Transcript
# * '
*+!#
"
,
() ' &
7
8 4
2 / 6 0
3 6
9
7 ;:9 4
6
/
82 7 /0 7 56 4 23
' ) A
()
AB
( &
' & ? > & =(
@
@ *
> (
)B
)
' >
' DA C,
E E
E
& (
&) D A
FG
@ @
E
7 K
5 2 5 5 2 0 3 2 5
8/ 10
3
J2 I
7 /
H2 7 6 /0 7 56 4 23 1 /0
1 /0 .
<
. -
9
F
L ' B >
M ' )
(
A
& , (
B
D GA
&
' E
>
@
B
D
'
&R
=
, ( =)
P
Q
@
' @ ()
( ,A
M &
& ,( D
O >
?
M '
A, ,
) DA
', '
'
'
V
@ S TUS
&
)
(B , O )
'
N
,
(
?
&
GA > ' ) A &
'
(
<
transverse distribution
%
-
orbital motion
$" #" !
Dynamics!
longitud. momentum
-
4
5 3 : 2
86 1 7 ]
73 \5 4 3 [
8 /6
8
3YX 2
Z
Z
7 56 8 4
W
'
) (
()
A)
D & &
' & ( D
,
@
c
'
b
_b
_
_
a`_
)
B
A
( & N
? D ,A ^ $
-
I
6 9 2 6 43 I / / 0
K:
]
X
)
D B
'
P
@
O
D, O ? (
& (
)
&,
' ' ' &) (
D A
T
' ) (
( A ^
4 4 K 8 I
1
3
3
1 /0
'
) A
( ' =,
&
)
' ,
=
&)
>
$
D BA
A)
D &
'
4 23
S S
(
A
? ( D D A)
(
' 'B A)
& @
-
)B (
A
G > E
* )! $ !
( D
&%
'(!
'
# " $
!
A
(
( D
`
-
4 23 1 /0 4
,
' ) A
)
B
( &
' A
( '
= , ? M (
>
4 3 )
D
B
K 8 I 56
+:
@
E
% 3 2 01 .
/ ' &-
(
DA &
=) &
> ', (
' & N B
G( (
4
)
@
)@
' '
>
M A &) @
' )
(
)
D, &
89
A ' ' B B A
D
M '
(
)
G(
A
(
@
4 67(
'P
G
&B @
5
)
D '
*
P
µ
P
V
@
@
2 56 5 Z [3
X X
X
' ) A
( '
= , ?
4 =) (
)@
' '
> A) (
A > ' E B
6
' )
( ( A ^ G(
4
' GA A
A
? (
5
CO M PA SS
I
4 :
' & N N
O
A
D
' )
( )
D, & ' B & '
E O
JLab 12 GeV
I 4 23 1 /0 .
25 00
-
s=
EI C
-
5 2
3 9
86 2 7 9
7 1: 05 8 X
& ?
'
)
P
@ M
(
()
B
'
' & F
'
)
( ,
(
& B
D
(
& ? ' &
@
B
A '
' B
M ' ) )
( > (
D &
@
> ( ,
)
' > &> D , '
O
D '
)
(B , O ' D & ? ' &
)
M ' (
D & & )
A ' ' B B
@
9
valence quarks gluons
H ER A
0.01
non−pert. sea quarks gluons radiative gluons/sea
1 0.1
. .. .. . .. . .. .
1
x 0.1 0.01 1 0.001
vacuum fluct.
......... ...... ..... .. ... 0.001
10
QCD radiation saturation
"Theoretical" coverage
2
Q
100
2
05
3 :
Z
0
1:
4 8 7
H I 4 8
20
:
5
73
,
-
A (
B
' & ? (
' & & ?) A D @ (
R ' )
A
(
<
89
'
)
A)
A
( & &
(
(
* (
'
D
D D (
' >& ^ $
@
E
> & )
G( ' )
( & ()
A
V
& 01
%
%
'
((
'
'
3
' !
&! & " %
!
0
0
' % " ! & $% ! #" =
M
((
'
& 01
`
9
2
(
@
3
3
' )
(
>& )
)
' & '
(
'
()
&B & )
@
2 10./+ * +-,
&
= >&
() A
) =A ( D ' B
F
A)
A
(
=)
'
= '
(
@
E
& &
() )
@
`
& )
( ,
(
3
> >
43
5
'
&
)
'
>
'
! ( (
* ' @
*
4 ()
A
=) &
= >& ) = (
)
' >
E O
6 78
V
9
x1 x2
' ' B
@
5
7
86 2 7 9
2
5
)
D
* A
&)
D & ? '
( ,( (
,A
L
M F
' &
&
&
H
'B
(
O
-
x1 x2
-
4 3 :
2
26
86
7 7
0
46 8 4 8 3 6 7:
9
(
()
B
'
' &
' )
(
@
E
& @ S
TUS
=) B( , D @
)
> ' ( ,
& ( ' &
' O
(
B ' O
(
B
' &
>
N
:; :
..
x2 x1
M hard
∆T
..
2
Q, L
N’ GPD
N
Size 1/Q
-
4 3 [
8 /6
8 Z
7 56 8 1:
5 2 5 2 5 :
;:9
*
A
4
8
K7 4 7
6
2
0
2
:
5
2
5
5
2
:
8
A
(
( &
&
A =
D
(
A
5
-
( (
GA !
4 (
D ' >
,
'B
'
'B &R , A ' D
Q
O
A
M > ' E B
D
8
(
D
4 R
&
,
G
:
:
' '
) @ ( = ) > &) =
pion cloud
86
K7 4 7
' &
' '
A B ()
) ,
N
:
@
E
3
(
'
'
' )
S
(B , O
D
N
&
;
4
4
.
1 /0
23
13 9
7:
8
:
86
9
@
S
B
G(
&
,
@
G O
-
x −1
&
'
'
)
(
(
B
(
D
(
,
&
() B )
( (
<)
& ? ' &
valence quarks
@
non−pert. sea gluons radiative sea, gluons
diffusion
e
∆T
10 −2 −3
vers s tran
. . . ... . . 10
chiral dynamics
.. ..... . .. .... .. . . . .. ... . 10
GPD
xP
x x
b
5 /3
3
4
K
Z
:
2 5
8/ 10 J2 I 3
<
$( B( ( > '
GA > ' )
A
(
<
8 4 8
1
4
2 5 0 /3
5
23 1 /0 .
D
D
>
P M
<
$
&
* %#$ "
"
@
9* 9
; !
)
D G(
A
4
& '
2
4
1 H 4 3 [
8 /6
8
2
5
2
5
Z
7 56 8
K7 4 : -
4 C
: ( ( B
P
MP
F
(
,
D & )
F) (
Q
E
B E
M
& ' & *
4)
O
2
7 7 H
)
A
'
O O
D, O D D > (
,
-
7
2 / 6 /0 7 56 4 23
Y3X
56 2
2
[
2
Z
1 /0 4 4
7
'46
' )
(
)
D, ?
:
D * D > & )
)
= ' ( 'B A)
D (
( '
'
: )
( ,
transverse size 〈 b 〉g [fm ]
-
x
0.2 H1 05 ZEUS 02
´
0.4 αg
x
∆T
*
&) # 9
Q
1 10 10 10 10
Fixed target FNAL 82
0 -1
-2 -3
-4
2
N’ GPD
N
gluons
J /ψ φ hard
Q
@
,+@
M
& )
()
= & &
'
O
&
>
& ?
( ) ' &
E
O
' / '
0
&% 0
&
' &
4) D G(
E O
8
]
6
:
4 8 I 8
M
T
&
<
$ > &)
&
S
bS
&R
, ( ' (
,( ' A)
B ),
)
DA ' F A
M >
Q
' E
' )
B
,
N ' )
Q
D, O ? &R ,
-2
6
4 '
) O &
7/: (
= '
5 2
46 I 2
2
7/ 8
7 1: 2
46 I
82 7 9
J
'
; 9
;
: ( '
,
> &
> D (
,
B E
' & N D D
> '
)
GA > '
A
( & D (
&) ' A) ()
5 < Q2 < 10 GeV2
t-slope B [GeV ]
8
4 8
: 26
& &
& = ' &
), )
? A) B
O
' )
(
(
)
D, &
?
)
)
D ,A ^ & = '
A)
B
(
A
(
D <
E
10-1
:
statistical errors only!
41 8 -
2
* O &
x
I
/3
)
x < 0.1
48
1 -
J/ψ
-
4
2
8 < Q < 15 GeV
6
2
γ (DVCS)
HERA H1
10-2 x 10-3 0 10-4
s = 10000 GeV2, L = 1034 cm-2 s-1, 4 weeks
8
q +− q singlet quarks gluons
0 2
%
0 %
%
%
Γ dσ/dt
e p → e’π + n
− u, − d s, − s
0.02 < x < 0.05 -7
-7
10
-7
10
-8
-8
10
-7
10
10
-8
10
-8
10
10
35 −45 x
-9
-9
10
-9
10
-9
10
10
Q2 -10
10
0
10 −15 0.5
-10
10
1
0
15 −20 0.5
-10
10
1
25 −30
0
0.5
0.01 < x < 0.3
-10
10
1
0
0.5
1
-t (GeV2)
Γ dσK/dt
e p → e’ Κ+ Λ
2
K 5
8/
10
6
2:
5
26
5
3
J2
8
4
.
14
8
-
-7
-7
10
-7
10
-7
10
10
(
)
' '
(
,A
,
A,
,
(
>
? V
)@
-8
A)
)
-8
10
'
'
>
&
-8
10
-8
10
10
0
0.5
1
0
0.5
1
&
(
4)
&D
) = E (
)
'
>
D,
G O
2
-t (GeV )
1
5
26
5
:
6
Z
10
14
8
4
4
8
0.5
4
-10
10
0
:
1
I
0.5
2
0
Z
-10
2
73
-10
10
-
-10
10
-9
10
-9
10
? (
@
@
-9
10
&
(
)
&,
'
'
)
=)
'
)
(
&
&
?
'
@
P
-9
10
(!%
&
3
3
!
0
-
-
&
((' 5 2 5 2
86 84 Z 46 2
7/ 7 0 2
0
:
5
2
5
2
7:
K7 4 7
&'
T
S
S
O (
L
F
&R , A ' D ? ' (
& ' )
Q
( A
A
(
,
D ' D &
-
%
0 3
' &!
6 : 5 0
X
I8 4: Z
]
1: 7 8
F G (
' &
6
5
B ),
DA ' ) @
(
B
'
&
=)
'? GA =)
E
O
A (
' B
,(
()
& ' >
'
)
A G ' C B
)
D
A)
&
()
A
' (
' &
' B
@
&
Q
( ,A @
4 A '
,
D ?
$
ρ(b)
@
-
5
M
(
B GA
&
'
6 / 2
15
7 4 2 A
D
$
>
@
&
2
8 56
7 46
:
8 X 4
O
chiral component b ∼ 1/Mπ
= F1,2(−∆ 2T) GPD
&
(('
( ? ( )@
' ( ,
&)
C
A
(
( D
A
D &
@ > >
`
&) =
%
%
%
(! &
'
0
( " %
&(%
B >
&)
P
V
= E (
'
'. '
%
&(% ( (
&B
' 0 0
N N
π π
x x
∫ dx
∆T
1K
2
( >
P
& D '
<
B
P
)@
,
I 4 8
I 4
5
: 20
3 0 2:
86
'
( B )
( A A
L
&)
D D
6
' D A () GA
&)
A
(
)
D &>
5 '
'B
@ @
O
'
&
B B ( ( )
-
2
) [ :
6
2
5
2
3
:
6
8 I
7 7 K 84
J
9
2
2 12 Z /
: 6 : ]
3 6 5 5 2 0 0 : 5 2
6 8 9 1 I
K 8
3
G O & ), G(
&
'
( (
O
(
:
' B
: '
&
R
4
,
&)
' D & ? ) )
)@
'
D
L (
&
(
@
(A
c
F
&
P
DVCS * BH (Twist−2)
4
]
8
W 2 2 2
40
7 H2 7
'46 -
DVCS spin−dependent cross section
-
+
!
O
*
( ' ' B B
)B
D
>
> & ?
(
' &
@
O
0.35 -t (GeV2) 0.3
4
Q2 = 1.5 GeV2 Q2 = 1.9 GeV2 Q2 = 2.3 GeV2 VGG model
5
Bethe−Heitler DVCS
0.25 0.2 0 0.15
JLab Hall A 2006 1
FF GPD
2
-
4 8 3
9 9
4
3 0 :
86
7 H I / 2
6
3
46 I I
8 4 3 6
3
7 ;:9 H
@
E
* )
' D D (
' &> ^
D A
A
4
5 3 :
]3
/
86 7 4
\
8
1
1: I
-
4 3 8 /6
2
1K 3
Z
: 2
6
2
[
]
47 2
X
<
)
)
$( D ' > )
'
P
G @ D
= , A A ,
E O
4
*
8
)
-
4
5 3 :
]3
/
86 7 4
4\ 3 82 72 40 2
1:
2
[
/6
3
1K
/
[:
86
7
6 2 7 9
4
Z
: 2
6
2
43
47 2
X
'
)
(
(
A
( &
' = ) G(
4
A ,
(
()
D &
D
& 'B ), () ? (
' &
E
E
? (
& (
)
&,
' ' * ? ( & ( &,
@
@
µ
56 73 H2 Z /
6 8 9 1 I
:
6
\
)
x’2 x’1
0 x1
`
' ) A
B
,
=
/
& &
" "
2
%2
/
(
'
& %
%$P 0
GPD
x1 P nucleon vacuum
0 x1
.. .
,
-: 9 871 5
231 / 34 201 /. -
6
@ F
=? =<> '
<& ;)
)= &A D
A
F E D C?
(B
=> D
L K
<=& ) J& = < I>
% * &
>B
)
&
D
GHE (
<=>? = '
)*> =
.. ..
x1 x2 x1 x2
<
> '
%? % C? => =D& %? D F
E
E
F
*
" ! )
$
#
* )
* )
,
O
/ 1
87 2301 .
N5 / 2371 /5 37 :
M
7 5 Q S 30 NM 5
U. 3T 7 S
N4 R5 Q
/. P
+ D
*
* )
" )
&'
)(&* %
F
(%
li
e
k ^f ] `\ `Y Y`Z ` ^v e Yb ij `cu] hXb or g t Wb ef d lsi c hr Yb\ YX VW h ^q ^ o YX pb ` e W`Za] li ]_ ^ o]X W\ kb Wb YZ[X o\ VW n m z
%
dd
)> yx$ L
)L= &A D
A
E D C? ?
<=> )?
% )> &* |
> K
)( (
)> '
)L? '
<> % >(
D
X o
Wb ' n
or
si
?B %
< %?
>> &
% { C? )>?
%(
)?
K
( C&
K
J&
' ? <=?
)>&
<=> K = @
G
oX D =K& kb] Wb &'' ] =DK `b % p _ e ' i = K hr ZX g
''
*w
%
( }~
{%
b
>& & Bw ~
'
or
&* G C? = i
Yb E' pb D' & X p <& Wcb ? YX <= ^ ) hr A' X Zg =
H1
,
7 35 /5 5
6
r WWr m
i
i
^
ocX `t\ e or
ru t (B
W ^ hr
2 /5
oZr
% =
A
<> =
=< ''
'
)<>
&
=> D
Zr N01 . 2301 4 S Q 1 /M 5
271 U 3
20 . 1M
20 / U
---
Goloskokov, Kroll 05
..
*
40 60 100 20 6 8 10 W[GeV] 4
2
10 Cornell
1
40 60 100 10 6 8 10 20 W[GeV] 4
HERMES
E665
σ L(γ p->Vp) [nb]
10
0
10
H1 CLAS 1
Cornell
φ 2
10
ZEUS
ZEUS
ρ CLAS
kob]X `Xc VW
G
id
w ~ &* G %? C)
>& & B
B'
'K'
(
<=? = =
<
K
L>
'
=I ' x => =D>&
< ?
=<
<>& *w
'(
&A
)' %? ~
3 27 3 . 41
201
//
2 ,O
/
.
T7
/5
7
5
N5
3 4 S
201 2 85 T.
34 201 /. M
= (
K
=< < '?
<=> &
K
))?
~
'
)<>& x )?
C
_
'
<=>? (& K> (
v
^
%( (
&
K
o X X v
,
2
0 5 4
1
.
5
0
S
5
.
U5 P2 2 P P/ N T /5 7
6
3
27 5 7 7 5 4 1 /M Q
/. P 5 3N M 0
NS U 81
% %
@
L !~
G> >
&>
C
)?
%
(
'
&
&
>
'>
)& '
=
+" >(B
C?' B
= !
'
B
=>
=>
&
& >
~
2
P R
sea
ρ vacuum flucutation
valence
1
,
$ :$ Q
.
27 #:
/O 1
87 3
201 . 34 NM U
,
K
(&
)&'
<
J& +
%
) * (
= 'K
buu r W W`Y e
_
_^
z ^ YX
='
p
`b
]
Wb
<)> = )& &
(&
W`Za] %
<
w
/
K&
) .
'" B* ij ) J< z ^ ? Whrr > c K ` ' _ e ld > = z ^ hr >' ZX g or x ) 1 ^ = oXX 0 !
,
7 7 5 4 1 /M Q
/.
7 4
2301 .
01
0
/5 3 2 / . 0 4 5 7
M
= < KB ( ?B )A
% > "
? )>& = < )>? > K& '>
'>
C? < ))( ~
K
>
&
)B
" ' x?
J' &
A
!
= >K' ) &A K ( ?B )A >
? ( '
<> %
,
30 N3 .
1 /M N. 3T T /S $
<(?
%? ) C
K
(&*
& ~
(B
=>
A
% K&
=> &'
B
<&
= < <) >>
/ (
(
&A K &
<=>?
=)
b
P 81 3 0 . .
Q
201 // 1
2
871
N5
hard process
H
b2 b1
soft GPD
GPD
=% )
<=>? >
)(& &
='
!~
<
)? C> <>& )? =%
A
='
&
G>
<=? !
A
"
' )' A (
'
&
=K& % <
,
6 3 0 7
4
.
0
/25
3
c WX p
Wvr m
i
tb
-
-
f
f _
f --
`Xu] ob Y
`Yr
5
1
m_
9
27 -:
-/
/
/
,
7
34 U. 5 0
2Q 3T . 0
/S /5 21 7
27 S 4 Q
37 01 0 0 0
U5
M
M
5 0
/S 34 34 201 /. 3
M
M
2 N0
4 5 /3Q
,
5 0
/S 4 S
/70 34 201 /. 7 251 N4 S 0
25 P 0 5
871 2 U5 N5 3N. 0 5 5
277 3
80 .
9
7
2S -:
M
?' (
<=> = B'
)*> =
=>&
&A ' ) J' ' <& ;)
)>( K ( )> '
=& <(B => G
&A
)=' )&
}
(& => % <& x )&
(&
,
3T
. 0 . Q 5
1
7 S N4 R5 0 5 27 5 /M U /
8
4 S
Q . 5 N/. 0 P 36 7 3 P2 #
2
7 0 5 U5 /S 7 . 5 U5 /S 0 S 801 Q /.
/
~
w
w
Lw
1 86 3
~
2
1
N1
?
(& K
%
=% )&
&
B' <&
&
(& %
<= = < ) )&
<
& L
<(?
{~
L &* G
E =
<
7 35 7
30 5 2Q Q 1
)>( K 5
( )>
' <=>? &
=
< )>( ' (
K
<?
(
K M
21 . 5 0 7
C
0 R5 7 7
{
}~
B <& A
=
J
=
3
201 . 1
N5 //
2.
8
)>
/5 &
0
<>? L
w
@
)
='K ))? K <>? ) =>& A ( % ?
<=>
!~
K ~ & =) L
!~
G
,