Preview only show first 10 pages with watermark. For full document please download

Polarized Parton Distributions And Experiments At Hall C With 6 And 12gev Beam

   EMBED


Share

Transcript

Polarized PDFs and Hall C Experiments at 6 and 11 GeV Xiaodong Jiang, Rutgers University. August 9, 2007 @ JLab Hall C workshop. With the high intensity and high polarization electron beam at JLab 6 and 11 GeV, deep inelastic scattering experiments on polarized targets provide new constraints on polarized parton distributions. Inclusive DIS data and constraints on polarized PDF.   .        ( He)  . ,  Constraints on   ,  Measurements of   Semi-inclusive DIS and constraints on polarized PDF.    .         ( He)  . ,  ,   More constraints on  Upcoming experiment:    Access quark angular momentum, measurements of  in SIDIS. 1 Jefferson Lab E99-117 (Hall A) &%  DIS. Measured asymmetry #"!       =5.73 GeV beam. Polarized He target . $ Phys. Rev. Lett. 92, 012004 (2004) and Phys. Rev. C 70, 065207 (2004). 2 ' ' Hall B eg1b: polarized NH and ND targets 1.2 1.2 This work This work pQCD HERMES 1 SLAC - E155 0.8 SMC Ad1 ( D-state corrected ) SMC SLAC - E155 0.8 SLAC - E143 SLAC - E143 0.6 SU(6) Ap1 0.6 pQCD HERMES 1 0.4 0.4 SU(6) 0.2 0.2 0 0 0 0.2 0.4 x 0.6 0.8 1 0 0.2 0.4 x 0.6 0.8 1 (nucl-ex/0605028) 3 0.5 ∆u/u )+ )* 7>= 6< G : F3 1 C 6 4;2 3 B A2 6 7 C 6 >@ 4 : B D2 7 ?>= 9D A2 6< 7 6 >@ : 7 6 :;9 3 4 D2 DF 7 6 8 452 3 1 E ∆d/d ( ( E x E / , - / , E 0 . / . . / . - -0.5 - 0 1 0.8 0.6 0.4 0.2 0 , GRV AAC GS LSS 0 0.5 , This work HERMES JLab/HallA 0.25 data and Spin-flavor decomposition from 1 0.75 -1 4 After JLab 12 GeV Upgrade 5 H QRO % O P L &NM . . L M S WVM S UTM L NM S S &NM S QRO % At at ). L I KJI PDFs from CTEQ5M ( P , inclusive spin structure measurements on polarized proton and “neutron” provide enough information on polarized parton distributions. 6 2 x, Q : X L MY Inclusive DIS access only LO approximation TMY a b _` ]\ s p te n qrp e ∆ q , ∆ q (x) f f ik h ij gfe vu vu vu vu vu vu vu vu vu vu vu uv a onm e l a dcb _` ^]\ [Z − f (pol) a evolution, at NLO: w Inclusive DIS access gluon via vu vu vu vu p ` n {~ xk a ^}b e explicitly! l  \ qb s pe [Z e nq e p \ n |{z a yxe l ik h ij fge c term can be b k }€ \ Scheme dependence involves gluons attributed either to singlet quark or to gluon distribution 7 X QCD evolution: singlet vs. non-singlet … V… „T ‹ ‰ŠM J Œ MT Œ M ˆ I u, d, s L M L M V„ ‚M according to V M …T J J „T ƒ J ƒ ‡†‚M I J ƒ ‚M “Organize” PDFs −− u, d, s− S ‘  ƒ Œ  M Œ Ž S singlet u − u ƒ Œ † 5M Œ S  ƒ Œ  M Œ 5 S flavor/charge all S non-singlet ‹ ‰Š M and valence quark distributions do not ˜ –—• “”’ Flavor–non-singlet š ž ž ž ™• š ›œ™ • ™ “mix with” gluon distribution . . . Individual flavors do! 8 Global fits to the inclusive DIS data 0.15 0.5 0.1 0.4 0.05 0.3 Assume sea behavior. 0 X . -3 10 -2 10 -1 MY Y   Y J¢ L M 0.01 Only access one flavor non-singlet: X 1.25 Inclusive data can not distinguish from since . M x 0.02 1.5 evolution of X x 10 L I -1 as in BB: . S 10 from ;   Ÿ -2 L J… 10 S -3 -0.25 1.75 S L V„ S 0 …T L … S S L V„ Can not access S -0.02 X 0.25 „T S 0.5 -0.01 £JM S 0.75 L … 0 1 . . -0.03 -0.25 10 ‘ S   Ÿ  $%& ¡ -0.2 2 -0.5 X 10 Obtain -0.15 0 L J„ -0.1 0.1 S S 0.2 L JM -0.05 -3 10 -2 10 -0.04 -1 x 10 -3 10 -2 10 -1 x 9 … ¥¤ is more sensitive to X S term drops out in , leads to a relatively larger contribution. § T¦ M S ‘ X High precision data over a wide range of will constrain through global fit. $¨ ¡ S   Ÿ ; ‘ X COMPASS measured $¨ at low-x. ¡   Ÿ ² S ¥ S¯ ´µ ‘ ´µ ° T T ° · ¶ ˆ³ ˆ³ « TM S† ¥ R T M S ® R ­ ¬ ±  ;Ÿ ² ± ¥ ƒJ " $ ©ª¡ ¸ 10 A1d … 1 ¥ COMPASS data on COMPASS 2002-04, Q2 >1 (GeV/c) 2 COMPASS 2002-03, Q2 <1 (GeV/c) 2 0.8 E143, Q2 >1 (GeV/c) 2 E155, Q2 >1 (GeV/c) 2 0.6 HERMES, all Q 2 2 SMC, all Q 0.4 0.2 0 -0.2 10-4 10-3 10-2 10-1 x hep-ex/0701014. 11 reduced error on … ¥¤ CLAS eg1b data on ¹ Fit of LSS-06, including higher-twist terms. ¹ CLAS eg1b-06 data significantly shrunk error size of º ¾ &½¼ » ¹ 12 GeV data will reduce error by a factor of 4. Similar conclusions from AAC-06 analysis. º ½¼ » ¾ ¹ 12 ¥ data to come … JLab @ 6 GeV: more Experiment E07-011 (Hall C). 13 will reduce error band on S ! ‘ JLab 6 GeV experiment on $¨ X Will collect data in late-2008, share beam time with E04-113. Same constrain power on as of RHIC 2006 data (AAC-07). X S ‘ Á  À¿! 14 Constrain Polarized PDF with Semi-Inclusive DIS Data L M MT through differences in fragmen- L M from S S In SIDIS, final state hadron tagging separates M . L M S V M S tation, data provide constraints on . S S Inclusive DIS data provide constraints on . Ä      à Measure SIDIS double-spin asymmetries in X S M results from HERMES. and Å#! X Å#! Upcoming JLab experiment E04-113: precision data on $¨ $© . „ Ë … S S Ê Ë L … . S . ‘ M S S and L M X Inputs to NLO global fit to constrain S L V„ S Ö Õ Ê ÔÈ ÒÕ Ó Ò JË … S : ÑVË „ S Ì Ð ÌÏ Î Í X To obtain È ³ É X V Ædz Flavor/charge non-singlet combination . 15 Å ¢á Leading order cross section: u S π &ç Y Å æ % MY S Y    π dÙØ d h J Å ¢ u N Å¢ q S J$ Å! (E, p) γ* Results Detect the leading hadron from the current fragmentation and measure double-spin asymme. try: (E,’ p’ ) e × Flavor Tagging in SIDIS and HERMES ¶ äå¶ã â^Y Ø + π àßÝ Þ Ü ÛÚ HERMES calculated “purity” from a LUND based Monte Carlo: é %  &% Mé é M S î ç& &ç ê é Å Å ç ?æ ?æ %& íì %  &% ê é éM M Å ï ê é   ê   ë J$ Åè! Fragmentation “tags” flavor and charge of struck quark. 16 x⋅∆u ð ñò Solve for  ý    ý ý 0.2 x⋅∆d – – x(∆u-∆d) 0 Q2 = 2.5 GeV2 0.1 -0.2 0 – -0.1 ý                       ý ÿ  ü þý 0 ð û ý úùø ý ^÷ö õ Wôó ý 0.2 x⋅∆u Q2 = 2.5 GeV2 0 GRSV2000 LO std BB01 LO -0.1 χQSM B. Dressler et al., EPJ C14 (2000) 147. – x⋅∆d -0.2 0 0.03 Assume: -0.1 0 x⋅∆s -0.1 0.03 0.1 0.6 0.1 0.6 x Leading order cross section and current fragmentation. Isospin symmetry and charge conjugation. “Purity” calculated from Monte Carlo depends on the detailed knowledge of the fragmentation process. x 17 › ™  š S S T %& … &% V Ë % … Q S &% Ë „ S ˆ ¥ V &% M S ˆ ¥ J L …%  S V &% L „ Q % $ " ¡  %& M   V % $ ©;¡ J S ¥ … Â Ë Q S VË „ S V &% $ " ¡ ® V &% $ © ¡ J L &…%  S    ˆ %& $ " ¡ V %& $ © ¡ % L … S … L „ S S S „ … Ë M S X S VË „ S through SIDIS data, rather than X Obtain Q L …%& V S % M T &% „ S L „ J S S V &% L „ S separately. and , , . through inclusive data Obtain non-singlet › ™ An alternative method to obtain flavor non-singlet Flavor non-singlet: At the leading order: 18 at LO  Flavor Non-Singlet          Frankfurt et al. 1989, Christova and Leader, 2001.  S … „ VË VË S R Ë J  J  ¦ ¿¢© S S R „ … Ë ¿¢©  V V ¿¢© ¿¢©  ¿ È $© ¿ !  S S „ … ¿¢ S S Ë TË ¨ J J  §   T ¦ È ¿ $¨ … „ ¿¢ TË Ë … TË „ ¨  V  V ¨ ¨ ¿¢ ¿¢   W¿!   ¥   ® Â Ë Ë Ë  È ¿ $¨ ¿ ! V … … È¿ $ © ˆR ¿ ! VË „ J S VË „ S    X Fragmentation functions drop out at LO (isospin symmetry and charge conjugation). X Measurements on three polarized targets, proton, deuteron and Helium-3, over-constrain S … Â Ë  VË „ S . 19 SIDIS Beyond the Leading Order Extend SIDIS cross sections beyond LO (Christova and Leader 2001, de Florian, Navarro and Sassot 2005). # '' %&" ! # '( %" ! $ $ # '( #" ! %" ! $ X Extension to NLO is well known (Wilson coefficients, D. Graudenz, 1994). - ) . , * ) + X Flavor non-singlet observables related to are theoretically clean, do not mix with gluon density and gluon fragmentation function at any QCD order. 20 At the Next-to-Leading-Order: 1 ] 6 51 ] 675 6 c 0 0 b x { {p \ 1_ ^]\ 6; p _` 21 x a 34b 0 a/ b _` ]\ p : 6 91 : 689 ] 6 1 ] 6 8 x are well-known Wilson coefficients (D. Graudenz, 1994). } l x ? ? p { zz q { A @ B n = 0 k n a c = < > n zE D C ) ? } } a k n = 0 n n = 0 k n a l l x ? p { z~ ? qF ? { z~ { x { q zE C C ) ) ? ? - ) gluon terms drop out. a G = 0 ? l? ? . H H zE c zE = 0 l? F F , a G = 0 c = 0 X Isospin symmetry and charge conjugation: , * ) X In flavor/charge non-singlet combinations È ³ V Ƴ is theoretically clean. ¥ 21 È ³ É V Ƴ From       and      NLO ¥ E. Christova and E. Leader, 2001.    È¿ ¿ ¿¢© µ æ S ˆ³ ²á ± … „ T ¥ S S ° ° Ë R VË S I ¶¶ J   È ¿ ¿ ¿¢© µ I æ ° ° ˆ³ ° T ¥ Ë ²á ± T ¥ … VË „ R V  V ¿¢© ¿¢© S ¶¶    È¿ µ ²á ± … Ë I ¿ È ¿ æ ¿ ° S ˆ³ S TË „ S ¿¢ S ¶¶ ¨ J   ¿¢ µ ° ° æ ˆ³ ²á ± I T ¥ Ë … TË „ ¨  V  V ¨ ¨ ¿¢ ¿¢ S ¶¶ n Xn and 5 J K K are non-singlets which do not mix with gluon and sea. X n n , neutron data is sensitive to J 5 K . K Proton data is sensitive to “Bjorken-type Sum Rule” links the moments at all orders of QCD (Sissakian et al. PRD68, 031502 (2003)) . $ $ L L … ¡ J  ® O O QO ­O ˆN Q ¥ … … J% S …% T Ë VË „ S S L V„ S ˆ   M ¡   22 Semi-SANE (E04-113): A Hall-C 6 GeV Experiment X. Jiang, P. Bosted, D. Day and M. Jones co-spokespersons O Duke, FIU, JLab, Kentucky, Norfolk, RPI, Rutgers, Temple, UVa, W M, Yerevan, IHEP-Protvino. V UTRS J O \ QO -Arm: a calorimeter array  J . X GeV, P ). X ZYS XW Q , X E ( PQ Ä      à High precision asymmetry data in deep-inelastic [ O ® ^ _ ]  . ^ -Arm: HMS spectrometer @10.8 , 2.71 GeV/c, . X Ä  QO Nç `  LiD ).  §  T¦  J… ( and  ( ), ND  ¦ X Target: polarized NH 23 a UVa/SLAC/Hall-C Polarized Target ( , ) a  Signal b Microwave Input NMR Signal Out Refrigerator To Pumps Frequency To Pumps X Dynamic nuclear polarization. LN2 LN2 Strong field (5 T), low temperature (1K). Liquid Helium X Liquid Helium d d e e Ci hj g hg . Å l J X Dilution factor: (NH ), (LiD). LiD) c c c (ND , f X (NH )=0.8, N Q¥O k l  QRO O QRO ˆ ˆ QO  Magnet e– Beam 4-94 Target (inside coil) 1° K NMR Coil B 5T 7656A1 24 ¥ Ä Ã The Expected Results: Double-Spin Asymmetries  qr .  p . First data on o o  m n Expect significant improvements on 25 ¥ T à ¥ È ³ V à Ƴ and È ³ Ƴ Combined Asymmetries: u s : flavor/charge non-singlet, gluon den- tm m  p sities do not contribute. Need well-controlled hadron-arm phase space and PID to determine: u y x z }€ }| Z~ }| w s Uwv { y x u u s s † y  … y  º º v ‚y ƒ„ ƒ„ w w } u z y x „ … z y x „ u s y  ƒ„ s … ‡ v y x „  … y x „  26 ˆ ˆ    and  E04-113: Expected Results on × S … L „ L … S V… S S V„ S JË „ JË S ç Tow independent methods of flavor decomposition: i, Christova-Leader method. ii, “Purity” at a fixed- . L „ ‰ L V…  L … S L V„ S One expects at least !!! 27 E04-113: Access Flavor Asymmetry in the Nucleon Sea 1.2 E866/NuSea Peng et al. Nikolaev et al. Szczurek et al. Pobylitsa et al. Dorokhov and Kochelev 1 0.8 _ _ d-u 0.6 0.4 0.2 0 Systematic Uncertainty -0.2 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 x È Æ … ¦ Œ Œ data. Many s , , J 5 n 5 J s s a ) , Š n 5 J n n s cJ s s c5 ‹ ns g , models explain , including the meson-cloud model ( ) which predicts . s s n Š 5 J ‹ model, while ¦ s model predicted large In Chiral-quark soliton appears in LO ( ) appears in NLO ( ). Fermilab other . ¦ Many ’ ’ Ž Ž ’ ’   ¢£ ¡ š• . — •–” “ ˜ — — • ” š š• • ” š   œŸ ž  ›  ˜™— •–” “ ‘ Pauli-blocking model:   28 After 12 GeV Upgrade: Spin-Flavor Decomposition through SIDIS  11 GeV beam on NH (1200 hours) and He (400 hours) targets.  (X. Jiang, JLab 12 GeV upgrade CD1 report.) 29 1.0 RHIC pp √s = 500 GeV ∫L dt = 800 pb−1 ¤ ... and from RHIC-II decay one expects • DGLAP evolution equation links high- lowregion to low- highregion. ∆q/q ¦ ¥ • 0.5 § ¦ ¥ AL (W +) _ AL (W ) ∆u/u ∆d/d 0 −0.5 ∆d/d ∆u/u Q 2= MW2 ¦ ¥  −1 10 ¦ ¥ GS95LO(A) BS(∆g=0) • −1.0 −2 10 Data at increasing probe higher and . higher in input PDF at Non-singlet evolution is straight forward. x 30 . « ¨ ˜ ª © ¨    and  COMPASS-2007: ¬ š - hA h+ d 1 1 0.8 0.8 0.6 0.4 - + N /N 0.2 0 σh-/ σ h+ 0.2 0 0.4 unmeasured 0.6 -0.2 -0.4 10-2 10-1 x 10-1 x 1 GeV ¯ A ´ ² ± ³ ° ¯ ®­ f arXiv:0707.4077. LiD target, 10-2 1 31 0.7 ∫x(∆u +∆d )dx x(∆ uv+∆ dv) min 0.4 0.6 From diff asymmetry d From Inclusive g 1 (∆ u=∆ d=∆ s=∆ s) 0.5 DNS fit (without COMPASS) 0.3 0.4 0.2 0.3 0.1 (∆ u=-∆ d) 0.2 0 0.1 -0.1 -0.2 v unmeasured 0.5 v 10-2 10-1 x 0 1 10-2 10-1 xmin 1 ¶ µ › ¢ ¡Â — ¿Ã ¿–” ÀÁ ¢¡ ¾ — ¢ ¿À–” ¡N ¢¡ ¾¡ š• — »º— • ” ¹ š •–” ¹ “ ¢½ ¡   . ¼   µ ¸·`  32 Æ Ç Å Å and Ä Ä Ä , : NLO global fits to DIS and SIDIS data de Florian, Navarro and Sassot. PRD71, 094018, (2005). X. Jiang, Navarro and Sassot. EPJC47, 81, (2006). È Gives error bands on polarized PDF. Translate into error bands on observables. È Constraints on Í Ì Ë Ê Ï Ï , compare with RHIC Î È Allow different parameterizations of F.F. (KRE and KKP). É È Fit inclusive and semi-inclusive DIS data to NLO in PDFs and fragmentation functions. data. 33 Inclusive: ¬ ›  Ò — — • ” × ¥ Ò Ù ¦Ú¥ ¦ ¦ –•” ŽÑ Ð Ó £ Ø Ó Õ ÓÔ Ö Ž • • šß Ü ¦ ¥ Û — ” ¢ Ò ¦Ú¥ à Ð — Ó £ ß ” ß á ” ß ß ”  —  º— Ò Ù ¦Ú¥ à ß ”  —  º Ý Þ â Semi-inclusive: ¬ ¦ é º æ ¥ Ò ß å × Ù — • å Ò çèæ  ¦ ¥ ä ¦ › ¥ Ò ßÒ –•” ãäÐ ŽÑ Ó Ó £ Ø Ó Õ ÓÔ ß • ê ߚ Ž ê š• § Ž îïà º Ò Ó Ó Ó í £ Ý ê • ê ß Ù ê ì• í ê ìß ¦ ¥ ä é ç — Ò ¦ ¥ ä Ž   ¦ ¥ ä Ò ê ßÒ ê ð • ” — ¦Ÿ¥ ” Ü Û ë Þ ß • ß • Ò Ð Ó Ó á í í ê ì• í ê ìß ¦ ¥ ä é ç — Ò ¦ ¥ ä îïà Ò ê ßÒ ê ð • ” Ž   ¥ Ò Ó á á í ê ìß ¥ Ò ç — º ¦ ¥ ä ¦ é ¦ îïà  ¥ Ù ê ì• Ò ê ßÒ ê ð • ” Ž ¦  34 Fit Compared with Inclusive Data 1 0.5 0 1 0.5 0 0.5 0 10 -2 10 -2 1 10 -2 1 10 -2 35 Fit Compared with Semi-Inclusive DIS Data 0.5 0 0.5 0 0.5 0 0.5 0 10 -2 1 10 -2 1 10 -2 1 10 -2 1 36 Error bands of NLO polarized PDF 0.4 0.4 – x(∆u+∆u) – x∆uv x∆g 0.2 0.2 0 0 – -0.2 x(∆d+∆d) x∆dv -0.2 0.06 0.04 0.06 – – x∆u – x∆d x∆s KRE (NLO) 0.04 KKP (NLO) unpolarized 2 KRE χmin+1 0.02 2 KRE χmin+2% 0.02 0 0 -0.02 -0.02 -0.04 -0.04 -0.06 10 -2 xBj 10 -2 xBj 10 -2 -0.06 xBj 37 Impacts of semi-SANE proton data on NLO global fit X. Jiang, G.A. Navarro and R. Sassot, 2006. 0.5 0.3 0.45 0.25 πAp Aπ+ p 0.2 0.4 0.15 0.35 0.1 0.2 x 0.3 0.4 0.1 0.2 x 0.3 ò ñ Ž and ö ô ò ñ Ž ó Existing constraints compared with semi-SANE projected error bars on 0.1 0.4 . õ õ 38 Improved constraints on the moments of polarized PDF Standard Fit Improved Fit 460 460 2 χ +5% 450 χ 450 2 440 430 2 χ +2% 440 χ2+1 -0.3 430 -0.2 -0.1 –0 δu 0.1 0.2 -0.4 -0.2 – 0 δd 0.2 460 460 2 χ +5% 450 χ 450 2 440 2 χ +2% 440 2 430 χ +1 -0.1 -0.08 430 -0.06 -0.04 δs -0.02 0 -0.5 0 0.5 δg 1 ’  Adding the projected semi-SANE proton data significantly improves the “ moment. 39 ¨ SIDIS with a longitudinally polarized He target: ÷ ¬ø × È A JLab 6 GeV proposal (PR05-112). Will improve HERMES-95 data.  High luminosity polarized He target to obtain . È ã ñ Ž ù È Add strong constraints to through NLO global fit.  È Sensitive to š ¹ .  ú 40 ÷ Adding He SIDIS data: indirect constraints to X. Jiang, Navarro and Sassot. EPJC47, 81, (2006). ÿ evolution of .  û in ¯ ® Ê þ is fixed in SIDIS, there’s less freedom for É É , once þ þ üýû Since 0.03 460 Run 5 0.02 2 χ +5% 2006-7 450 χ 0.01 2 AπLL 0 440 0 2 χ +2% -0.01 2 χ +1 KRE NLO 2 KRE NLO ∆χ =2% 2 KRE NLO∆χ =2% with Helium data (only pions) 430 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 -0.02 0 2 4 δg É Ê 10 12 14 Ï as strong as RHIC Ï Constrain 8 (GeV/c) Î Ê by a factor of 4. pT n Ì Ë É Improve 6 2006. 41 Summary: JLab Experiments The high luminosity at JLab allows precision measurements of inclusive and semi-inclusive asymmetries on polarized targets.  ( He): ñŽ  ù , ñŽ , ñŽ Inclusive õ ÿ ÿ É É É  .      Ê through global fits. ( He):  , ã ñ Ž ù ã ñ Ž , ã ñ Ž Semi-inclusive É È Constrain É È Spin-flavor decomposition  õ È In addition to asymmetries, one needs to determine relative cross section ratio É . þ þ from ÿ È Flavor non-singlet observable É È Flavor tagging separates ö ÿ ô ÿ Ì É É É É Ì Ë .  Ì  Ì    provide clean access . Combine inclusive and semi-inclusive data:  ÿ É  ÿ É      ²   . È É É  ÿ È Ê þ  þ and É É É Constrain through NLO global fits. 42