Preview only show first 10 pages with watermark. For full document please download

Partonic Structure And Exclusive Processes

   EMBED


Share

Transcript

         # * ' *+!# " , () ' &   7 8 4 2 / 6 0 3 6 9 7 ;:9 4 6 / 82 7 /0 7 56 4 23 ' ) A () AB   ( &  ' &   ? > & =(  @ @ * > (   )B   )  ' > ' DA C, E E E   & (  &) D A  FG @ @ E 7 K 5 2 5 5 2 0 3 2 5 8/ 10 3 J2 I 7 / H2 7 6 /0 7 56 4 23 1 /0  1 /0 . < . - 9 F  L ' B >  M ' ) (   A & , ( B D GA  & ' E > @   B D '  &R =  , (   =) P Q @ ' @ () ( ,A M & & ,(  D O > ? M ' A, ,  ) DA  ', '  '   '  V @ S TUS &   )  (B , O ) ' N  ,   (  ? &  GA > ' ) A  &  '  ( < transverse distribution %   - orbital motion  $"  #" ! Dynamics!                      longitud. momentum - 4 5 3 : 2 86 1 7 ] 73 \5 4 3 [ 8 /6 8 3YX 2 Z Z 7 56 8 4 W '  ) (  () A) D & & ' &  ( D , @ c ' b _b _ _ a`_ ) B  A ( & N ?  D ,A ^ $ - I 6 9 2 6 43 I / / 0 K: ]  X   ) D B  ' P @ O D, O  ? (  & ( )  &, ' ' ' &) (   D A    T ' ) (  ( A ^ 4 4 K 8 I 1 3 3 1 /0  '  ) A ( ' =, & )  '  ,     =  &) > $ D BA  A) D & '  4 23   S S (   A  ? ( D D A)   (     ' 'B A)  & @ -  )B ( A G > E * )! $  !    ( D &% '(! ' # " $    !  A  ( ( D `  - 4 23 1 /0 4 ,  ' ) A ) B   ( & ' A ( '  = , ?  M ( >   4  3  ) D B K 8 I 56 +: @ E  % 3 2  01 . / ' &-   ( DA &     =) & > ', (  ' & N B G(  ( 4 ) @ )@ ' ' >  M  A &) @  ' ) (  ) D, & 89  A ' ' B  B A D M '    ( )  G( A  (  @ 4 67(  'P  G &B @ 5 ) D '  *  P                 µ P V @ @ 2 56 5 Z [3 X X X ' ) A ( '  = , ? 4 =)  (  )@ ' ' > A) (   A > ' E B 6 ' ) (  ( A ^  G(  4  ' GA A  A ? (   5   CO M PA SS I 4 :  ' & N N O   A  D ' ) ( )  D, & ' B &  ' E O JLab 12 GeV I 4 23 1 /0 . 25 00  - s=  EI C  - 5 2 3 9 86 2 7 9 7 1: 05 8 X  & ?  ' )  P   @ M  (   () B ' ' & F '  ) ( ,  ( &   B D       ( & ? ' &  @  B   A '  ' B M ' ) ) ( > ( D  &  @ > ( ,  ) ' > &> D , ' O D '      ) (B , O ' D & ? ' & ) M  ' (  D & & )   A ' ' B  B @ 9 valence quarks gluons   H ER A       0.01 non−pert. sea quarks gluons radiative gluons/sea 1 0.1 . .. .. . .. . .. . 1 x 0.1 0.01 1 0.001 vacuum fluct. ......... ...... ..... .. ... 0.001   10 QCD radiation saturation "Theoretical" coverage 2 Q   100            2 05 3 : Z 0 1: 4 8 7  H I 4 8   20 : 5 73 ,  -     A ( B     '  & ? ( ' & &  ?)  A  D @   ( R ' )   A ( < 89 '  )  A)  A ( & &     (   (  * (  ' D D D (  ' >& ^ $ @ E       > & ) G( ' )  ( & () A   V  & 01  % % ' ((  ' '  3  ' !  &! & " %   !  0 0 ' %  " ! & $% !  #" = M (( '  & 01    ` 9 2  ( @ 3 3 ' ) (   >& ) ) ' & '  (  ' ()  &B &  )  @     2 10./+ * +-,  & = >&  () A  ) =A (   D ' B  F   A) A ( =) ' = ' ( @ E & &  ()   ) @ ` & ) ( , ( 3 > > 43 5   ' & ) ' > ' ! ( (  * ' @  *  4  ()  A =) & = >& ) = ( ) ' >                          E O 6 78 V 9 x1 x2 ' ' B @  5      7 86 2 7 9 2 5 ) D  *  A &)   D & ? ' ( ,( (    ,A  L M F '  & & &  H 'B  ( O - x1 x2              - 4 3 : 2 26 86 7 7 0 46 8 4 8 3 6 7:  9 (   () B ' ' & ' ) ( @ E &  @ S TUS  =) B( , D @ ) > ' ( ,   &  ( ' & ' O  (  B ' O (   B  ' &  > N :; :           .. x2 x1 M hard ∆T  ..   2 Q, L N’ GPD N  Size 1/Q              - 4 3 [ 8 /6 8 Z 7 56 8 1: 5 2 5 2 5 : ;:9 *  A   4   8 K7 4 7  6 2 0 2 : 5 2 5 5 2 : 8   A (  ( & &  A = D   ( A 5  -  ( (  GA !  4 ( D ' > , 'B        '   'B  &R  ,  A ' D Q O A M  > ' E B D     8 (   D  4 R &  , G     :  :   '  '  )  @ ( = ) > &) = pion cloud 86 K7 4 7       ' & '  '  A  B ()  ) ,  N    :  @ E 3   (  ' '  ' ) S (B , O  D N &  ; 4 4 . 1 /0 23 13 9 7: 8 : 86 9 @ S     B G( &  , @ G O  - x −1  &  ' '  ) (  ( B   ( D  ( , &  ()  B  )  ( (     <) & ? ' &  valence quarks @ non−pert. sea gluons radiative sea, gluons         diffusion e ∆T 10 −2 −3 vers s tran . . . ... . . 10 chiral dynamics .. ..... . .. .... .. . . . .. ... . 10 GPD xP x x b 5 /3 3  4 K Z : 2 5 8/ 10 J2 I 3     < $(  B(   ( >  '  GA > ' )   A ( <  8 4 8 1 4 2 5 0 /3 5 23 1 /0 .  D D  >  P M  < $  & * %#$ " " @ 9* 9 ; !       ) D G(   A    4 & '  2 4 1 H 4 3 [ 8 /6 8 2 5 2 5 Z 7 56 8 K7 4 : -  4 C : (   (  B   P  MP  F     ( , D & ) F) ( Q E B E  M &  ' & *  4)  O 2    7 7 H   ) A   ' O O D, O D D > (    , - 7 2 / 6 /0 7 56 4 23 Y3X 56 2 2 [ 2 Z 1 /0 4 4 7 '46 ' ) (  ) D, ? : D * D > & ) ) = ' (  'B A) D ( ( ' ' :  ) (  , transverse size 〈 b 〉g [fm ]  - x  0.2 H1 05 ZEUS 02  ´  0.4 αg x ∆T                        * &) # 9 Q 1 10 10 10 10 Fixed target FNAL 82 0 -1 -2 -3 -4    2 N’ GPD N gluons J /ψ φ hard Q @ ,+@ M   & ) ()  = & &   '  O & > & ? (  )     ' &  E O     '  / '  0 &% 0     &    '  & 4) D G( E O   8 ] 6 :    4 8 I 8 M T &   < $ > &) &      S bS     &R    , ( ' (   ,( ' A) B ), ) DA ' F A M  > Q ' E ' ) B ,  N ' ) Q D, O  ? &R  , -2 6  4 '  )  O & 7/:  ( = '  5 2 46 I 2 2 7/ 8 7 1: 2 46 I  82 7 9 J '  ; 9 ;  :  ( '   , > & > D ( , B E  ' & N D D  >  '  ) GA > '   A ( & D ( &) ' A) () 5 < Q2 < 10 GeV2 t-slope B [GeV ]  8    4 8 : 26    & &  & = '  &  ), )    ? A)  B  O ' ) ( (  ) D, &  ?  ) )  D ,A ^ & = ' A)  B  (  A ( D  < E 10-1 :  statistical errors only! 41 8 - 2  * O &  x I /3 ) x < 0.1 48 1 - J/ψ  - 4      2    8 < Q < 15 GeV 6 2 γ (DVCS) HERA H1 10-2 x 10-3 0 10-4   s = 10000 GeV2, L = 1034 cm-2 s-1, 4 weeks 8   q +− q singlet quarks gluons  0 2 %  0 % % %                 Γ dσ/dt e p → e’π + n − u, − d s, − s 0.02 < x < 0.05 -7 -7 10 -7 10 -8 -8 10 -7 10 10 -8 10 -8 10 10 35 −45 x -9 -9 10 -9 10 -9 10 10 Q2 -10 10 0 10 −15 0.5 -10 10 1 0 15 −20 0.5 -10 10 1 25 −30 0 0.5 0.01 < x < 0.3 -10 10 1 0 0.5 1 -t (GeV2)  Γ dσK/dt e p → e’ Κ+ Λ   2 K 5 8/ 10 6 2: 5 26 5 3 J2  8  4 . 14  8 -   -7 -7 10 -7 10 -7 10 10  ( ) ' '  ( ,A , A, , (  > ?  V     )@ -8 A) ) -8 10 ' ' >  &  -8 10 -8 10 10  0 0.5 1 0 0.5 1 &   (  4) &D ) = E ( )  '  > D, G O   2 -t (GeV )    1 5 26 5 : 6 Z 10  14 8 4  4 8 0.5 4 -10 10 0 : 1 I 0.5 2 0 Z -10 2 73  -10 10  - -10 10  -9 10  -9 10 ? ( @ @  -9 10 & (  ) &, ' ' ) =) '     )  ( & & ?  '  @ P -9 10 (!%  &  3  3   !  0  -         - &   ((' 5 2 5 2 86 84 Z 46 2 7/ 7 0 2 0 : 5 2 5 2 7:  K7 4 7   &'  T S S O  ( L  F &R  ,  A ' D ? ' (   & ' )  Q (  A  A (     ,   D '  D &   - %   0  3  ' &!  6 : 5 0 X  I8 4: Z ] 1: 7 8  F  G (  ' & 6 5 B ), DA ' )  @  (  B ' &  =) '?  GA =) E O      A (  '  B ,( () & ' >  ' ) A G ' C B )  D A)  & () A '  (  ' &  ' B @ & Q ( ,A  @ 4   A ' , D ? $ ρ(b)           @ - 5 M  ( B  GA & '  6 / 2 15 7  4 2 A D $ >  @ & 2 8 56 7 46 : 8 X 4  O chiral component b ∼ 1/Mπ            = F1,2(−∆ 2T) GPD  &   (('  (   ? ( )@  ' (  , &) C  A  ( ( D   A D &   @ > > ` &) =   %  % %  (! &  ' 0 ( "  %     &(%  B > &) P V = E (     '  '. '  % &(%  ( (   &B  ' 0 0 N N π π x x ∫ dx    ∆T  1K 2   ( >    P      & D ' <    B  P  )@ ,   I 4 8  I 4 5 : 20 3 0 2: 86  '  (  B ) ( A     A L  &)  D D     6 '  D A  () GA  &)   A  ( ) D &> 5 '  'B  @ @ O  ' &   B  B  (   (  ) -  2 ) [ : 6 2 5 2 3 : 6   8 I 7 7 K 84 J 9  2 2 12 Z / : 6 : ] 3 6 5 5 2 0 0 : 5 2 6 8 9 1 I  K 8 3 G O & ), G(  & ' (   ( O (  :    ' B     : '  &   R 4  , &) ' D & ?   ) ) )@   ' D  L (    & ( @     (A  c F & P DVCS * BH (Twist−2)       4 ] 8 W 2 2 2 40 7 H2 7 '46 - DVCS spin−dependent cross section   - +       ! O * ( ' ' B  B        )B D > > & ? ( ' & @ O 0.35 -t (GeV2) 0.3         4              Q2 = 1.5 GeV2 Q2 = 1.9 GeV2 Q2 = 2.3 GeV2 VGG model 5                                        Bethe−Heitler DVCS 0.25 0.2 0 0.15 JLab Hall A 2006 1 FF GPD   2           - 4 8 3 9 9  4  3 0 : 86 7 H I / 2 6 3 46 I I  8 4 3 6 3  7 ;:9 H         @ E * )   '  D D (    ' &> ^ D  A A     4 5 3 : ]3 / 86 7 4 \  8  1  1: I    -   4 3 8 /6 2 1K 3 Z : 2 6 2 [ ] 47 2  X   <  ) ) $( D ' > ) ' P G @ D   = , A A , E O 4 *  8    )     - 4 5 3 : ]3 / 86 7 4 4\ 3 82 72 40 2 1:    2 [ /6 3  1K / [: 86 7  6 2 7 9 4 Z : 2 6 2 43 47 2 X  '  )  ( (  A ( & '  = ) G(   4   A , ( () D & D  &  'B ),  ()  ? (    ' & E E   ? (  & ( )  &, ' ' *  ? (  & ( &,  @ @ µ 56 73 H2 Z /  6 8 9 1 I  : 6  \   )         x’2 x’1      0 x1  `     ' ) A B ,     =   / &  &  " " 2 %2  /  (   ' & % %$P 0 GPD x1 P nucleon vacuum 0 x1 .. .              , -: 9 871 5 231 / 34 201 /. - 6 @  F =? =<> ' <& ;) )= &A D A F E D C?  (B => D L K <=& ) J& = < I>  % * & >B )? = ' )*> =                                                                  .. .. x1 x2 x1 x2 < > ' %? % C? => =D& %?  yx$ L )L= &A D A E D C? ? <=> )? % )> &* |  > K )( ( )> ' )L? ' <> % >(  D X ‡o Wb ' n †  or si… ?B % < %? >> & % { C? )>? %( )? K ( C& K J& ' ? <=? )>& <=> K =  @ G oX D =K& kb] Wb &'' „] =DK `b % pƒ ‚_ e € ' i = K hr ZX g '' *w % ( }~ {% b >& & Bw ‰~  '  or &* Gˆ C? = i… Yb E' pb ‡ D' & X p <& Wcb ? YX <= ^Š )  hr A' X Zg =   H1 , 7 35 /5 5 6 ƒr WWr m i… i… ^ ocX `t\ e or ru t  (B W ^ hr 2 /5 oZr % = A <>  =  =< '' ' )<>   & => D Zr N01 . 2301 4 S Q 1 /M 5 271 U 3 20 . 1M 20 / U ---                    Goloskokov, Kroll 05 ..           *    40 60 100 20 6 8 10 W[GeV] 4      2 10 Cornell 1 40 60 100 10 6 8 10 20 W[GeV] 4 HERMES E665 σ L(γ p->Vp) [nb]     10 0 10 H1 CLAS 1 Cornell φ 2 10 ZEUS ZEUS ρ CLAS kob]X `Xc VW  G id w ~ &* Gˆ %? C) >& & B  B'  'K' ( <=? = = '   =I ' x => =D>& < ?      =< <>& *w '( &A )' %? ~  3 27 3  . 41 201  // 2 ,O / . T7 /5 7 5 N5       3 4 S 201 2 85 T. 34 201 /. M =  ( K =< < '? <=> & K ))?   ~ ' )<>& x )?  C  _ ' <=>? (& K> (  v ^ %( ( ‰& K o X † X v      , 2 0 5 4 1 . 5 0 S 5 . U5 P2 2 P P/ N T /5 7  6 3   27 5 7 7 5 4 1 /M Q /. P 5 3N M 0 NS U 81 % % @  L !~ G> > &> C  )? % ( '  &   & > '> )& ' = +" >(B C?' B =   ! '    B  =>   => &  & >  ~  2     P R  sea  ρ vacuum flucutation        valence 1 , $ :$ Q . 27 #: /O 1 87 3 201 . 34 NM U  ,   K (& )&' < J& + %  ) * ( = 'K buu r ‡W W`Y e ‚_ _^ z ^ YX =' pƒ `b „] Wb <)> = )& & (& W`Za] % < w /  K&  ) . '" B* ij ) J< z ^ ? Whrr > c K ` ' _ e   ld > = z ^ hr >'  ZX g or x ) 1 ^ =  oXX 0 !      , 7 7 5 4 1 /M Q /. 7 4 2301 . 01 0 /5 3 2 / . 0 4 5 7 M           = <  KB ( ?B )A  % > "     ? )>& = < )>? > K&  '>  '> C? < ))( ~ K > & )B  " ' x? J' &   K' ) &A  K ( ?B )A > ? ( ' <> %  , 30 N3 .  1 /M N. 3T T /S $    <(? %? ) C K (&* & ~   (B =>   A % K& => &' B <& = < <) >> / (  (    &A K & <=>? =)  b P 81 3 0 . . Q 201 // 1  2 871   N5            hard process             H            b2 b1 soft GPD       GPD =% )   <=>? > )(& & =' €  !~ < )? C> <>& )? =% A  ='  & G> <=? ! A " ' )' A ( ' & =K& % <  ,   6 3 0 7 4 . 0 /25 3 c WX p  †  Wvr m i  Štb   - - f  f _ f   -- `Xu‚] ob Y `Yr 5  1  m_ 9 27 -: -/ / /       , 7 34 U. 5 0 2Q 3T . 0 /S /5 21 7 27 S 4 Q 37 01 0 0 0 U5  M M  5 0 /S 34 34 201 /. 3 M M 2 N0 4 5 /3Q  , 5 0 /S 4 S /70 34 201 /. 7 251 N4 S 0 25 P 0 5 871 2 U5 N5 3N. 0 5 5 277 3 80 . 9 7 2S -: M   ?' ( <=> = B' )*> = =>& &A ' ) J' ' <& ;)  )>( K ( )> ' =& <(B => % <& x )& (& , 3T . 0 . Q 5 1  7 S N4 R5 0 5 27 5 /M U / 8 4 S Q . 5 N/. 0 P 36 7 3 P2 # 2 7 0 5 U5 /S 7 . 5 U5 /S 0 S 801 Q /. / ‰~  € w w Lw    1 86 3 ~ 2 1 N1 ?  (&  K  % =% )& & B' <& & (& %  <= =  < ) )& < ‰& ‰L  <(?  {~ L &* Gˆ E = <       7 35 7 30 5 2Q Q 1 )>( K  5  ( )> ' <=>? &   = < )>( ' ( K <? ( K M 21 . 5 0 7 C /5 & € € 0 <>? L  w @   ) ='K ))? K <>? ) =>& A ( %€ ? <=> !~   K ~ &  =)  ˆ  L !~ G ,