Preview only show first 10 pages with watermark. For full document please download

Rutherford Backscattering Secondary Ion Mass Spectrometery

   EMBED


Share

Transcript

University of Illinois at Urbana-Champaign | Materials Research Laboratory Advanced Materials Characterization Workshop June 3 and 4, 2013 Rutherford Backscattering & Secondary Ion Mass Spectrometery Timothy P. Spila, Ph.D. Frederick Seitz Materials Research Laboratory University of Illinois at Urbana‐Champaign © 2013 University of Illinois Board of Trustees.  All rights reserved. Rutherford Backscattering Spectrometry He+ He RBS is an analytical technique where high energy ions (~2 MeV) are scattered from atomic nuclei in a sample. The energy of the back-scattered ions can be measured to give information on sample composition as a function of depth. © 2013 University of Illinois Board of Trustees.  All rights reserved. Geiger‐Marsden Experiment Top: Expected results:  alpha particles passing  through the plum pudding  model of the atom undisturbed. Bottom: Observed results:  a small portion of the  particles were deflected,  indicating a small,  concentrated positive charge. © 2013 University of Illinois Board of Trustees.  All rights reserved. Rutherford Backscattering Spectrometry 2 MeV Van de Graaff accelerator beam size Φ1-3 mm flat sample can be rotated © 2013 University of Illinois Board of Trustees.  All rights reserved. energy loss per cm log(dE/dx) Primary Beam Energy 1 keV 1 MeV (log E) 1 keV 1 MeV thin film projected on to a plane: atoms/cm2 (Nt)[at/cm2] = N[at/cm3] * t[cm] Figure after W.‐K. Chu, J. W. Mayer, and M.‐A. Nicolet, Backscattering Spectrometry (Academic Press, New York, 1978). © 2013 University of Illinois Board of Trustees.  All rights reserved. Elastic Two‐Body Collision Elastic Scattering M1vo2 = M1v12 + M2v22 M1vo = M1v1 + M2v2 E1 = KEo  M t2  M i2 sin 2   M i cos  K   M M  i t   2 Kinematic factor: K 1.0 M14 0.8 0.6 He 0.4 4  = 150 o 0.2 0.0 0 50 100 150 200 Target mass (amu) © 2013 University of Illinois Board of Trustees.  All rights reserved. Rutherford Scattering Cross Section Coulomb interaction between the nuclei: exact expression -> quantitative method  Z1Z 2   R ( E , )     4E  2   4  Z2  1  M sin ( 2 )  2( M 2 )    E  © 2013 University of Illinois Board of Trustees.  All rights reserved. 2 energy loss per cm log(dE/dx) Electron Stopping 1 keV 1 MeV (log E) Figure after W.‐K. Chu, J. W. Mayer, and M.‐A. Nicolet, Backscattering Spectrometry (Academic Press, New York, 1978). © 2013 University of Illinois Board of Trustees.  All rights reserved. RBS – Simulated Spectra hypothetical alloy Au0.2In0.2Ti0.2Al0.2O0.2/C Element (Z,M): O(8,16), Al(13,27), Ti(22,48), In(49,115), Au(79,197) 2  R ( E , )   Z2   E Kinematic factor: K 1.0 1200 8000 10 ML Au C 0.8 100 ML Au 0.6 4 He 0.4 In o  = 150 In 0.2 0.0 0 50 100 150 200 O Target mass (amu) Al Ti C O Al Ti 16000 1000 ML In 20000 50000 4000 ML Au C O Al Ti © 2013 University of Illinois Board of Trustees.  All rights reserved. 10000 ML SIMNRA Simulation Program for RBS and ERD © 2013 University of Illinois Board of Trustees.  All rights reserved. Thickness Effects TiN/MgO Energy [keV] 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 11,000 Series 0 Series 1 300 nm 10,500 10,000 9,500 9,000 Scattered 1500 11,500 D 8,500 N 8,000 7,500 N surface Counts 7,000 6,500 15 6,000 15 5,500 5,000 4,500 Ti surface 4,000 3,500 Incident 3,000 Ti interface N, O, Mg interface 2,500 2,000 1,500 1,000 He 500 0 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 Channel Energy [keV] Energy [keV] 100 200 300 400 500 600 700 800 900 100 1000 1100 1200 1300 1400 14,000 Series 0 Simulated 14,000 12,000 11,000 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 Series 0 Simulated 600 nm 13,000 400 nm 13,000 200 1500 12,000 11,000 10,000 10,000 9,000 N surface 8,000 Counts Counts 9,000 7,000 8,000 7,000 N surface 6,000 6,000 5,000 5,000 Ti surface 4,000 N, O, Mg interface 3,000 2,000 1,000 Ti interface 50 100 150 200 250 300 350 400 Channel 450 500 550 600 650 3,000 Ti interface 2,000 1,000 0 0 0 Ti surface 4,000 N, O, Mg interface 700 0 50 100 150 200 250 300 350 400 Channel © 2013 University of Illinois Board of Trustees.  All rights reserved. 450 500 550 600 650 700 Incident Angle Effects TiN/MgO Scattered N 15 52 15 Incident 22.5 He N Energy [keV] Energy [keV] 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 100 1500 13,000 400 nm 12,000 11,000 8,000 Ti surface 7,500 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 Series 0 Simulated Ti surface 7,000 6,500 6,000 10,000 5,500 9,000 N surface 8,000 Counts Counts 300 400 nm 8,500 Series 0 Simulated 14,000 200 7,000 5,000 4,500 4,000 N surface 3,500 6,000 3,000 5,000 2,500 N, O, Mg interface 4,000 2,000 N, O, Mg interface 3,000 2,000 1,000 1,000 500 0 0 0 50 100 150 200 250 300 350 400 450 500 550 600 650 Ti interface 1,500 Ti interface 700 0 50 100 150 Channel 200 250 300 350 400 450 Channel Surface peaks do not change position with incident angle; © 2013 University of Illinois Board of Trustees.  All rights reserved. 500 550 600 650 700 Example: Average Composition I. Petrov, P. Losbichler, J. E. Greene, W.-D. Münz, T. Hurkmans, and T. Trinh, Thin Solid Films, 302 179 (1997) © 2013 University of Illinois Board of Trustees.  All rights reserved. RBS: Oxidation Behavior TiN/SiO2 As-deposited Experimental spectra and simulated spectra by RUMP Annealed in atmosphere for 12 min at Ta = 600 °C © 2013 University of Illinois Board of Trustees.  All rights reserved. RBS Summary Scattered D 15 N 15 Incident He • Quantitative technique for elemental composition • Requires flat samples; beam size Φ1‐3 mm • Non‐destructive • Detection limit varies from 0.1 to 10‐6, depending on Z •optimum for heavy elements in/on light matrix, e.g. Ta/Si, Au/C… • Depth information from monolayers to 1 m © 2013 University of Illinois Board of Trustees.  All rights reserved. Secondary Ion Mass Spectrometry SIMS is an analytical technique based on the measurement of the mass of ions ejected from a solid surface after the surface has been bombarded with high energy (1‐25 keV) primary ions. Primary Ions Secondary Ions © 2013 University of Illinois Board of Trustees.  All rights reserved. Technique Comparison © 2013 University of Illinois Board of Trustees.  All rights reserved. Block Diagram of SIMS Technique © 2013 University of Illinois Board of Trustees.  All rights reserved. Comparison of Static and Dynamic SIMS TECHNIQUE DYNAMIC STATIC FLUX ~1017 ions/cm2 < 1013 ions/cm2 (minimum dose density) (per experiment) INFORMATION Elemental Elemental + Molecular SENSITIVITY < 1 ppm 1 ppm (ppb for some elements) TYPE OF ANALYSIS Depth Profile Mass Spectrum 3D Image Depth Profile Surface Mass Spectrum 2D Surface Ion Image SAMPLING DEPTH 10 monolayers 2 monolayers SPATIAL RESOLUTION Cameca ims 5f Probe mode: 200 nm Microscope mode: 1 m PHI TRIFT III 0.1 m SAMPLE DAMAGE Destructive in analyzed area – up to 500 m per area Minimal © 2013 University of Illinois Board of Trustees.  All rights reserved. Magnetic Sector Mass Spectrometer CAMECA ims 5f SECONDARY ION COLUMN PRIMARY ION COLUMN © 2013 University of Illinois Board of Trustees.  All rights reserved. Time of Flight Mass Spectrometer Physical Electronics TRIFT III TOF-SIMS ESA 3 ESA 2 Cs+ or O2+ Sample SED Pre‐Spectrometer  Blanker Au+ Energy Slit Post‐ Spectrometer Blanker Contrast Diaphragm ESA 1 1 2 eV  mv 2 © 2013 University of Illinois Board of Trustees.  All rights reserved. Ion Beam Sputtering Sputtered species include: • Monoatomic and polyatomic particles of sample material (positive, negative or neutral) • Resputtered primary species (positive, negative or neutral) • Electrons • Photons © 2013 University of Illinois Board of Trustees.  All rights reserved. MD Simulation of ion impact Enhancement of Sputtering Yields due to C60 vs. Ga Bombardment of Ag{111} as Explored by Molecular Dynamics Simulations, Z. Postawa, B. Czerwinski, M. Szewczyk, E. J. Smiley, N. Winograd and B. J. Garrison, Anal. Chem., 75, 4402-4407 (2003). Animations downloaded from http://galilei.chem.psu.edu/sputteringanimations.html. © 2013 University of Illinois Board of Trustees.  All rights reserved. Quantitative Surface Analysis: SIMS I  I p ym  m m s In SIMS, the yield of secondary ions is strongly influenced by the electronic state of the material being analyzed.  Ism = secondary ion current of species m Ip = primary particle flux ym = sputter yield + = ionization probability to positive ions m = factional concentration of m in the layer  = transmission of the analysis system © 2013 University of Illinois Board of Trustees.  All rights reserved. Total Ion Sputtering Yield Sputter yield: ratio of number of atoms sputtered to number of impinging ions, typically 5-15 Ion sputter yield: ratio of ionized atoms sputtered to number of impinging ions, 10-6 to 10-2 Ion sputter yield may be influenced by: •Matrix effects •Surface coverage of reactive elements •Background pressure in the sample environment •Orientation of crystallographic axes with respect to the sample surface •Angle of emission of detected secondary ions + First principles prediction of ion sputter yields  is not possible with this technique. © 2013 University of Illinois Board of Trustees.  All rights reserved. Courtesy of Prof. Rockett Effect of Primary Beam on Secondary Ion Yields Graphics courtesy of Charles Evans & Associates web site http://www.cea.com Oxygen bombardment When sputtering with an oxygen beam, the concentration of oxygen increases in the surface layer and metal-oxygen bonds are present in an oxygen-rich zone. When the bonds break during the bombardment, secondary ion emission process, oxygen becomes negatively charged because of its high electron affinity and the metal is left with the positive charge. Elements in yellow analyzed with oxygen bombardment, positive secondary ions for best sensitivity. Cesium bombardment When sputtering with a cesium beam, cesium is implanted into the sample surface which reduces the work function allowing more secondary electrons to be excited over the surface potential barrier. With the increased availability of electrons, there is more negative ion formation. Elements in green analyzed with cesium, negative secondary ions for best sensitivity. © 2013 University of Illinois Board of Trustees.  All rights reserved. Relative Secondary Ion Yield Comparison © 2013 University of Illinois Board of Trustees.  All rights reserved. From Storms, et al., Anal. Chem. 49, 2023 (1977). Relative Secondary Ion Yield Comparison © 2013 University of Illinois Board of Trustees.  All rights reserved. From Storms, et al., Anal. Chem. 49, 2023 (1977). Determination of RSF Using Ion Implants I  I p ym  m m s  Level Profile: Im i RSF  Ii Gaussian Profile: I mCt RSF  d  I i  dI bC Where: RSF = Relative Sensitivity Factor Im, Ii = ion intensity (counts/sec)  = atom density (atoms/cm3)  = implant fluence (atoms/cm2) C = # measurement cycles t = analysis time (s/cycle) d = crater depth (cm) Ib = background ion counts © 2013 University of Illinois Board of Trustees.  All rights reserved. Positive and Negative Secondary Ions 10 6 Ion implanted P standard 10 5 10 4 10 3 10 2 10 1 O2 beam 10 3 Si P + Cs beam Si P + 22 Concentration (atoms/cm ) Counts / sec + O2 beam Ion implanted P standard 23 10 Si P + Cs beam Si P 21 10 20 10 19 10 18 10 17 10 -1 10 0 100 200 300 400 500 600 700 0 100 200 Depth (nm) © 2013 University of Illinois Board of Trustees.  All rights reserved. 300 400 500 Depth (nm) 600 700 Definition of Mass Resolution Mass resolution defined by m/m Mass resolution of ~1600 required to resolve 32S from 16O2 Graphic courtesy of Charles Evans & Associates web site http://www.cea.com © 2013 University of Illinois Board of Trustees.  All rights reserved. Depth Profile Application with Hydrogen Detects hydrogen Large dynamic range © 2013 University of Illinois Board of Trustees.  All rights reserved. Isotopic Analysis R.T. Haasch, A.M. Venezia, and C.M. Loxton. J. Mater.Res., 7, 1341 (1992). Ni 3Al 600 C: 4 h 18O2, 16 h 16O2 AES Atomic Concentration (%) (a) (b) 70 60 Ni 30 Al 20 10 16O+ 80 50 40 100 (b) Oxygen Ion Yield (% Linear Counts) (a) 60 40 18O+ 20 O 0 0 0 50 100 (c) (a) (b) (c) AES composition depth profile SIMS isotopic oxygen diffusion profile expressed as a percentage of the total oxygen Schematic of layered oxide structure (c) 150 200 250 300 Sputter Time (min.) M16O M18O NiO NiO, NiAl 2O4 , Al2 O3 M18O © 2013 University of Illinois Board of Trustees.  All rights reserved. M16O Ni 3 Al 350 B Depth Profile in Si(001) SIMS depth profiles through a B modulation-doped Si(001):B film grown by GS-MBE from Si2H6 and B2H6 at Ts=600 °C. The incident Si2H6 flux was JSi2H6 = 2.2x1016 cm-2 s-1 while the B flux JB2H6 was varied from 8.4x1013 to 1.2x1016 cm-2 s-1. The deposition time for each layer was constant at 1 h. G. Glass, H. Kim, P. Desjardins, N. Taylor, T. Spila, Q. Lu, and J. E. Greene. Phys. Rev. B, 61,7628 (2000). © 2013 University of Illinois Board of Trustees.  All rights reserved. Depth Resolution and Ion Beam Mixing SIMS depth profiles through a B -doped layers in a Si(001) film grown by GS-MBE from Si2H6 at TS=700 °C. The Si2H6, flux, JSi2H6, was 5X1016 cm-2 s-1 while the B2H6 flux, JB2H6 varied from 0.16-7.8X1014 cm-2 s-1. The inset shows the two-dimensional B concentration NB2D as a function of JB2H6. Q. Lu, T. R. Bramblett, N.-E. Lee, M.-A. Hasan, T. Karasawa, and J. E. Greene. J. Appl. Phys. 77, 3067 (1995). © 2013 University of Illinois Board of Trustees.  All rights reserved. Static and Dynamic SIMS Dynamic SIMS Static SIMS •Material removal •Elemental analysis •Depth profiling •Ultra surface analysis •Elemental or molecular analysis •Analysis complete before significant fraction of molecules destroyed Courtesy Gregory L. Fisher, Physical Electronics © 2013 University of Illinois Board of Trustees.  All rights reserved. Extreme Mass Range Integral: 1922 TG_SCAN03_NEGSEC_AU2_22KV_BUNCHED_2NA_400UM_90MIN_CDOUT_CHGCOMP_0-10000AMU.TDC - Ions 400µm 17452848 cts 107 197 106 591 394 985 Total Counts (9.43 amu bin) Total Counts 788 105 1379 1773 1182 2166 1576 2560 104 103 102 101 100 0 2000 4000 6000 Mass (amu) © 2013 University of Illinois Board of Trustees.  All rights reserved. 8000 Trace Analysis 10 6 GaAs Wafer GaOH 20000 C3H3 10 5 m/m = 11,600 10 4 GaNH3 K Counts Counts 15000 Si Wafer C2HN 10 3 10000 10 2 5000 0 10 1 85.85 85.90 10 0 38.94 38.98 39.00 39.02 39.04 Mass [m/z] No sputtering to remove organics on surface. Large C3H3 peak does not have a tail to lower mass which would obscure C2HN and K. © 2013 University of Illinois Board of Trustees.  All rights reserved. 85.95 Mass [m/z] 86.00 38.96 InAs/GaAs Quantum Dots In+ Linescans of Quantum Dots 15 10 5 0 0 Cts: 550893; Max: 36; Scale: 1µm 0.5 1.0 µm 1.5 25 20 20 15 15 10 10 5 5 0 0 0.5 1.0 µm 1.5 2.0 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 µm © 2013 University of Illinois Board of Trustees.  All rights reserved. GaAs/AlGaAs Depth Profile Al Analysis beam: 15kV Ga+ Sputter Beam: 300V O2+ with oxygen flood Ga © 2013 University of Illinois Board of Trustees.  All rights reserved. Depth Profile Beam Alignment Counts Total_Ion 105 UO 104 U 103 NdO 102 101 Counts 100 Nd 200 400 600 Time (Seconds) 800 1000 105 Total_Ion 104 UO U 103 NdO 102 Nd 101 100 200 400 © 2013 University of Illinois Board of Trustees.  All rights reserved. 600 Time (Seconds) 800 1000 TOF‐SIMS Imaging of Patterned Sample O O Br O S O O S O Si O h(nm) OH H2O O Si O OH O Br 400 m H O S O O Br 400 m 50 m Courtesy Josh Ritchey, Audrey Bowen, Ralph Nuzzo and Jeffrey Moore, University of Illinois © 2013 University of Illinois Board of Trustees.  All rights reserved. TOF‐SIMS Ion Images of an Isolated Neuron First Images of Vitamin E Distribution in a Cell Courtesy E.B. Monroe, J.C. Jurchen, S.S. Rubakhin, J.V. Sweedler. University of Illinois at Urbana-Champaign © 2013 University of Illinois Board of Trustees.  All rights reserved. TOF‐SIMS Ion Images of Songbird Brain Selected ion images from the songbird brain. Each ion image consists of ~11.5 million pixels within the tissue section and is the combination of 194 individual 600m×600m ion images prepared on the same relative intensity scale. Ion images are (A) phosphate PO3− (m/z 79.0); (B) cholesterol (m/z 385.4); (C) arachidonic acid C20:4 (m/z 303.2); (D) palmitic acid C16:0 (m/z 255.2); (E) palmitoleic acid C16:1 (m/z 253.2); (F) stearic acid C18:0 (m/z 283.3); (G) oleic acid C18:1 (m/z 281.2); (H) linoleic acid C18:2 (m/z 279.23); and (I) -linolenic acid C18:3 (m/z 277.2). Scale bars = 2 mm. Courtesy Kensey R. Amaya, Eric B. Monroe, Jonathan V. Sweedler, David F. Clayton. International Journal of Mass Spectrometry 260, 121 (2007). © 2013 University of Illinois Board of Trustees.  All rights reserved. Diamond‐Like‐Carbon Friction Testing DLC coated ball DLC coated disk Oxygen Carbon C+O Overlay wear tracks and scars formed on DLC‐coated disk and  ball sides during test in dry oxygen Courtesy O.L. Eryilmaz and A. Erdemir Energy Systems Division, Argonne National Laboratory Argonne, IL 60439 USA © 2013 University of Illinois Board of Trustees.  All rights reserved. 3‐D TOF‐SIMS imaging of DLC Wear track from hydrogenated DLC tested in dry nitrogen Courtesy O.L. Eryilmaz and A. Erdemir Energy Systems Division, Argonne National Laboratory Argonne, IL 60439 USA © 2013 University of Illinois Board of Trustees.  All rights reserved. 3‐D TOF‐SIMS Movies of DLC NFC6 H2 Environment TOF-SIMS Images Courtesy O.L. Eryilmaz and A. Erdemir Energy Systems Division, Argonne National Laboratory Argonne, IL 60439 USA H CH C2H C2H2 © 2013 University of Illinois Board of Trustees.  All rights reserved. O SIMS Summary Probe/Detected Species Information Surface Mass Spectrum 2D Surface Ion Image Elemental Depth Profiling 3D Image Depth Profiling Elements Detectable H and above Sensitivity ppb - atomic % Analysis Diameter/Sampling Depth ~1 m - several mm/0.5 - 1nm © 2013 University of Illinois Board of Trustees.  All rights reserved. Acknowledgments © 2013 University of Illinois Board of Trustees.  All rights reserved.