............................................................................................8 DIRECTIVE 2002/96/EC (WEEE)............................................................................................8 AC POWER SUPPLY REGULATORY NOTES.......................................................................9
INSTALLATION..............................................................................................................10 VISUAL CHECK.................................................................................................................... 10 POWER RATINGS................................................................................................................10 CONNECTION TO THE POWER SUPPLY...........................................................................10 PROTECTION FROM ELECTRIC SHOCK...........................................................................11 ENVIRONMENTAL CONDITIONS.........................................................................................12
FUSES.............................................................................................................................13 AC FUSE REPLACEMENT...................................................................................................13 DC FUSE REPLACEMENT...................................................................................................14 FUSE RATINGS.................................................................................................................... 14
FRONT PANEL CONTROLS..........................................................................................15 REAR PANEL CONTROLS............................................................................................17 GENERAL INFORMATION.............................................................................................19 BASIC TEST ARRANGEMENT, WITHOUT OUTPUT MODULE..........................................19 BASIC TEST ARRANGEMENT, WITH OUTPUT MODULE..................................................19 OUTPUT MODULE EQUIVALENT CIRCUIT.........................................................................20 BASIC PULSE CONTROL....................................................................................................21 TRIGGER MODES................................................................................................................23 GATING MODES................................................................................................................... 23 REPLACEMENT CABLES....................................................................................................23
TYPICAL RESULTS.......................................................................................................25
4 MEASUREMENT ACCURACY AND CALIBRATION....................................................27 VOLTAGE AMPLITUDE CALIBRATION...............................................................................27 LOAD RESISTANCE CALIBRATION....................................................................................27
OPERATIONAL CHECK.................................................................................................28 PROGRAMMING YOUR PULSE GENERATOR............................................................31 KEY PROGRAMMING COMMANDS.....................................................................................31 ALL PROGRAMMING COMMANDS......................................................................................32
MECHANICAL INFORMATION......................................................................................34 TOP COVER REMOVAL.......................................................................................................34 RACK MOUNTING................................................................................................................34 ELECTROMAGNETIC INTERFERENCE..............................................................................34
MAINTENANCE..............................................................................................................35 REGULAR MAINTENANCE...................................................................................................35 CLEANING............................................................................................................................ 35
WIRING DIAGRAMS.......................................................................................................36 WIRING OF AC POWER.......................................................................................................36 PCB 158N - LOW VOLTAGE POWER SUPPLY, 1/3...........................................................37 PCB 158N - LOW VOLTAGE POWER SUPPLY, 2/3...........................................................38 PCB 158N - LOW VOLTAGE POWER SUPPLY, 3/3...........................................................39 PCB 168B - HIGH VOLTAGE DC POWER SUPPLY............................................................40 PCB 157C - HIGH VOLTAGE DISCHARGE BOARD............................................................41 PCB 183A - CAPACITOR BANKS........................................................................................42 PCB 104E - KEYPAD / DISPLAY BOARD, 1/3.....................................................................43 PCB 104E - KEYPAD / DISPLAY BOARD, 2/3.....................................................................44 PCB 104E - KEYPAD / DISPLAY BOARD, 3/3.....................................................................45 MAIN WIRING (-P UNITS).....................................................................................................46
PERFORMANCE CHECK SHEET.................................................................................47 Manual Reference: /fileserver2/officefiles/instructword/avr-3/AVR-3-PW-TEK2-B,edition3.odt. Last modified July 16, 2012. Copyright © 2012 Avtech Electrosystems Ltd, All Rights Reserved.
5 INTRODUCTION The AVR-3-PW-TEK2-B series is specifically designed for testing Tektronix current probes. The main output provides 10 ns rise time voltage pulses (0 to 250V, 250 ns to 250 us), suitable for testing A6303 or TCP303 probes. A 50Ω termination is provided inside a supplied output module. A variable current of up to 5 Amperes is defined by the 250 Volt pulse and the 50Ω termination. For other applications, the output pulse may be connected to a user-supplied 50Ω load, if desired. An external output module is provided for probe tests. A replaceable flexible shorting cable is mounted on this output module. (The shorting cables are standard RG-316 coaxial cables.) During tests, the output module is connected to the mainframe by a 12" / 30 cm length of coaxial cable, and the current probe is clamped around the shorting cable. The output module also contains the 50 Ohm termination. The supplied cables and output module are designed to preserve the fast rise and fall times as much as possible, despite the parasitic inductance introduced by the probes and the unshielded connections (i.e., imperfect transmission lines) required to measure current flow. Instruments with the "-P" model suffix can generate positive output voltages (and thus source current), whereas instruments with the "-N" model suffix can generate negative voltages (and thus sink current). The AVR-3-PW-TEK2-B is a highly flexible instrument. Aside from the internal trigger source, it can also be triggered or gated by external TTL-level signals. A front-panel pushbutton or a computer command can also be used to trigger the instrument. The AVR-3-PW-TEK2-B features front panel keyboard and adjust knob control of the output pulse parameters along with a four line by 40 character back-lit LCD display of the output amplitude, pulse width, pulse repetition frequency, and delay. The instrument includes memory to store up to four complete instrument setups. The operator may use the front panel or the computer interface to store a complete “snapshot” of all key instrument settings, and recall this setup at a later time. This instrument is intended for use in research, development, test and calibration laboratories by qualified personnel.
6 SPECIFICATIONS Model: Basic Description: Number of Outputs: Amplitude (RL ≥ 50 Ω)2: Amplitude accuracy: Provided termination: Voltage rise & fall times (20%-80%): Pulse width (FWHM): Droop (at max. pulse width): Overshoot (at max. amp.): PRF: Duty cycle (max): Polarity3: Propagation delay: Jitter: Mainframe output connector: Probe attachment style: Trigger required for ext trig modes: Sync delay: Sync output: Gated operation: GPIB and RS-232 control 1: LabView drivers: Telnet / Ethernet control 4: Power requirements: Dimensions: Chassis material: Mounting: Temperature range: 1) -B
AVR-3-PW-TEK2-B1 High current pulser, with GPIB / RS-232 1 0 to 250 V Greater of ±2% or ±0.5V. 50.0 ± 1% ≤ 10 ns 250 ns to 250 us ≤ 2% ≤ 5% Internal trigger: 1 Hz to 10 kHz External trigger: 0 Hz to 10 kHz 0.25% Positive or negative (specify) ≤ 150 ns (Ext trig in to pulse out) ± 100 ps ± 0.03% of sync delay (Ext trig in to pulse out) SMA Flexible clamping cable on output module. The output module is connected to the front panel by a 12" / 30 cm coaxial cable. TTL, 50 ns or wider Variable to ± 250 us (sync out to pulse out). Common to all outputs. +3 Volts, 100 ns (will drive 50 Ω loads) Synchronous or asynchronous, active high or low, switchable. Standard feature on all -B units. Check for available downloads at http://www.avtechpulse.com/labview. Optional. See http://www.avtechpulse.com/options/tnt for details 100 - 240 Volts, 50 - 60 Hz 100 mm x 430 mm x 375 mm (3.9” x 17” x 14.8”) Cast aluminum frame and handles, blue vinyl on aluminum cover plates Any. Add -R5 to the model number to add a rack-mount kit. +5°C to +40°C
suffix indicates IEEE-488.2 GPIB and RS-232 control of amplitude, pulse width, PRF and delay (See http://www.avtechpulse.com/gpib). 2) For operation at amplitudes of less than 10% of full-scale, best results will be obtained by setting the amplitude near full-scale and using external attenuators on the output. 3) Indicate desired polarity by suffixing model number with -P or -N (i.e. positive or negative). 4) Add the suffix -TNT to the model number to specify the Telnet / Ethernet control option.
7 REGULATORY NOTES FCC PART 18 This device complies with part 18 of the FCC rules for non-consumer industrial, scientific and medical (ISM) equipment. This instrument is enclosed in a rugged metal chassis and uses a filtered power entry module (where applicable). The main output signal is provided on a shielded connector that is intended to be used with shielded coaxial cabling and a shielded load. Under these conditions, the interference potential of this instrument is low. If interference is observed, check that appropriate well-shielded cabling is used on the output connectors. Contact Avtech (
[email protected]) for advice if you are unsure of the most appropriate cabling. Also, check that your load is adequately shielded. It may be necessary to enclose the load in a metal enclosure. If any of the connectors on the instrument are unused, they should be covered with shielded metal “dust caps” to reduce the interference potential. This instrument does not normally require regular maintenance to minimize interference potential. However, if loose hardware or connectors are noted, they should be tightened. Contact Avtech (
[email protected]) if you require assistance. EC DECLARATION OF CONFORMITY
We
Avtech Electrosystems Ltd. P.O. Box 5120, LCD Merivale Ottawa, Ontario Canada K2C 3H4
declare that this pulse generator meets the intent of Directive 2004/108/EG for Electromagnetic Compatibility. Compliance pertains to the following specifications as listed in the official Journal of the European Communities: EN 50081-1 Emission EN 50082-1 Immunity
8 and that this pulse generator meets the intent of the Low Voltage Directive 72/23/EEC as amended by 93/68/EEC. Compliance pertains to the following specifications as listed in the official Journal of the European Communities: EN 61010-1:2001
Safety requirements for electrical equipment for measurement, control, and laboratory use
DIRECTIVE 2002/95/EC (RoHS) This instrument is exempt from Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the Restriction of the use of certain Hazardous Substances (RoHS) in electrical and electronic equipment. Specifically, Avtech instruments are considered "Monitoring and control instruments" (Category 9) as defined in Annex 1A of Directive 2002/96/EC. The Directive 2002/95/EC only applies to Directive 2002/96/EC categories 1-7 and 10, as stated in the "Article 2 - Scope" section of Directive 2002/95/EC. DIRECTIVE 2002/96/EC (WEEE) European customers who have purchased this equipment directly from Avtech will have completed a “WEEE Responsibility Agreement” form, accepting responsibility for WEEE compliance (as mandated in Directive 2002/96/EC of the European Union and local laws) on behalf of the customer, as provided for under Article 9 of Directive 2002/96/EC. Customers who have purchased Avtech equipment through local representatives should consult with the representative to determine who has responsibility for WEEE compliance. Normally, such responsibilities with lie with the representative, unless other arrangements (under Article 9) have been made. Requirements for WEEE compliance may include registration of products with local governments, reporting of recycling activities to local governments, and financing of recycling activities.
9 AC POWER SUPPLY REGULATORY NOTES This instrument converts the AC input power to the +24V DC voltage that powers the internal circuitry of this instrument using a Tamura AAD130SD-60-A switching power supply. According to the manufacturer, the Tamura AAD130SD-60-A has the following certifications: UL60950-1 IEC60950 -1 CSA C22.2 No. 60950- 1 EN60950 -1 and is compliant with: EN61000-3-2 EN61000-4-2 Level 2 EN61000-4-2 Level 3 (Air Only) EN61000-4-4 Level 3 EN61000-4-5 Level 3 EN61000-4-11 CISPR 11 and 22 FCC Part 15 Class B (conducted)
10 INSTALLATION VISUAL CHECK After unpacking the instrument, examine to ensure that it has not been damaged in shipment. Visually inspect all connectors, knobs, liquid crystal displays (LCDs), and the handles. Confirm that the following items have been supplied with the instrument: • • • • •
A power cord A GPIB cable Two instrumentation manuals (this manual and the “Programming Manual for -B Instruments”) One output module (AVX-TEK2), with a 6" / 15 cm length of RG-316 installed across the "A" and "B" connectors of the module. A 12" / 30 cm length of RG-316 coaxial cable.
If the instrument has been damaged, file a claim immediately with the company that transported the instrument. POWER RATINGS This instrument is intended to operate from 100 - 240 V, 50 - 60 Hz. The maximum power consumption is 74 Watts. Please see the “FUSES” section for information about the appropriate AC and DC fuses. This instrument is an “Installation Category II” instrument, intended for operation from a normal single-phase supply. CONNECTION TO THE POWER SUPPLY An IEC-320 three-pronged recessed male socket is provided on the back panel for AC power connection to the instrument. One end of the detachable power cord that is supplied with the instrument plugs into this socket. The other end of the detachable power cord plugs into the local mains supply. Use only the cable supplied with the instrument. The mains supply must be earthed, and the cord used to connect the instrument to the mains supply must provide an earth connection. (The supplied cord does this.) Warning: Failure to use a grounded outlet may result in injury or death due to electric shock. This product uses a power cord with a ground connection. It must be connected to a properly grounded outlet. The instrument chassis is connected to the ground wire in the power cord.
11 The table below describes the power cord that is normally supplied with this instrument, depending on the destination region: Destination Region
Description
Option
Manufacturer
Part Number
United Kingdom, Hong Kong, Singapore, Malaysia
BS 1363, 230V, 50 Hz
-AC00
Qualtek
370001-E01
Australia, New Zealand
AS 3112:2000, 230-240V, 50 Hz
-AC01
Qualtek
374003-A01
Continental Europe, Korea, Indonesia, Russia
European CEE 7/7 “Schuko” 230V, 50 Hz
-AC02
Qualtek
364002-D01
North America, Taiwan
NEMA 5-15, 120V, 60 Hz
-AC03
Qualtek
312007-01
Switzerland
SEV 1011, 230V, 50 Hz
-AC06
Qualtek
378001-E01
South Africa, India
SABS 164-1, 220-250V, 50 Hz
-AC17
Volex
2131H 10 C3
Japan
JIS 8303, 100V, 50-60 Hz
-AC18
Qualtek
397002-01
Israel
SI 32, 220V, 50 Hz
-AC19
Qualtek
398001-01
China
GB 1002-1, 220V, 50 Hz
-AC22
Volex
2137H 10 C3
PROTECTION FROM ELECTRIC SHOCK Operators of this instrument must be protected from electric shock at all times. The owner must ensure that operators are prevented access and/or are insulated from every connection point. In some cases, connections must be exposed to potential human contact. Operators must be trained to protect themselves from the risk of electric shock. This instrument is intended for use by qualified personnel who recognize shock hazards and are familiar with safety precautions required to avoid possibly injury. In particular, operators should: 1. Keep exposed high-voltage wiring to an absolute minimum. 2. Wherever possible, use shielded connectors and cabling. 3. Connect and disconnect loads and cables only when the instrument is turned off. 4. Keep in mind that all cables, connectors, oscilloscope probes, and loads must have an appropriate voltage rating. 5. Do not attempt any repairs on the instrument, beyond the fuse replacement procedures described in this manual. Contact Avtech technical support (see
12 page 2 for contact information) if the instrument requires servicing. Service is to be performed solely by qualified service personnel. ENVIRONMENTAL CONDITIONS This instrument is intended for use under the following conditions: 1. 2. 3. 4.
indoor use; altitude up to 2 000 m; temperature 5 °C to 40 °C; maximum relative humidity 80 % for temperatures up to 31 °C decreasing linearly to 50 % relative humidity at 40 °C; 5. Mains supply voltage fluctuations up to ±10 % of the nominal voltage; 6. no pollution or only dry, non-conductive pollution.
13 FUSES This instrument contains four fuses. All are accessible from the rear-panel. Two protect the AC prime power input, and two protect the internal DC power supplies. The locations of the fuses on the rear panel are shown in the figure below:
Fuses #1 and #2 (AC fuses)
Fuse #4 (DC fuse)
Fuse #3 (DC fuse)
AC FUSE REPLACEMENT To physically access the AC fuses, the power cord must be detached from the rear panel of the instrument. The fuse drawer may then be extracted using a small flat-head screwdriver, as shown below:
Pry out the fuse drawer using a screwdriver.
Fuse Drawer
14 DC FUSE REPLACEMENT The DC fuses may be replaced by inserting the tip of a flat-head screwdriver into the fuse holder slot, and rotating the slot counter-clockwise. The fuse and its carrier will then pop out. FUSE RATINGS The following table lists the required fuses: Fuses
Nominal Mains Voltage
#1, #2 (AC) 100-240V #3 (DC)
N/A
#4 (DC)
N/A
Rating 0.5A, 250V, Time-Delay 1.6A, 250V, Time-Delay 0.5A, 250V, Time-Delay
Recommended Replacement Part Case Size Littelfuse Part Digi-Key Stock Number Number 5×20 mm
0218.500HXP
F2416-ND
5×20 mm
021801.6HXP
F2424-ND
5×20 mm
0218.500HXP
F2416-ND
The recommended fuse manufacturer is Littelfuse (http://www.littelfuse.com). Replacement fuses may be easily obtained from Digi-Key (http://www.digikey.com) and other distributors.
15 FRONT PANEL CONTROLS
1
2
3
6
5
4
1. POWER Switch. This is the main power switch. When turning the instrument on, there may be a delay of several seconds before the instrument appears to respond. 2. OVERLOAD Indicator. When the instrument is powered, this indicator is normally green, indicating normal operation. If this indicator is yellow, an internal automatic overload protection circuit has been tripped. If the unit is overloaded (by operating at an exceedingly high duty cycle or by operating into a very low impedance), the protective circuit will disable the output of the instrument and turn the indicator light yellow. The light will stay yellow (i.e. output disabled) for about 5 seconds after which the instrument will attempt to re-enable the output (i.e. light green) for abOUT1 second. If the overload condition persists, the output will be disabled again (i.e. light yellow) for another 5 seconds. If the overload condition has been removed, the instrument will resume normal operation. This overload indicator may flash yellow briefly at start-up. This is not a cause for concern. 3. OUT CONNECTOR. This SMA connector provides the 250V/5A (maximum) output with 10 ns rise times. It is normally connected to the AVX-TEK2 output module using a 12" / 30 cm length of RG-316 coaxial cable. Caution: Voltages as high as 250V may be present on the center conductor of this output connector. Avoid touching this conductor. Connect to this connector using standard coaxial cable, to ensure that the center conductor is not exposed. 4. SYNC OUT. This connector supplies a SYNC output that can be used to trigger other equipment, particularly oscilloscopes. This signal leads (or lags) the main outputs by a duration set by the "DELAY" controls and has an approximate amplitude of +3 Volts to RL > 50Ω with a pulse width of approximately 100 ns.
16 5. LIQUID CRYSTAL DISPLAY (LCD). This LCD is used in conjunction with the keypad to change the instrument settings. Normally, the main menu is displayed, which lists the key adjustable parameters and their current values. The “Programming Manual for -B Instruments” describes the menus and submenus in detail. 6. KEYPAD. Control Name MOVE CHANGE ×10 ÷10 +/EXTRA FINE ADJUST
Function This moves the arrow pointer on the display. This is used to enter the submenu, or to select the operating mode, pointed to by the arrow pointer. If one of the adjustable numeric parameters is displayed, this increases the setting by a factor of ten. If one of the adjustable numeric parameters is displayed, this decreases the setting by a factor of ten. If one of the adjustable numeric parameters is displayed, and this parameter can be both positive or negative, this changes the sign of the parameter. This changes the step size of the ADJUST knob. In the extrafine mode, the step size is twenty times finer than in the normal mode. This button switches between the two step sizes. This large knob adjusts the value of any displayed numeric adjustable values, such as frequency, pulse width, etc. The adjust step size is set by the "EXTRA FINE" button. When the main menu is displayed, this knob can be used to move the arrow pointer.
17 REAR PANEL CONTROLS 4
5
8
GATE LAN
1
3
GRN=LNK YEL=ACT
TRIG RS-232
AMP
GPIB
9
6
7
2
1. AC POWER INPUT. An IEC-320 C14 three-pronged recessed male socket is provided on the back panel for AC power connection to the instrument. One end of the detachable power cord that is supplied with the instrument plugs into this socket. 2. AC FUSE DRAWER. The two fuses that protect the AC input are located in this drawer. Please see the “FUSES” section of this manual for more information. 3. DC FUSES. These two fuses protect the internal DC power supplies. Please see the “FUSES” sections of this manual for more information. 4. GATE. This TTL-level (0 and +5V) logic input can be used to gate the triggering of the instrument. This input can be either active high or active low, depending on the front panel settings or programming commands. (The instrument triggers normally when this input is unconnected). When set to active high mode, this input is pulleddown to ground by a 1 kΩ resistor. When set to active low mode, this input is pulledup to +5V by a 1 kΩ resistor. 5. TRIG. This TTL-level (0 and +5V) logic input can be used to trigger the instrument, if the instrument is set to triggering externally. The instrument triggers on the rising edge of this input. The input impedance of this input is 1 kΩ. (Depending on the length of cable attached to this input, and the source driving it, it may be desirable to add a coaxial 50 Ohm terminator to this input to provide a proper transmission line termination. The Pasternack (www.pasternack.com) PE6008-50 BNC feed-thru 50 Ohm terminator is suggested for this purpose.) 6. GPIB Connector. A standard GPIB cable can be attached to this connector to allow the instrument to be computer-controlled. See the “Programming Manual for -B Instruments” for more details on GPIB control.
18 7. RS-232 Connector. A standard serial cable with a 25-pin male connector can be attached to this connector to allow the instrument to be computer-controlled. See the “Programming Manual for -B Instruments” for more details on RS-232 control. 8. LAN Connector and Indicator. (Optional feature. Present on -TNT units only.) The -TNT option "Internet-enables" Avtech pulse generators by adding this standard Ethernet port to the rear panel, in addition to the IEEE-488.2 GPIB and RS-232 ports normally found on "-B" units. Commands are sent using the standard Telnet protocol. The SCPI-compliant command set is the same as that used for GPIB and RS-232 control. The -TNT option uses the Dynamic Host Configuration Protocol (DHCP) to obtain its network address. A DHCP server must be present on the local network for the -TNT option to operate properly. 9. AMP Connector. This connector is not used.
19 GENERAL INFORMATION BASIC TEST ARRANGEMENT, WITHOUT OUTPUT MODULE For initial testing of the AVR-3-PW-TEK2-B, the instrument can be operated without the AVX-TEK2 output module. The main output requires a 50 Ohm load. The instrument should be connected as shown below:
REAL-TIME OSCILLOSCOPE
AVTECH PULSER MAIN OUTPUT CONNECTOR
SCOPE PROBE CHANNEL A 50 Ω TEST LOAD
AC POWER
SYNC OUTPUT
TRIG INPUT
ALL CABLES: 50 OHM COAXIAL
A high-quality low-inductance 50 Ohm load is required for the above test arrangement. The worst case power dissipation in the load resistor is 3.1 Watts. BASIC TEST ARRANGEMENT, WITH OUTPUT MODULE For normal operation, the main output will be connected to the AVX-TEK2 output module, as shown below:
20 AVTECH AVR-3-PW-TEK2-B
B
OUT
REAL-TIME OSCILLOSCOPE
AVTECH AVX-TEK2 12" / 30 cm RG-316 cable
DIRECTION OF CURRENT
PROBE*
IN
CHANNEL A
A
SYNC OUTPUT
6" LENGTH OF RG-316 CABLE (SUPPLIED)
TRIG INPUT
* Depending on the exact current probe model, a probe amplifier may be needed between the probe and the oscilloscope.
The current probe under test is clamped to the 6" / 15 cm length of RG-316 cable across the "A" and "B" terminals of the output module. Physically, this arrangement is shown below (with a Tektronix A6303 probe):
OUTPUT MODULE EQUIVALENT CIRCUIT The output modules serve two functions: they provide a physically convenient location to which to clamp the current probe under test to, and they contain the resistive load (or termination) which is required to define the current amplitude. The equivalent circuit is shown below:
21
OUTPUT MODULE ALUMINUM CHASSIS (GROUNDED)
COAXIAL CABLE CENTER CONDUCTOR VOLTAGE PULSE FROM MAINFRAME
IN
COAXIAL CABLE SHIELDS (GROUNDED)
50Ω LOAD TO GROUND
BREAK IN GROUND SHIELD CONTINUITY (BETWEEN CONNECTOR AND CHASSIS)
B SHORTING CABLE
A
SMA CONNECTOR
The connectivity of the ground shield of the shorting cable is deliberately broken so that current can not flow in the shield - if the cable shield was active, it would prevent the current probe from sensing the current on the center conductor! BASIC PULSE CONTROL This instrument can be triggered by its own internal clock or by an external TTL trigger signal. In either case, two output channels respond to the trigger: OUT and SYNC. The OUT channel is the signal that is applied to the load. Its amplitude and pulse width are variable. The SYNC pulse is a fixed-width TTL-level reference pulse used to trigger oscilloscopes or other measurement systems. When the delay is set to a positive value the SYNC pulse precedes the OUT pulse. When the delay is set to a negative value the SYNC pulse follows the OUT pulse. These pulses are illustrated below, assuming internal triggering and a positive delay:
22 100 ns, FIXED
SYNC OUT (generated by the internal oscillator)
3V, FIXED
DELAY > 0
PULSE WIDTH
AMPLITUDE, VARIABLE
MAIN OUTPUT
If the delay is negative, the order of the SYNC and OUT pulses is reversed: 100 ns, FIXED
SYNC OUT (generated by the internal oscillator)
3V, FIXED DELAY < 0 PULSE WIDTH
AMPLITUDE, VARIABLE
MAIN OUTPUT
The next figure illustrates the relationship between the signal when an external TTLlevel trigger is used: > 50 ns
TRIG (external input)
TTL LEVELS (0V and 3V-5V) PROPAGATION DELAY (FIXED) 100 ns, FIXED
SYNC OUT
3V, FIXED
DELAY > 0
MAIN OUTPUT
PULSE WIDTH
AMPLITUDE, VARIABLE
23 As before, if the delay is negative, the order of the SYNC and OUT pulses is reversed. The delay, pulse width, and frequency (when in the internal mode), of the OUT pulse can be varied with front panel controls or via the GPIB or RS-232 computer interfaces. TRIGGER MODES This instrument has four trigger modes: •
Internal Trigger: the instrument controls the trigger frequency, and generates the clock internally.
•
External Trigger: the instrument is triggered by an external TTL-level clock on the back-panel TRIG connector.
•
Manual Trigger: the instrument is triggered by the front-panel “SINGLE PULSE” pushbutton.
•
Hold Trigger: the instrument is set to not trigger at all.
These modes can be selected using the front panel trigger menu, or by using the appropriate programming commands. (See the “Programming Manual for -B Instruments” for more details.) GATING MODES Triggering can be suppressed by a TTL-level signal on the rear-panel GATE connector. The instrument can be set to stop triggering when this input high or low, using the frontpanel gate menu or the appropriate programming commands. This input can also be set to act synchronously or asynchronously. When set to asynchronous mode, the GATE will disable the output immediately. Output pulses may be truncated. When set to synchronous mode, the output will complete the full pulse width if the output is high, and then stop triggering. No pulses are truncated in this mode. REPLACEMENT CABLES Each output has a 6" / 15 cm length of RG-316 installed across the "A" and "B" connectors of each module. If these cables become mechanically fatigued due to the repetitive clamping of probes, they may be replaced with 6" inch lengths of SMAconnectorized standard 50 Ohm cable. The recommended replacement part is the Johnson Components (http://www.johnsoncomponents.com) 415-0029-006, available readily from Digi-Key (http://www.digikey.com, stock number J3706-ND).
24 The AVX-TEK2 output module is normally connected to the mainframe using a 12" / 30 cm length of RG-316 coaxial cable. The recommended replacement part is the Johnson Components (http://www.johnsoncomponents.com) 415-0029-012, available readily from Digi-Key (http://www.digikey.com, stock number J3712-ND).
25 TYPICAL RESULTS When OUT is connected to a 50 Ohm load (using the arrangement shown in the "BASIC TEST ARRANGEMENT, WITHOUT OUTPUT MODULE" section), waveforms similar to the one shown below will be obtained:
Pulser settings: 100 Hz, +250V, 2.5 us PW. Rise/Fall reference levels: 10%, 90%. When OUT is connected to the AVX-TEK2 (using the arrangement shown in the "BASIC TEST ARRANGEMENT, WITH OUTPUT MODULE" section) and a Tektronix A6303 probe system, waveforms similar to the one shown below will be obtained:
Pulser settings: 100 Hz, +250V, 2.5 us PW. Rise/Fall reference levels: 10%, 90%. Probe/scope settings: 10 mV = 1 A.
26 The probe is slower than the input pulse, so the measured rise time is slower. The probe also introduces a small amount of ringing.
27 MEASUREMENT ACCURACY AND CALIBRATION The AVR-3-PW-TEK2-B is a voltage pulser. The output current is defined by the voltage amplitude and the load resistance. The voltage amplitude accuracy is specified to be the greater of ±2% or ±0.5V, when shipped from the factory. The load resistance is specified to be 50Ω ±1%, when shipped from the factory. The as-shipped current amplitude accuracy can thus be estimated as ≈ √ (0.022 + 0.012) = 2.2%. VOLTAGE AMPLITUDE CALIBRATION For applications requiring greater accuracy, the user can observe and calibrate the voltage output. The commands required to update the internal voltage amplitude calibration are described at http://www.avtechpulse.com/appnote/techbrief5, in the Technical Brief entitled "How Can I Calibrate the Amplitude and Offset of my Avtech Pulse Generator?". LOAD RESISTANCE CALIBRATION The user can also measure the load resistance between the center conductor of the "B" connector and the outer shield of the "A" connector on each output module, with all cables removed. Beware that the outer shield of the "B" connector is not connected to ground. Four-wire measurements must be used for accurate results.
28 OPERATIONAL CHECK This section describes a sequence to confirm the basic operation of the instrument. It should be performed after receiving the instrument. It is a useful learning exercise as well. Before proceeding with this procedure, finish read this instruction manual thoroughly. Then read the “Local Control” section of the “Programming Manual for -B Instruments” thoroughly. The “Local Control” section describes the front panel controls used in this operational check - in particular, the MOVE, CHANGE, and ADJUST controls.
REAL-TIME OSCILLOSCOPE
AVTECH PULSER MAIN OUTPUT CONNECTOR
SCOPE PROBE CHANNEL A
TEST LOAD
AC POWER
SYNC OUTPUT
TRIG INPUT
ALL CABLES: 50 OHM COAXIAL
1. Connect a cable from the SYNC OUT connector to the TRIG input of an oscilloscope. Connect a 20W (or higher) 50Ω load to the OUT connector and place the scope probe across this load. The load resistor must have a voltage rating of at least 200V. The power dissipated in the resistor is given by P = (V2 / R) × (PW / T) = (V2 / R) × PW × f where “V” is the output voltage, “R” is the load resistance, “PW” is the pulse width, and “T” is the pulse period (1/frequency), and “f” is the frequency. 2. Set the oscilloscope to trigger externally with the vertical setting at 50 Volts/div and the horizontal setting at 1 us/div. Be sure that your oscilloscope and probe setup can handle the maximum amplitude of 200V. The 50Ω load resistor should be rated for at least 200V of voltage and 20W of power. 3. Turn on the AVR-3-B. The main menu will appear on the LCD. 4. To set the AVR-3-B to trigger from the internal clock at a PRF of 1 kHz:
29 a) The arrow pointer should be pointing at the frequency menu item. If it is not, press the MOVE button until it is. b) Press the CHANGE button. The frequency submenu will appear. Rotate the ADJUST knob until the frequency is set at 1 kHz. c) The arrow pointer should be pointing at the “Internal” choice. If it is not, press MOVE until it is. d) Press CHANGE to return to the main menu. 5. To set the delay to 1 us: a) Press the MOVE button until the arrow pointer is pointing at the delay menu item. b) Press the CHANGE button. The delay submenu will appear. Rotate the ADJUST knob until the delay is set at 1 us. c) The arrow pointer should be pointing at the “Normal” choice. If it is not, press MOVE until it is. d) Press CHANGE to return to the main menu. 6. To set the pulse width to 1 us: a) Press the MOVE button until the arrow pointer is pointing at the pulse width menu item. b) Press the CHANGE button. The pulse width submenu will appear. Rotate the ADJUST knob until the pulse width is set at 1 us. c) The arrow pointer should be pointing at the “Normal” choice. If it is not, press MOVE until it is. d) Press CHANGE to return to the main menu. 7. At this point, nothing should appear on the oscilloscope. 8. To enable the output: a) Press the MOVE button until the arrow pointer is pointing at the output menu item. b) Press the CHANGE button. The output submenu will appear. c) Press MOVE until the arrow pointer is pointing at the “ON” choice.
30 d) Press CHANGE to return to the main menu. 9. To change the output amplitude: a) Press the MOVE button until the arrow pointer is pointing at the amplitude menu item. b) Press the CHANGE button. The amplitude submenu will appear. Rotate the ADJUST knob until the amplitude is set at +250V (or -250V for "-N" instruments). c) Observe the oscilloscope. You should see 1 us wide, 250V pulses. d) Rotate the ADJUST knob. The amplitude as seen on the oscilloscope should vary. e) Reduce the amplitude to 50V (or -50V for "-N" instruments), using the adjust knob. 10.
This completes the operational check.
31 PROGRAMMING YOUR PULSE GENERATOR KEY PROGRAMMING COMMANDS The “Programming Manual for -B Instruments” describes in detail how to connect the pulse generator to your computer, and the programming commands themselves. A large number of commands are available; however, normally you will only need a few of these. Here is a basic sample sequence of commands that might be sent to the instrument after power-up: *rst trigger:source internal frequency 1000 Hz pulse:width 1 us pulse:delay 2 us volt 200 output on
(resets the instrument) (selects internal triggering) (sets the frequency to 1000 Hz) (sets the pulse width to 1 us) (sets the delay to 2 us) (sets the amplitude to 200 V) (turns on the output)
For triggering a single event, this sequence would be more appropriate: *rst trigger:source hold pulse:width 1 us pulse:delay 2 us output on volt 200 trigger:source immediate trigger:source hold output off
(resets the instrument) (turns off all triggering) (sets the pulse width to 1 us) (sets the delay to 2 us) (turns on the output) (sets the amplitude to 200 V) (generates a single non-repetitive trigger event) (turns off all triggering) (turns off the output)
To set the instrument to trigger from an external TTL signal applied to the rear-panel TRIG connector, use: *rst trigger:source external pulse:width 1 us pulse:delay 2 us volt 200 output on
(resets the instrument) (selects internal triggering) (sets the pulse width to 1 us) (sets the delay to 2 us) (sets the amplitude to 200 V) (turns on the output)
These commands will satisfy 90% of your programming needs.
32 ALL PROGRAMMING COMMANDS For more advanced programmers, a complete list of the available commands is given below. These commands are described in detail in the “Programming Manual for -B Instruments”. (Note: this manual also includes some commands that are not implemented in this instrument. They can be ignored.) Keyword LOCAL OUTPut: :[STATe] :PROTection :TRIPped? REMOTE [SOURce]: :FREQuency [:CW | FIXed] [SOURce]: :PULSe :PERiod :WIDTh :DCYCle :HOLD :DELay :GATE :TYPE :LEVel [SOURce]: :VOLTage [:LEVel] [:IMMediate] [:AMPLitude] :PROTection :TRIPped? STATUS: :OPERation :[EVENt]? :CONDition? :ENABle :QUEStionable :[EVENt]? :CONDition? :ENABle SYSTem: :COMMunicate :GPIB :ADDRess :SERial :CONTrol :RTS :[RECeive] :BAUD :BITS :ECHO :PARity
Parameter
Notes
[query only]
WIDTh | DCYCle ASYNC | SYNC HIgh | LOw
[query only]
[query only, always returns "0"] [query only, always returns "0"] [implemented but not useful]
[query only, always returns "0"] [query only, always returns "0"] [implemented but not useful]
ON | IBFull | RFR 1200 | 2400 | 4800 | 9600 7|8
33 :[TYPE] :SBITS :ERRor :[NEXT]? :COUNT? :VERSion? TRIGger: :SOURce *CLS *ESE *ESR? *IDN? *OPC *SAV *RCL *RST *SRE *STB? *TST? *WAI
EVEN | ODD | NONE 1|2 [query only] [query only] [query only] INTernal | EXTernal | MANual | HOLD | IMMediate [no query form] [query only] [query only] 0|1|2|3 0|1|2|3
[no query form] [no query form] [no query form]
[query only] [query only] [no query form]
34 MECHANICAL INFORMATION TOP COVER REMOVAL If necessary, the interior of the instrument may be accessed by removing the four Phillips screws on the top panel. With the four screws removed, the top cover may be slid back (and off). Always disconnect the power cord and allow the instrument to sit unpowered for 10 minutes before opening the instrument. This will allow any internal stored charge to discharge. There are no user-adjustable internal circuits. For repairs other than fuse replacement, please contact Avtech ([email protected]) to arrange for the instrument to be returned to the factory for repair. Service is to be performed solely by qualified service personnel. Caution: High voltages are present inside the instrument during normal operation. Do not operate the instrument with the cover removed. RACK MOUNTING A rack mounting kit is available. The -R5 rack mount kit may be installed after first removing the one Phillips screw on the side panel adjacent to the front handle. ELECTROMAGNETIC INTERFERENCE To prevent electromagnetic interference with other equipment, all used outputs should be connected to shielded loads using shielded coaxial cables. Unused outputs should be terminated with shielded coaxial terminators or with shielded coaxial dust caps, to prevent unintentional electromagnetic radiation. All cords and cables should be less than 3m in length.
35 MAINTENANCE REGULAR MAINTENANCE This instrument does not require any regular maintenance. On occasion, one or more of the four rear-panel fuses may require replacement. All fuses can be accessed from the rear panel. See the “FUSES” section for details. CLEANING If desired, the interior of the instrument may be cleaned using compressed air to dislodge any accumulated dust. (See the “TOP COVER REMOVAL” section for instructions on accessing the interior.) No other cleaning is recommended.
WIRING DIAGRAMS WIRING OF AC POWER 1
3
4
5
M a in s c ir c u i ts - h a z a r d o u s liv e .
D o n o t a tte m p t a n y r e p a i r s o n th is in s t r u m e n t b e y o n d t h e fu s e r e p l a c e m e n t p r o c e d u r e s d e s c r i b e d in th e m a n u a l . C o n ta c t A v t e c h if t h e i n s t r u m e n t r e q u i r e s s e r v ic i n g . S e r v ic e i s to b e p e r fo r m e d s o l e ly b y q u a l ifi e d s e r v ic e p e r s o n n e l.
A 3 - B LA C K
G3
FRO NT
TO L C D
1
REAR
P S1
R O Y G
1 a V 2V 2+ V 1+ V 1-
SN S S NS S NS SN S R TN F A IL V 1 S H R V 2 S H R
TO E N C O D E R TO L C D
TO P C B 1 0 8 N 1 04 D
L V 1 V 1 R TN V 2 R TN V 2
G T E M P O V A U X
1 b
8 7 6 5 4 3 2 1
4 3 2 1
2 b
M o le x 1 9 0 0 2 - 0 0 0 9 . 0 . 1 8 7 " x 0 . 0 3 2 "
2
D
2 a A 1 - B RO W N A 2 - B LU E
S a f e ty e a r th g r o u n d / P rim a r y e a rth g ro u n d / P r o t e c t iv e c o n d u c to r t e r m in a l .
G2
B 1 - R ED G
Y B
A K
X1 P O W E R S W I T C H S W 3 2 5 - N D (C W I N D U S T R I E S G R S - 4 0 2 2 -0 0 1 3 )
A 4 - W H ITE
B D2 P C B 1 0 4 D K E Y P A D B O A R D ( -B U N I T S O N L Y )
D
6
G4
N
A A D 1 3 0 S D -6 0 -A L
W A R N IN G
2
X2 C OR C OM 6 E G G 1-2 P O W E R E N T R Y M OD U LE
G1
C
D C F AN
-
+
20 AW G
2 0 O R 24 A W G
24 A W G +
S 1 S 1 D C /S2 S 2 D C G N C H S G N
A B A B D D
+
M o le x 1 9 0 7 3 - 0 0 1 3 r in g t e r m in a l, # 8 . In s ta ll g r e e n / y e llo w w ir e s a t b o t to m o f s ta c k , c lo s e s t t o w a ll .
J6
C h a s s is g r o u n d p o s t. S e c o n d a r y e a r th g r o u n d .
K D N D T D O D
V V V V V D D V V J2
+ 24 , N O OLO G ND P O S O LO O LO G N D N E G O L O / + IN J3 G ND
C A P B A N G N E X T + PS I G N - I N /+ O U G N + 12 V O L G N
P 9 7 6 8 -N D FAN 1
J8
+ 10 + 15 -1 5 -5 + 5 G N G N + 5 + 5
C 3 - P U R C 4 - G R N
J 10
+ 24 V, NO O L O + 24 V, NO O L O G ND + 5V + 5V -5 V -1 5 V + 15 V + 15 V + 10 V J1
F AN N O T H AR N E S S E D
C
M o le x 1 9 0 0 2 - 0 0 0 1 . 0 . 2 5 0 " x 0 . 0 3 2 " .
G ND G ND G ND
20 AW G
J4
20 AW G
J 9 - FA N
A K
B
B
J7 A M B E R G ND J5 G REEN
P CB 1 58 N B D1 P CB 1 58 N
U S E T I E -D O W N P O I N T O N P C B 1 5 8 N
G RN
A M B
W H T B L K R E D
X 5 V CC L ED MO UN T
A
A
D a te
G RN
A M B
T itle
D 1 P 39 5-ND L E D
Q C 3 H A R N ES S , F O R P C B1 5 8N , T A M U R A AA D R e v is i o n
3 -M a r-2 0 1 1
Z :\m j c fi l e s \p c b \1 5 8 \ s w itc h in g 6 0 h z .d d b - U S A G E \Q C 3 v 5 E - A A D .s c h 1
2
3
4
5
6
5E
PCB 158N - LOW VOLTAGE POWER SUPPLY, 1/3 1
2
3
4
5
6
D
D
p cb 1 5 8 N _ o v p p cb 1 5 8 N _ o v p .s c h
C + 1 5 V -1 5 V
+ 1 5 V G N D -1 5 V
C B U + P -O U T # 1
J3 6 5 4 3 2 1 6 4 0 4 4 5 -6 J4 8 7 6 5 4 3 2 1
p c b 1 5 8 N _ s w i tc h i n g p c b 1 5 8 N _ s w i tc h i n g . s c h
-1 5 V
P -O U T # 2 N -O U T C A P B A N K
6 4 0 4 4 5 -8
A M B E R G R E E N P -O U T # 3
1 2 3
B
J5 6 4 0 4 5 6 -3
1 2
+ 1 5 V B
B U + E X T N E G IN + 1 5 V G N D -1 5 V P -O U T # 1
J7 6 4 0 4 5 6 -2
A
A T itle
D a te
L O W V O LT A G E D C /D C P O W E R S U P P L Y R e v i s io n
1 2- D e c- 20 0 8
Z : \m j c f i l e s \ p c b \ 1 5 8 \ s w i t c h i n g 6 0 h z . d d b - 1 5 8 N \ p c b 1 5 8 N . s c h 1
2
3
4
5
6
PCB 158N - LOW VOLTAGE POWER SUPPLY, 2/3 1
2
3
4
5
6
D
B
X
T P 6 T E S T -L O O P
4
T P 3 T E S T -L O O P A B , O R A , O R B
3
6 4 0 4 4 5 -6 J6 S 1 1 S 1 2 S 2 3 S 2 4 5 6
1 2
A A
F 3 8 3 0 8 3 5 F U S E H O L D E R
D C D C
L 5 B U +
4 3 4 -1 3 -1 0 0 M C 2 1 2 .2 u F R 2 0 C 2 2 1 0 K 1 0 0 0 u F ,3 5 V (P 5 1 6 9 -N D )
C 1 6
C 2 0 4 7 u F ,5 0 V
D
C 1 9 4 7 u F ,5 0 V
D 7 1 .5 K E 3 9 A
1 0 0 0 u F ,3 5 V (P 5 1 6 9 -N D )
+ 10V + 15V + 15V -1 5V -5 V + 5V + 5V G N D + 24V + 24V
J2 6 4 0 4 4 5 -9
J1 0
1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9
C
J1 1 - 6 4 0 4 5 6 -0
R 5 0 , F O R
3 2 1
C 7 8 2 4 B Y P A S S . N O R M A L L Y IN S T A L L E D .
6 4 0 4 5 6 -3 U 2 7 8 1 0
P -O U T # 1 V o u t
3
+ 1 0 V
G N D
V in
C 1 4 7 u F ,3 5 V
1
2 U 1
4
C 1
+
4 3 4 -1 3 -1 0 1 M C 6 2 .2 u F
A S T R O D Y N E F E C 1 5 -2 4 D 1 5 D C -D C
V o u t
3
1 2
C 1 3 4 7 u F ,5 0 V
2 J8 2 2 - 0 4 -1 0 2 1
C 4 4 7 u F ,3 5 V
L 2
3
+ B
4 3 4 -1 3 -1 0 1 M C 8 2 .2 u F
-
-1 5 V
U 5 7 8 2 4 (N O T N O R M A L L Y I N S T A L L E D )
1 2
-
2
L 1
5
V in
C 7 4 7 u F ,5 0 V
G N D
1
J9 6 4 0 4 4 5 -2
+ 1 5 V C 3 4 7 u F ,3 5 V
X 6 T IE -D O W N -3 5 0
B
U 4 L 4
1 2 3 C
A 1
+
C 2 9 N O T U S E D ( 4 7 u F ,3 5 V ) N O T U S E D
+
4
3
C 3 1 C 3 0 N O T U S E D ( 2 . 2 u F NC OE TR )U S E D ( 4 7 u JF 1 , 32 5 V ) L 6 N O T U S E D (4 3 4 -1 3 -1 0 1 M ) N O R M A L LY U N U S E D
J1 1 IN + IN G N D O U T+ O U T-
1 2 3 4 N O T U S E D (6 4 0 4 5 6 -4 )
1 2 3 4 5
+ 1 5 V
G N D
16 15 14 -O U T N /C + O U T
+ 1 5 V
U 9 N O T U S E D (S B 0 3 /S B 0 5 )
N /C N /C N /C
23 22
5
2 3
-
-1 5 V
9 10 11
+ IN N /C N /C
U 1 0
2
U 8 N O T U S E D (M K C 0 3 )
+ IN + IN
A S T R O D Y N E F E C 1 5 -2 4 D 0 5 D C -D C
+ 5 V C 9 4 7 u F ,3 5 V
- IN - IN
4 3 4 -1 3 -1 0 1 M C 1 1 2 .2 u F
15 14 13
L 3
3
+
-1 5 V
10 11 12
+
-O U T + O U T - IN
4
C 1
-5 V C 5 4 7 u F ,3 5 V
-O U T + O U T - IN
4 3 4 -1 3 -1 0 1 M C 1 2 2 .2 u F
24 23 22
5
-
+ IN N /C N /C
-
2
C 2 7 N O T U S E D ( 4 7 u F ,5 0 V )
A T itle
C 2 8 N O T U S E D ( 4 7 u F ,5 0 V ) N O T U S E D (6 4 0 4 4 5 -5 )
D a te
D C /D C , A N D O V E R - V O L T A G E P R O T E C T IO N R e v i s io n
1 2- D e c- 20 0 8
Z : \m j c f i l e s \ p c b \ 1 5 8 \ s w i t c h i n g 6 0 h z . d d b - 1 5 8 N \ p c b 1 5 8 N _ o v p .s c h 1
2
3
4
5
6
PCB 158N - LOW VOLTAGE POWER SUPPLY, 3/3 1
2
3
4
5
6
R 2 1 1 .5 K o r 1 .8 K O Y D 6
X 2 C A P B A N K
R 2 6 1 5 K
L 6 2 7 1 1
H V W A R N IN G
R 1 7
D S H O R TS O U T B A S E W H E N C H A R G IN G .
0 , IF O L O U S E S E X T P S . N O T N O R M A L L Y IN S T A L L E D .
3
E X T
4 R 1 5
K 4 P S 7 2 0 0 B -1 A
0 , IF O L O U S E S IN T P S . N O R M A L L Y IN S T A L L E D . F 2 8 3 0 8 3 5 F U S E H O L D E R
U 3 7 8 1 2
C 2 6
1
3
2 5 C T Q 0 4 0 I N 2 9 4 - 1 0 5 1 - N D ( S 7 0 1 ) H E A T S IN K
W L A R 1 0 0 F E C T (0 .1 O H M S )
K 1
1
4
O P T . G 2 R L -1 4 - D C 2 4
2 + IN
V +
P -O U T # 1
U 6 L T 6 1 0 6 C S 5
R 2 3
2
1
+ 1 5 V 4 R 2 4
2
14
4 7 0
-
+
-
R 1
-1 5 V
C
-
+
-
+
R 6
2
4 7 0 4
N -O U T
R 1 3 4 7 0 , I F N O K 2 . N O R M A L L Y IN S T A L L E D .
O P T . A Q Z 1 0 2
0 , IF -1 5 V S W IT C H E D B Y O L O . N O T N O R M A L L Y IN S T A L L E D .
3
1 + 1 5 V
D 1 1 N 4 7 3 6 A
C 1 5
O P T . A Q Z 1 0 2
Q 1 C M PQ 2 2 2 2 R 1 1 4 .7 K
12
3 0 0 B
+
3
N E G IN
R 2 7 1 0 0
K 6
D IS A B L E A T P O W E R -O N 1 N 4 1 4 8 (+ 1 5 V L A G S H V B Y 5 0 0 m s )
R 2 2
P -O U T # 2
1
3
1
3
-
2
1
+
+ 4 7 0 , I F N O K 6 . N O R M A L L Y IN S T A L L E D . A Q Z 1 0 2
1 N 4 7 3 3 A
D 1 0
-
K 2
K 3 4
D 9 D 2
+
3
A Q Z 1 0 2
- IN
G N D
1 2 0 O Y
5 .1 K
D IS A B L E A T P O W E R -O F F 1 N 4 1 4 8
-
R 1 0 O U T
3 0 0
Q 1 D M P Q 2 2 2 2
10
R 1 4
8
C R 3
+
4
5
5
T E S T -L O O P
R 8
O P T . 2 2 A Y
T P 5 2
C 1 0 4 7 u F ,5 0 V
R 2 5
R 2
4 2
1
P -O U T # 3
W L A R 1 0 0 F E C T (0 .1 O H M S )
3
D 5
3
V o u t
2
1 N 5 3 0 5 K 5
T E S T -L O O P
V in
C 2 5 4 7 u F ,5 0 V
2
1
B
X
R 4 1 5 0
4
1 2
T P 4
3
A A
D 4 0 .1 u F
C 2 4 4 7 u F ,3 5 V
0 .1 u F U 7 8 V +
R 7 7 5 K
4 2 6 5 7
1
D IS A B L E O L O W H E N C H A R G IN G .
Q 1 A M P Q 2 2 2 2
T P 2
1 3
3 K (R O L O , A D J U S T ) R 9
C 1 4 4 7 u F ,3 5 V
T E S T -L O O P C 1 8
E S E T R IG H R O U T O N T IS
G N D
A M B ER
6 8 0
B
+ 1 5 V 3 R 1 8 1 .2 K R 1 6 1 .2 K
M C 1 4 5 5 (A N Y 1 5 V , N O N -C M O S 5 5 5 )
R 1 2 1 K
G R E E N Q 1 B M P Q 2 2 2 2
5
C 2
C 1 7 0 .1 u F
R T T C D
R 1 9
7
B U +
G N D
D
C 2 3 1 0 0 0 u F ,3 5 V (P 5 1 6 9 -N D )
T P 1 X 3 6 -3 2 M O U N T
X 4 6 -3 2 M O U N T
X 1 K E Y S TO N E 6 2 1 B R A C K E T
2 2 0 u F , 1 6 V ( P 5 1 3 9 -N D )
T E S T -L O O P
O P T . 1 0 0 0 u F ,3 5 V (P 5 1 6 9 -N D )
A
-1 5 V
X 1 0 6 -3 2 M O U N T
-1 5 V
A
X 5 T R IM P O T A C C E S S T itle
+ 1 5 V
+ 1 5 V D a te
G N D
O V E R - C U R R E N T P R O T E C T IO N R e v i s io n
1 2- D e c- 20 0 8
Z : \m j c f i l e s \ p c b \ 1 5 8 \ s w i t c h i n g 6 0 h z . d d b - 1 5 8 N \ p c b 1 5 8 N _ s w i tc h i n g . s c h 1
2
3
4
5
6
PCB 168B - HIGH VOLTAGE DC POWER SUPPLY 1
2
3
4
5
6
D
D
X2
X1 J3
HV WA RN ING
2 1
HV WA RN ING
J4
D5
D4
1 N4 9 3 7
1 N4 9 3 7
6 4 04 4 5 -2
2 1 6 4 04 4 5 -2
D3
D2
1 N4 9 3 7 R8 1 0 0 OY
1 N4 9 3 7
C
C R1 0
R1 1
BLEED
BLEED
R9
9 8 GN D GN D
OU T OU T
11 10
BLEED
12 13
GN D +2 4V I N M ON EN GN D AD JUST REF OUT
CASE CASE
UV 1 1 /8 A 24 -P2 0
R6
1 2 3 4 5 6 7
R4
R5
B CW
B J1
TOP VIEW
C1 2 .2 u F CER
6 4 04 4 5 -2
R3
R2
R1
J2 +24V OLO ENA BLE AMP IN
R7 5 K, 3 2 6 6W
W
D1 1 N4 7 5 0
CC W
1 2
3 2 1 6 4 04 5 6 -3
A
A Title
Date
UV-A CONTROL PCB Rev ision
12-May-2005
1
Z: \mjcfiles\pcb\168\UV-A control\UV-A control.ddb - 168B\PCB168B.sch 1
2
3
4
5
6
PCB 157C - HIGH VOLTAGE DISCHARGE BOARD 1
2
3
4
5
6
X 3
J1
A 2 6 4 5 1 - N D , 2 P IN S O C K E T , O N B O T T O M 1 2
D
X 6 D 1
D
6 4 0 4 4 5 -2
1 2 3 4 5 6 7
R 4 X
+ 24 V OL O E NA B LE A MP IN
X
T O P V IE W R 7 X
J2
R 5
C W
1 1 1 0
O UT O UT
X 7
A 26 4 2 3-N D , 1 3 PIN SO C K E T, O N B O TT O M 9 8
G ND G ND
D 5
R 6 X
R 3 X
J6 6 4 0 4 4 5 -2
J7 6 4 0 4 4 5 -2
1 00 O Y R 9
H V1
1 3 1 2
C CW
G ND + 2 4 V IN M ON EN G ND A DJUS T R EF O U T
2 1
2 .2 u F
2 1
1 N4 14 8
A 2 6 4 5 1 - N D , 2 P IN S O C K E T , O N B O T T O M
C A S E C A S E
R 2 X
C 4
W
R 1 X
U V1 3 0W U V
1 N4 75 0
D 6
1 N 4 9 3 7 (R E V E R S E F O R - N )
3 2 1
R 8 2 20 O Y
6 4 0 4 5 6 -3 K E E P P I N S 1 -3 W E L L S EP A RA T ED FRO M P I N S 4 -6 .
V CC
C 2 2 .2 u F
1 6 C 1
Q Q
V CC
G ND
1 3 4
R 14 3 00
8
+ 15 V
K 3
K 1 1 2 3
R 13 1 0K
+ +
C
2
A B C LR C ex t R e x t/C e x t
1 2 3
6 5 4
+ +
6 5 4
Q 2 IX T H 1 3 N 1 1 0 (-P ), IX T H 1 0 P 6 0 ( -N )
1 R 15 3
3 3K
Q 1D M PQ 2 22 2
1 0
R 19
8
1
1 2 3 1 4 1 5
H V 2
2R
C
R 16 2 20 O Y
C D 7 4H C T1 23 E U 1A
N1 A 2 .2 K
A Q V 2 1 2 S ( -P O N L Y )
A Q V 2 1 0 S ( -P O N L Y )
4 .7 K
0 .1 u F -1 5 V
V CC
V CC
K 4 1 2 3
K 2
Q 1B M PQ 2 22 2
Q 1A M PQ 2 22 2
1 2 3
J3 -1 5 V
4 3 2 1 6 4 0 4 5 6 -4
5
B
1
6R 5 7
R N1 B 4 3 2 .2 K
3
7
N1 C 2 .2 K
8
R N1 D 2 .2 K
+ +
+ +
6 5 4
6 5 4
A Q V 2 1 2 S ( -N O N L Y )
A Q V 2 1 0 S ( -N O N L Y )
R 10 1 .5 K
X 1 B
6 -3 2 1 /2 " N Y L O N N U T A N D B O L T
V CC + 15 V
1 N 4 9 3 7 (R E V E R S E F O R - N ) D 3 D 4
1 N 4 9 3 7 (R E V E R S E F O R - N ) D 2
X 2
2
6 -3 2 1 /2 " N Y L O N N U T A N D B O L T
Q 3 IX T H 1 3 N 1 1 0 (-P ), IX T H 1 0 P 6 0 (-N )
1 X 4
3
X 5
C 3 4 8 F 4 9 0 1 , M fg 1 0 2 R 2 9 W 1 0 3 K V 4 E , 0 .0 1 u F , 1 k V , 1 8 0 8 p k g
H V W A R N IN G
R 17 4 .7 K ( -N )
+ 15 V
A
R 18 4 .7 K ( -P )
H V W A R N IN G -1 5 V
O C T 2 2 / 1 0 : S TA N D A R D I Z E D O N A P T7 M 1 2 0 B (-P ), IX TH 1 0 P 6 0 (-N ) O K TO + 1 0 0 0 V , -5 0 0 V
T h e d is c h a r g e c i r c u i t r y i s d i s a b l e d b y th e ' 1 2 3 i f th e U V s t a tu s p i n i n d i c a te s th a t th e U V i s c u r r e n t- l i m iti n g . T h i s i s i g n o r e d i f t h e s ta t u s p i n i s lo w b e c a u s e t h e P O L R P C B h a s d i s a b l e d t h e U V .
T i tl e
T h e m a i n s o l i d - s t a t e r e l a y tu r n s o n i f t h e v o l t a g e a t th e U V o u tp u t is m o r e th a n 5 V lo w e r th a n th e vo l ta g e o n t h e c a p a c i to r b a n k s . T h is tu r n s o n a M O S F E T th a t d is c h a r g e s t h e c a p a c ito r s th r o u g h th e h i g h - i m p u ls e - r a t e d r e s i s t o r s . D a te
T h e s e c o n d M O S F E T s u p p l i e s a c o n s ta n t 2 m A b ia s to th a t is s w i tc h e d b e tw e e n th e 1 N 4 9 3 7 o r t h e S S R + 1 N 4 9 3 7 + 1 0 0 O H M , d e p e n d i n g o n th e vo l ta g e le v e l s .
A
P O S /N E G C A P D IS C H A R G E R C IR C U IT R e v is i o n
5 -J u l -2 0 1 1
Z :\m j c fil e s \p c b \1 5 7 \ h v _ d i s c h a r g e \h v_ d i s c h a r g e .d d b - 1 5 7 C \p c b 1 5 7 C .s c h 1
2
3
4
5
6
1D
PCB 183A - CAPACITOR BANKS 1
2
3
4
5
6
D
D
X2
J1 1 2
R1
R2
P1
7 2 00 K -ND, Mfg . 7 2 0 0, 4 -4 0 th read stan do ff 3 /8"
J3
R3
P2
2 1
P3
HV +
GN D
J2
J4
X4
7 2 00 K -ND, Mfg . 7 2 0 0, 4 -4 0 th read stan do ff 3 /8"
X8
X9
X1 1
HV WA RN ING
HV WA RN ING
HV WA RN ING
X1
X3
X7
X5 C
2 1
R4
R5
N1
R6
N2
C
2 1
N3
HV -
7 2 00 K -ND, Mfg . 7 2 0 0, 4 -4 0 th read stan do ff 3 /8"
GN D
X6
7 2 00 K -ND, Mfg . 7 2 0 0, 4 -4 0 th read stan do ff 3 /8"
X1 0
7 2 00 K -ND, Mfg . 7 2 0 0, 4 -4 0 th read stan do ff 3 /8"
J5 1 2
J7 R7
P4
HV +
P5
P6
R8
X1 2
2 1
7 2 00 K -ND, Mfg . 7 2 0 0, 4 -4 0 th read stan do ff 3 /8"
GN D B
B
X1 3 R9
N4
J6
N5
N6
R1 0
J8 2 1
2 1
7 2 00 K -ND, Mfg . 7 2 0 0, 4 -4 0 th read stan do ff 3 /8"
GN D
HV WA RN ING
HV WA RN ING
HV WA RN ING
X1 4
HV 7 2 00 K -ND, Mfg . 7 2 0 0, 4 -4 0 th read stan do ff 3 /8"
A
A
PCB179 CAP BANKS FOR AV-101X Printed
Rev ision
15-Jul-2005
Z: \mjcfiles\pcb\183\hv-cap-bank.Ddb - pcb183a.sch 1
2
3
4
5
6
1B
PCB 104E - KEYPAD / DISPLAY BOARD, 1/3 1
2
3
4
5
6
D
D
A H E 1 0 G -N D , M fg 4 9 9 9 1 0 -1 , 1 0 p in s tra i g h t h e a d e r J5 1 2 3 4 5 6 7 8 9 1 0
C
C
L C D -B U T T L C D -B U T T . S C H S S G V V B
DA CL ND CC C C -L E D A C K L IG H T
ENC O DE R E N C O DE R .SC H S S G V
B
DA CL ND CC
I2 C _ IN T S IN G L E P U L S E
B
B A C K L IG H T
A
A T i tl e
D a te
P A N E L T O P -L E V E L S C H E M A T I C R e v is i o n
3 -M a r-2 0 1 1
Z :\m j c fil e s \p c b \1 0 4 e \k e y p a d - 2 0 1 0 .d d b - D o c u m e n ts \P a n e l b r d .p r j 1
2
3
4
5
6
PCB 104E - KEYPAD / DISPLAY BOARD, 2/3 1
2
3
4
5
6
U 4A V CC
C 10 B UT 1
U 7
Q 1 B U M M BT 22 22 A B U B U B U
R 1
T T T T
1 2 3 4 5 6 7 8
1 2 3 4
1 2
1 5K
V CC
1
V CC 2 .2 u F
R 4 1 5K
D
2
A A A P P P P G
V CC 0 1 2 0 1 2 3 ND
1 1 1 1 1 1 1 9
V CC S DA S CL IN T P 7 P 6 P 5 P 4
M M 74 HC 1 4N
6 5 4 3 2 1 0
C 4 0 .1 u F
C 15 0 .1 u F
C 13 0 .1 u F
C 11 B UT 2
4
D
3 2 .2 u F
B UT 6 B UT 5
M M 74 HC 1 4N U 4C
P C F 8 5 7 4 A P N (M U S T H A V E " A " IN P / N )
J8 6 4 0 4 5 6 -2
C 2 0 .1 u F
G ND
U 4B
C 12 B UT 3
6
5 2 .2 u F
U 6
1 1 1 1
4 5 4 1 5 1 0 9
C D C L A B C D
M M 74 HC 1 4N TE N /U LK OA D
1 2 1 3
M A X /M IN R CO Q Q Q Q
U 4D C 9
3 2 6 7
A B C D
C C C C
N N N N
T T T T
4 5 6 7
B UT 4
8
9 2 .2 u F M M 74 HC 1 4N U 4E
C D7 4H C 19 1M
C 7 B UT 5
1 0
1 1
U 1D C
X 6
U 8 9
8 1 1 1
M M 74 HC 1 4N
1
4 5 4 1 5 1 0 9
C D C L A B C D
TE N /U LK OA D
1 2 1 3
M A X /M IN R CO Q Q Q Q
3 2 6 7
A B C D
2 .2 u F
V CC
C C C C
N N N N
T T T T
0 1 2 3
C
M M 74 HC 1 4N 1 2 3 4 5
R ED , + 5V
U 4F
O RA N GE, B Y EL LO W , A G R E EN , G N D
C 6 B UT 6
1 2
1 3 2 .2 u F M M 74 HC 1 4N
6 0 0 E N -1 2 8 - C N 1
C D7 4H C 19 1M
U 1E C 1 S IN G L E P U L S E
C 14
M M 74 HC 1 4N
V CC 0 .1 u F
V CC
B
0 .1 u F
U 3 1 2 3 4 5 6 7 8
2 .2 u F
C 16
V CC 0 .1 u F
A A A P P P P G
1 1
R N2
R N1 8 7 6 5 4 3 2 1
V CC 0 1 2 0 1 2 3 ND
V CC S DA SCL IN T P 7 P 6 P 5 P 4
1 1 1 1 1 1 1 9
6 5 4 3 2 1 0
R N3 4 6 0 8 X -1 -4 7 3
1 2 3 4 5 6 7 8
B 1 2 3 4 5 6 7 8
C 3 V CC
1 0
4 6 0 8 X -2 -1 0 1
4 6 0 8 X -2 -1 0 1
V CC
J7 A UX O V T EM P
3 2 1
X 5 8 2 -6 0 1 -8 1 , 6 b u t to n k e y p a d
6 4 0 4 5 6 -3
P C F 8 5 7 4 A P N (M U S T H A V E " A " IN P / N )
M OV E 1 A U 2 V CC C C C C
N N N N
T T T T
0 1 2 3
1 2 3 4 5 6 7 8
A A A P P P P G
6 A
2 B
5 A
3 B
4 A
6 B
V CC 0 1 2 0 1 2 3 ND
V CC S DA SCL IN T P 7 P 6 P 5 P 4
1 1 1 1 1 1 1 9
6 5 4 3 2 1 0
C C C C
N N N N
T T T T
7 6 5 4
X 10
S DA S CL I2 C _ IN T
2 A
/1 0 5 B
X 2 8 2 -1 0 1 -7 1 , 1 b u t to n k e y p a d + /1 A
P C F 8 5 7 4 A P N (M U S T H A V E " A " IN P / N )
A
C HA N GE 1 B
1 B
3 A
E X T R A F IN E 4 B
R 2 1 00 K
A T i tl e
V CC
D a te
E N C O D E R , B U TT O N S , A N D P LD R e v is i o n
3 -M a r-2 0 1 1
Z :\m j c fil e s \p c b \1 0 4 e \k e y p a d - 2 0 1 0 .d d b - D o c u m e n ts \E N C O D E R .S C H 1
2
3
4
5
6
PCB 104E - KEYPAD / DISPLAY BOARD, 3/3 1
2
3
4
5
6
V CC V CC C 5 0 .1 u F
G ND
C 8 2 .2 u F
D
D
V CC
U 5 1 2 3 4 5 6 7 8
P AD 3 L ED +
P AD 4 L ED -
A A A P P P P G
V CC 0 1 2 0 1 2 3 ND
V CC S DA S CL IN T P 7 P 6 P 5 P 4
1 1 1 1 1 1 1 9
6 5 4 3 2 1 0
S DA S CL
P C F 8 5 7 4 A P N (M U S T H A V E " A " IN P / N ) C
U 1A
L CD P O W E R
C
U 1C
1
2
5
M M 74 HC 1 4N
6
M M 74 HC 1 4N V CC
U 1B
U 1F
3
4
1 3
M M 74 HC 1 4N
R N4
R 3 2 2 V CC
1 2
1 1 1 1 1 1
M M 74 HC 1 4N
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
V CC 1 6
4 8 1 6 P -0 0 2 -1 0 2
B
B X 10 A
4 -4 0 M O U N T X 3 X 1 4 -4 0 M O U N T
4 -4 0 M O U N T X 9 X 8 4 -4 0 M O U N T
V CC
1 1 1 1
2 4 6 8 0 2 4 6
K
D D D D R V V N
B6 B4 B2 B0 /W EE CC C
1 3 5 7 9 1 1 1 3 1 5
D D D D
B7 B5 B3 B1 E 1 R S V SS E 2
AHE16G-ND, Mfg 499910-3, 16 pin straight header
A
A T i tl e
D a te
L C D C IR C U IT S , M E C H A N I C A L R e v is i o n
3 -M a r-2 0 1 1
Z :\m j c fil e s \p c b \1 0 4 e \k e y p a d - 2 0 1 0 .d d b - D o c u m e n ts \L C D - B U T T .S C H 1
2
3
4
5
6
MAIN WIRING (-P UNITS) 1
2
3
4
5
6
-T N T O P T I O N O N L Y C ON N 1 L -C O M E C F 5 0 4 -S C 5
V CC L ED M O UN T X 1
D
D
L -C O M TR D 8 5 5 S IG -1 C A B L E U S E 1 / 2 " S TA N D O F F S P 4 -P 6 : 3 3 u F , 4 0 0 V (P 7 5 1 9 -N D ) F O R A L L M O D E L S , E X C E P T 2 2 0 u F , 4 0 0 V (P 6 8 5 0 -N D ) F O R T E K 2 N 4 -N 6 : U N U S E D R 7 , R 8 (B O T): 1 0 0 K O Y R 9 -R 1 0 ( B O T) : U N U S E D
+ 15 V + 5V
A M B G RN V PR F V SP AR E
D 1 P 3 9 5 -N D L E D
M 1 P G -P
W H T B LK R ED
P C B 1 8 3 A -P B D1 + N 6
-
+ P 6
-
A CT G ND L NK S YN C
C ON N 2 O UT
D A N G ER - H IG H V O LT A G E S C HS G N D
1 5 V O N /O F F 5V O N /O F F A IN O U T YN C OU T X T T R IG AT E RL Y 1 R L Y 2 (D U A L P W ) R L Y 3 (V -I) R L Y 4 (E O ) RL Y 5 M P LRN G 0 M P LRN G 1 M P LRN G 2 M P LRN G 3 M P LRN G 4 .S P E E D U P -R N G .E A .S I N E .T R I .S Q U .L O G IC .Z O U T .P O L P A R E , 0 -1 0 V W , 0 -1 0 V FF SE T, 0 -1 0 V M P L IT U D E , 0 - 1 0 V
C ON N 4 G AT E
C ON N 5 E X T T R IG C C ON N 6 A M P ( -E A U N IT S O N L Y )
T RIG
G G
+ + G G H V1
+ + M S E G X X X X X A A A A A O O O O O O O O S P O A
E A
O U T
+ N 4
-
+ P 4
-
T RIG
R 9
R 7
C HS G N D
8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1
G A T E
+ N 5
-
+ P 5
-
H V N /C O T /G N D G N D G N D + 15 V + 5V R A N G E S SR
R 10
R 8
C
2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
S YN C C ON N 3
E A IN IN T R N G E X T
N O N C C S W
L IM G
T R IG O U T B
B O P 1 B M A IN B O A R D , P C B 1 0 8 U B D2
O LO G N D P O S O LO
H V H V
1 57 C
G ND G ND R R R R R R R
A
U S E K E Y S T ON E 88 5
G ND + 24 V S SR EN V C
7 6 4 5 3 2 1
= = = = = = =
3 26 6W 4 .7 K N OT U N OT U N OT U ZER O N OT U
C H A N G E S R E Q U I R E D O N P C B 1 0 8 U (1 0 k H z P R F L I M ) 1 . I N S TA L L R 8 4 = 0 2 . I N S TA L L C 1 2 2 = 6 8 0 0 p F P O L Y B D2 P CB 10 4D K E YP AD H V2
A K
D A N G ER - H IG H V O LT A G E S T E M P O V A U X
+ 5V + 15 V -1 5 V G N D
-1 5 V + 15 V + 5V
, 5K S ED S ED S ED
U V1 1 /4 A 2 4 -P 3 0 W IT H P C B 1 5 7 C
A
S ED
A V R - 3 - B - P , A V R - 3 - P W - B - T E K 2 , A V O - 6 C - B -P , A V O - 6 D - B - P P ri n t e d
R e v is i o n
5 -J u l -2 0 1 1
Z :\m j c fil e s \c i r c u i t s \ a vr - N \a v r - n .D d b - A V R - 3 - B - P \w i r i n g V 4 . s c h 1
2
3
4
5
6
4A
47 PERFORMANCE CHECK SHEET