Transcript
Home (https://www.pugetsystems.com) / View All Articles (/all_articles.php) / Review: Fractal Design Define XL R2
Review: Fractal Design Define XL R2 Written on April 1, 2013 by Matt Bach (https://www.pugetsystems.com/bios.php?name=mattbach) Share: Page 1 of 2 [ Jump to Page: 1 2 (/labs/articles/Review-Fractal-Design-Define-XL-R2-187/page2) ]
Always look at the date when you read a hardware article. Some of the content in this article is most likely out of date, as it was written on April 1, 2013. For newer information, see our more recent articles (/all_articles.php).
Table of Contents: 1. 2. 3. 4.
Introduction External Features Internal Features Liquid Cooling Considerations
5. Test Setup & System Assembly (/labs/articles/Review-Fractal-Design-Define-XL-R2187/page2#TestSetup&SystemAssembly) 6. Liquid Cooling Performance (/labs/articles/Review-Fractal-Design-Define-XL-R2187/page2#LiquidCoolingPerformance) 7. Air Cooling Performance (/labs/articles/Review-Fractal-Design-Define-XL-R2187/page2#AirCoolingPerformance) 8. Conclusion (/labs/articles/Review-Fractal-Design-Define-XL-R2-187/page2#Conclusion)
Introduction Fractal Design's Define XL R2 is the second revision of Fractal Design's Define XL, but in reality is more like a larger version of the Define R4 (https://www.pugetsystems.com/labs/articles/Product-Review-Fractal-Design-Define-R4-159) than the successor to the Define XL. The original Define XL had many innovative features, but many of them either did not work as well as expected or simply felt "gimmicky" when used. With the Define XL R2, however, Fractal Design has shown the power of being a small, flexible company that actually listens to their users and values their feedback. They kept everything that was praised, got rid of anything that did not end up working out, and basically redesigned the whole interior of the chassis. The end result is an excellent chassis that provides a great mix of cooling, acoustic dampening and liquid cooling potential for ATX or EATX systems. The Define R4 comes in two different colors, but unlike the Define R4 it currently does not include a windowed version.
(https://www.pugetsystems.com/pic_disp.php? id=22676&width=800&height=800)
(https://www.pugetsystems.com/pic_disp.php? id=22677&width=800&height=800)
Titanium Grey
Black Pearl
FD-CA-DEF-XL-R2-TI (http://www.fractaldesign.com/? view=product&category=2&prod=112)
D-CA-DEF-XL-R2-BL (http://www.fractaldesign.com/? view=product&category=2&prod=111)
This chassis includes three of Fractal's SILENT SERIES R2 140mm (http://www.fractal-design.com/?view=product&category=4&prod=79) fans that by default are located at the front, rear and bottom of the chassis. In total, this chassis can accommodate up to seven fans - each of which can be either 120mm or 140mm - so there is a very wide variety of fan configurations that can be used. The Define XL R2 also has the ability to mount eight 3.5"/2.5" hard drives and four 5.25" devices in it's default configuration. However, if you decide to mount a liquid cooling radiator in the front of the chassis, the number of hard drive mounts is reduced to four as installing a front radiator requires the removal of the top hard drive cage. For users that are looking for a quiet chassis, the Define XL R2 has you covered as well. The front door includes acoustic dampening material which reduces the noise that escapes from the front of the chassis. Both side panels are also covered with acoustic dampening material and the side and top fan mounts come with plates that further reduce the noise level of the system. Even the fans come with an easy to access fan speed control that lets you set them to either 5, 7, or 12V as needed. For the full list of the manufacturer specifications for this chassis, click on the link below: [+] View Manufacturer Specifications
External Features
(https://www.pugetsystems.com/pic_disp.php? id=22742&width=800&height=800)
(https://www.pugetsystems.com/pic_disp.php? id=23148&width=800&height=800)
Door Open
Door damage
(https://www.pugetsystems.com/pic_disp.php? id=22676&width=800&height=800) Front
On the outside, the Define XL R2 is basically a scaled-up version of the Define R4 (https://www.pugetsystems.com/labs/articles/ProductReview-Fractal-Design-Define-R4-159/). It has the same great minimalist look to it with no drives or fans visible at all until you open the front door. The inside of the door has acoustic foam installed, which is a great touch considering a significant portion of noise from most computer systems generally escapes through the front of the chassis. The downside to this door is that it only opens to about 115° which ended up causing the first problem we found with this chassis. When you open the door all the way, the front of the door hits the front bezel and can cause scuff marks to appear on the door. The picture above shows the result, but keep in mind that we had to really finesse the lighting in order to get the scuffs to show up in a picture. In person they are much less noticeable, but definitely still there. Behind the front door are the four 5.25" device mounts, the fan speed control switch, and access to the two front fan mounts and filter. The fan speed control switch is a simple 5V/7V/12V switch that utilizes the 5V and 12V rails from the power supply. To get 7V from the 12V and 5V, you use the 12V line as the power line and the 5V line as the ground, which results in 7V worth of power (12-5=7). For us, this fan speed control is great as it allows us to use the exact same voltages we typically set fans to using adapters, with the added benefit that the end user is able to easily adjust the fan speeds if needed. Note that this switch can only control three fans, so if you decide to use more fans than the three that come with the chassis, you will not be able to control them all with this switch. You could connect more fans with the use of splitter cables, but keep in mind that adding too many fans to a single line will cause a voltage drop which will prevent the fans from running at full speed.
(https://www.pugetsystems.com/pic_disp.php? id=23146&width=800&height=800)
(https://www.pugetsystems.com/pic_disp.php? id=23147&width=800&height=800)
(https://www.pugetsystems.com/pic_disp.php? id=22741&width=800&height=800) Front Fan Access
Front Fan Mount and Filter
Fan mount behind the Filter
The front fan mount and filter are accessed by pressing on the top-right and bottom-right of the panel covering the fans, which causes it to hinge open from the left. This is where our second problem with this chassis comes into play. Since the front door only opens to about 115°, the door covering the fans is only able to open to about 90° which makes it a bit more difficult to install or remove the front fans. We would much rather have this door hinge from the bottom like the Define R4 so that you do not have both the front door and the fan door trying to open in the same direction. To access the front fans, with the fan door open simply press down on the tab located above the fans and pull the entire fan mount out from the chassis. At this point, you can either clean the filter or replace the fans as needed. 140mm fans are held in place with four plastic clips and can be further secured with a pair of standard fan screws, while 120mm fans are simply secured with four fan screws. We initially had some reservations about the strength of this mounting, especially in shipping, but after using the nearly identical fan mounting in the Define R4 for a few months now, we have come to conclusion that it is sturdy enough to survive all but the absolute worst shipping scenarios. If you prefer to mount the front fan(s) directly to the chassis, you can do so by using the threaded fan mounts that are behind the plastic fan mount. Mounting the fans this way is necessary if you want to install a liquid cooling radiator in the front of this chassis, but doing so prevents you from using the plastic fan mount (and filter) at all. More information on liquid cooling is available in the Liquid Cooling Considerations (https://www.pugetsystems.com/labs/articles/Review-Fractal-Design-Define-XL-R2-187/#LiquidCoolingConsiderations) section later in this article.
(https://www.pugetsystems.com/pic_disp.php? id=23149&width=800&height=800) Front Panel Removed
(https://www.pugetsystems.com/pic_disp.php? id=23150&width=800&height=800) Inside of Front Panel
In addition to the fan mount, the entire front panel can be removed by simply pulling on it from the bottom of the panel. The front fan mount stays attached to the chassis, but the rest of the panel (including the front ports and fan speed control switch) all come off in one piece. The only thing we dislike about this design is that the front ports can not be easily detached from the main front panel and thus must be unplugged from the motherboard before removing the panel. On many of Fractal's other chassis (including the Arc Midi Tower), the front ports are an entirely separate piece from the front panel and are secured to the chassis frame, but the tight tolerances keeps it looking like
a single piece. We would very much like to see that on this chassis as it is a great way to make it easy to remove the front panel without having to first disconnect the front ports.
(https://www.pugetsystems.com/pic_disp.php? id=23007&width=800&height=800)
(https://www.pugetsystems.com/pic_disp.php? id=23008&width=800&height=800)
(https://www.pugetsystems.com/pic_disp.php? id=22737&width=800&height=800)
Right Side
Left Side
Rear
The right side of the chassis is simply a featureless side panel, although the left side has a 120/140mm fan mount. By default, this fan mount is covered with a plate that includes a layer of thick acoustic padding. This is a great way to reduce noise levels, yet still allow those who want or need the additional cooling that a side fan provides to do so. The rear of the chassis houses the rear 120/140mm fan mount, the PSU mount, the motherboard I/O panel and the nine PCI slots.
(https://www.pugetsystems.com/pic_disp.php? id=22736&width=800&height=800)
(https://www.pugetsystems.com/pic_disp.php? id=23151&width=800&height=800)
(https://www.pugetsystems.com/pic_disp.php? id=23009&width=800&height=800) Top
Front Ports
Bottom
The top of the chassis houses the front ports and two 120/140mm fan mounts. While it may look like there are two status LEDs (one around the power button and one in front of it), the power LED actually lights up both the ring around the power switch as well as the clear bit of plastic in front of the power switch. There is no HDD LED, which may or may not be a good thing depending on user preference. The top 120/140mm fan mounts are covered with plates that include a layer of thick acoustic padding. The one downside to these fan mounts is that since they are centered on the chassis they are not ideal if you want to install liquid cooling onto these mounts. Since they are centered, any radiator beyond the thinnest will block the motherboard. We measured a distance of 67mm between the top of the chassis and the motherboard, meaning that with a standard 1" thick fan, you could only use a radiator that is roughly 40mm thick. This is enough for most standard radiators, but you will not be able to fit an extra thick radiator or utilize two fans in a push/pull configuration. The bottom of the chassis is fairly standard except for the removable filter which covers both the PSU intake fan and the bottom 120/140mm fan.
Internal Features After removing a pair of thumbscrews, the side panels can be removed by pulling out on the rear of the panel, giving access to the interior of the chassis.
(https://www.pugetsystems.com/pic_disp.php? id=23152&width=800&height=800)
(https://www.pugetsystems.com/pic_disp.php? id=22739&width=800&height=800) Left Side Panel
Acoustic Dampening Material
The inside of the panels themselves are covered with a thin, but dense, acoustic padding material to help reduce the amount of noise that escapes from the system. Overall, these panels are solid and we appreciate the inclusion of the acoustic dampening material.
(https://www.pugetsystems.com/pic_disp.php? id=23165&width=800&height=800) (https://www.pugetsystems.com/pic_disp.php? id=22738&width=800&height=800) Chassis Interior
(https://www.pugetsystems.com/pic_disp.php? id=23153&width=800&height=800) Cable Management Holes
CPU Heatsink Cutout
Moving on to the chassis proper, there are seven cable management holes around the motherboard area, each with a rubber grommet to aid in cable management. These kinds of holes are great for keeping the cabling clean, and the rubber grommets are ideal for hiding any stray cables that would otherwise be visible behind the holes. Note that the three larger holes to the right of the motherboard will be covered if you use an EATX motherboard. Also on the motherboard tray is the large 150mm x 140mm cutout that allows you to access the backside of the CPU heatsink while the motherboard is installed. This is great and is something that we feel every single chassis should incorporate. The only downside to this is that the hole is not large enough to get to the backside of the second CPU heatsink if you are using a dual-CPU EATX motherboard.
(https://www.pugetsystems.com/pic_disp.php? id=23154&width=800&height=800) Top Fans Covered With Plates
(https://www.pugetsystems.com/pic_disp.php? id=23155&width=800&height=800) PSU Mount and Bottom Fan
Looking up towards the top of the chassis, we get an inside view of the two blocked top fan mounts. Again, we really like the fact that Fractal has these fan mounts blocked off by default. The plates are easy to remove, so it allows you to easily configure the system either for quiet operation or for improved cooling depending on what you want. The only thing we would like to see on the top of the chassis is the inclusion of pre-installed acoustic dampening material. With the effort Fractal Design took to dampen both the door panels and front door, it seems like an oversight to leave the top (which is likely the part of the chassis closest to the user) with no dampening material.
The very bottom-rear of the chassis houses the PSU mount which includes a nice foam gasket and soft standoffs onto which the PSU rests. While power supplies typically do not vibrate much, we always like to see vibration dampening anywhere possible as long as it does not interfere with the performance of the system. In front of the power supply mount is a 120/140mm fan mount that comes with a 140mm fan installed by default. This can be used with most power supplies except the very longest (190mm max length), but will need to be removed if you move the hard drive cage back at all (for install a front radiator).
(https://www.pugetsystems.com/pic_disp.php? id=23156&width=800&height=800)
(https://www.pugetsystems.com/pic_disp.php? id=23157&width=800&height=800)
(https://www.pugetsystems.com/pic_disp.php? id=23158&width=800&height=800)
Drive Cages
Top Cage Turned
Top Cage Removed
Moving forward, we get to the two 3.5" drive cages. The bottom cage is held in place with screws through both the bottom and front of the chassis, and can be moved back to one of two locations if you want to install a liquid cooling radiator in the front of the chassis. Keep in mind that moving the bottom cage back makes it not possible to use the top hard drive cage, so you reduce the amount of hard drives you can install in the system. The top cage is held in place with a pair of thumbscrews and easily slides out either to be removed or turned 90º. Removing the top cage allows for ultra-long video cards (longer than 330mm) while turning it 90º reduces the amount of airflow obstruction from the front fan(s) while still allowing additional hard drives to be mounted. In our testing, we have found that rotating this cage only makes a small impact on system cooling when you are running the fans at higher speeds, and almost no impact on cooling when the fans are running at 5V or 7V.
(https://www.pugetsystems.com/pic_disp.php? id=21108&width=800&height=800) Hard Drive Trays
(https://www.pugetsystems.com/pic_disp.php? id=23159&width=800&height=800)
(https://www.pugetsystems.com/pic_disp.php? id=21109&width=800&height=800)
Optional Securing Screws
Extra-wide Lip
Hard drives are mounted onto trays which then slide into the drive cages. Each tray allows for either a 3.5" or 2.5" drive to be mounted and can be secured to the cage with a single screw from the inside of the chassis. Note that this chassis does not include any screws for this purpose, but any standard #6-32 (standard hard drive) screw can be used. Hard drive trays are often a problem in shipping as they typically are fairly flimsy, but the optional screw combined with an extra wide lip for the trays to rest on (preventing the drives from "dropping" if the cage slightly flexes in shipping) keep these trays securely in place.
(https://www.pugetsystems.com/pic_disp.php? id=23160&width=800&height=800)
(https://www.pugetsystems.com/pic_disp.php? id=23161&width=800&height=800)
5.25" Bays Front
5.25" Bays Rear
Moving up, we get to the four 5.25" bays. There is no tool-less mounting here, which is great for us at Puget Systems for shipping reasons, but Fractal does include thumb screws for you to use to secure your 5.25" devices. The only thing to point out here is that this chassis does not come with a 5.25" to 3.5" bay adapter, so if you want to use a 3.5" device like a card reader, you will need to purchase a third party adapter.
(https://www.pugetsystems.com/pic_disp.php? id=23163&width=800&height=800)
(https://www.pugetsystems.com/pic_disp.php? id=23162&width=800&height=800)
Back side of the chassis
(https://www.pugetsystems.com/pic_disp.php? id=23164&width=800&height=800) Use a 3.5" drive screw to act as a tie point
Rear of the front panel and 5.25" bays
Moving to the backside of the motherboard tray, the primary thing to note is the cable tie points. The locations are decent, although when we built up a system in this chassis there were a few areas that we found ourselves wishing there were additional cable tie points. While we would love for Fractal to add more tie points (especially towards the right side of the motherboard tray), we found that you can use the screws intended for mounting 3.5" hard drives as an improvised tie point. The screws can be installed into any of the unused motherboard standoff holes, and act as a point to secure cables with either twist-ties or zip-ties. The one area that this does not work is on the back side of the 5.25" bay (to tie up the fan cables and any extra 5.25" device cables) and on the back of the front panel. These areas often have SATA power/data cables as well as fan cables, and additional tie points would allow you to keep those cables nicely tied up and out of the way.
Liquid Cooling Considerations For liquid cooling, Fractal Design lists decent information in their specs about where you can mount radiators, but there is a bit extra we would add:
Fractal Information
Additional Information
Front
240mm radiator when HDD cages are removed or repositioned
Can fit select 2x140mm radiators if you remove the top HD Cage mounting plate, but only very compact models of radiators and the mounting requires minor modification.
Top
240 and 280mm when using slim radiators
Thickness must be less than 40mm, but 30mm is recommended to allow for wiring to be routed properly
Bottom
120mm radiators
Recommend using <45mm thick radiators to avoid conflicting with PSU cable routing. Cannot be used if the hard drive cage has been moved back.
Rear
120 and 140mm radiators
Cannot use a 140mm radiator if you have a radiator installed in the top-rear fan mount
If you want the absolute maximum amount of liquid cooling, the best option would be to use a slim 2x140mm radiator in the top, a 2x120mm radiator in the front and a 120mm radiator in the rear. If you need all eight hard drive mounts, then the next best choice would be a 2x140mm radiator in the top, a 120mm radiator in the rear and a 120mm radiator in the bottom of the chassis. In addition to full system liquid cooling, these mounts give you a great chance to install multiple closed-loop liquid coolers. These coolers provide much of the same cooling performance as full system liquid cooling, but are much easier to install and maintain and are much, much less prone to leaking over time. For our testing, we opted to install two Corsair H110 (https://www.pugetsystems.com//parts/CPUCooling/Corsair-Hydro-Series-H110-CPU-Cooler-9187) radiators to cool the CPUs in our dual-CPU test system and they performed absolutely great. The only issue we ran into was the fact that the Define XL R2 uses 16mm screw spacing for the top and front dual 140mm fan mounting, while the Corsair coolers use 20mm spacing. In our research, it appears to be almost random whether 2x140mm radiators use 16mm or 20mm spacing. So while we cannot fault Fractal Design for choosing 16mm spacing, it is something you need to consider if you are considering using this chassis for liquid cooling. What this means is that without modifying either the chassis or the radiator, you can only secure the radiator in four of the eight screw locations. This is plenty to keep the radiator securely in place, but requires a bit of creative mounting to get the fans attached as well. After trying a bunch of different mounting methods, here is how we would recommend mounting the radiators to the top and front of the chassis if you do not want to modify either the radiator or the chassis: Front Radiator - Intake
Top Radiator - Intake
Top Radiator - Exhaust
(https://www.pugetsystems.com/pic_disp.php? id=22745&width=800&height=800)
(https://www.pugetsystems.com/pic_disp.php? id=22746&width=800&height=800)
Front set of screws pass through the fan into the radiator, rear set only secure to the fan.
Fans are both secured to the radiator. Radiator is secured to the chassis with four #6-32 screws.
(https://www.pugetsystems.com/pic_disp.php? id=22744&width=800&height=800) Top set of screws pass through the chassis into the radiator (requires you to drill out the threaded holes), bottom set use a spacer to only secure to the chassis.
The worst issue we had to deal with was the front fan mounting. For the front fans, Fractal Design opted to give users the option to either use their tool-less plastic fan mount (not usable when you want to mount a radiator), or to screw the fans directly to the chassis using screws that pass through the fan into the chassis. Since we want the top set of screws to pass through the chassis and secure to the radiator, we actually had to drill those holes out. Since Fractal Design only advertises that the front mount will accept 2x120mm radiators (which will mount with no problem), however, this is a very minor issue and something that we cannot hold against Fractal Design at all.
(https://www.pugetsystems.com/pic_disp.php? id=23074&width=800&height=800)
(https://www.pugetsystems.com/pic_disp.php? id=23073&width=800&height=800) Top radiator secured with four screws
The funny thing is that if we were given the option to change these threaded holes to non-threaded holes, we would opt not to. It is much easier to drill out a hole than it is to make it smaller threaded hole, and without the threaded holes it would be much more difficult to secure the bottom fan like we ended up doing.
(https://www.pugetsystems.com/pic_disp.php? id=23070&width=800&height=800)
(https://www.pugetsystems.com/pic_disp.php? id=23071&width=800&height=800)
Top fan screw passes through the chassis and screws into the radiator. Bottom fan uses a spacer and secures to the chassis.
Next > (/labs/articles/Review-Fractal-Design-Define-XL-R2-187/page2) Introduction & Features Tags: Fractal Design, Define XL R2, Define XL, Review, Chassis
Related Articles Product Details: Fractal Design Define XL R2 Titanium Grey (/parts/Case/Fractal-Design-Define-XL-R2-Titanium-Grey-9145) Product Review: BitFenix Shinobi Black w/ Window (/labs/articles/Product-Review-BitFenix-Shinobi-Black-w-Window-92/) Shuttle FSYS-SV24 Review (/labs/articles/Shuttle-FSYS-SV24-Review-7/) Case Comparison: Antec P182 vs. P183 (/labs/articles/Case-Comparison-Antec-P182-vs-P183-68/)
Tagged Review (/all_articles.php?tag=Review) Chassis (/all_articles.php?tag=Chassis)
Subscribe (http://feeds2.feedburner.com/pugetsystems_all) Subscribe (https://www.pugetsystems.com/subscribe.php) Email Address Subscribe
0 Comments
Puget Systems
Recommend 2
1
Login
Sort by Oldest
Share
Start the discussion…
Subscribe
Add Disqus to your siteAdd DisqusAdd
Privacy
Build Your Own Computer (/configmenu.php) Gaming PC (/deluge.php) Parts Store (/store/index.php) Site Map (/site_map.php) FAQ (/faq.php) ® Copyright 2017 - Puget Custom Computers (https://www.pugetsystems.com/)
Workstations
Optimized Solutions
Content Creation (/solutions/content_creation/index.php) Engineering (/solutions/engineering/index.php) Scientific PCs (/solutions/scientific/index.php) More (/solutions/more/index.php)
Adobe Premiere (/recommended/Recommended-Systems-for-Adobe-PremierePro-143) Adobe Photoshop (/recommended/Recommended-Systems-for-AdobePhotoshop-139) Solidworks (/recommended/Recommended-Systems-for-SOLIDWORKS-150) Autodesk AutoCAD (/recommended/Recommended-Systems-for-AutodeskAutoCAD-134) Machine Learning (/recommended/Recommended-Systems-for-NVIDIA-DIGITSCaffe-174)
Support
Publications
Online Guides (/help/index.php) Request Support (/support/index.php) Remote Help (/remote/)
All News (/all_articles.php) Puget Blog (/blog/) HPC Blog (/all_hpc.php) Hardware Articles (/all_articles.php) Featured Systems (/featured.php)
Policies
About Us
Warranty & Return (/warranty.php) Privacy Policy (/privacy.php) Delivery Times (/delivery.php) Response Times (/response_time.php)
About Us (/aboutus.php) Contact Us (/contact.php) Testimonials (/feedback.php)