Transcript
SC563 Dual Output 300mA LDO Linear Regulator POWER MANAGEMENT
Description
Features
The SC563 is a dual output, low dropout linear voltage regulator designed for use in battery powered applications and other applications with space constraints and low power requirements. The SC563 provides fixed output voltages up to 300mA of load current per channel. Fixed output voltages for each output eliminates the need for external feedback resistors.
Input voltage range — 2.3V to 5.5V Two 300mA (maximum) outputs Dropout at 300mA load — 180mV (Typ) Quiescent supply current — 50μA (x2) Shutdown current — 100nA Output noise — 100μVRMS /V Over-temperature protection Short-circuit protection Under-voltage lockout Internal output discharge 100W MLPD-UT8, 1.6mm x 1.2mm x 0.6mm package
The device has separate input, output and enable pins for each LDO channel. Using the lowest possible input voltage for each output voltage reduces the power loss for each rail. This improves overall package thermal performance and efficiency compared to single input voltage devices.
Applications
Consumer electronics Wearable & Portable electronics Cell phones GPS devices Set top boxes/HDTVs Communication electronics Industrial electronics
The device has fast turn-on and turn-off voltage slew rate for fast system start up and reset response. Low quiescent current extends battery life. The SC563 family of devices provide protection circuitry such as short-circuit protection, under-voltage lockout, and thermal protection to prevent device failures. Stability is maintained by using 1µF capacitors on the output pins. The MLPD-UT8 1.6mmx1.2mm package and small ceramic bypass capacitors minimize the required PCB area.
Typical Application Circuit V IN 1
V IN 1
OUT1 E N 1 SC563 OUT2 V IN 2
EN1 V IN 2 EN2
Rev 2.0
C IN 1
C IN 2
1 µF
1 µF
EN2 GND PAD
GND
OUT 1 OUT 2 C OUT1
C O U T2
1µF
1uF
SC563 Pin Configuration
Ordering Information Device
Package
SC563LHULTRC(1)(2)
MLPD-UT8 1.6×1.2
SC563LHEVB(3)
Evaluation Board
T O P V IE W
GND
1
OUT1
2
OUT2 GND
8
EN1
7
V IN 1
3
6
V IN 2
4
5
EN2
PAD
MLPD-UT8; 1.6x1.2, 8 LEAD θJA = 90°C/W
Notes: (1) Available in tape and reel only. A reel contains 3,000 devices. (2) Lead-free package only. Device is WEEE and RoHS compliant. (3) See the Voltage Options Table for Manufacture Part Number
Voltage Options and Part Numbering Device
Ordering Number
SC563LH SC563LHULTRC
Output Voltage Options OUT1
OUT2
3.3V
1.8V
Marking Code
Auto-Discharge
LH
Yes
Note: For additional Fixed Output Voltage Options, contact Semtech marketing.
Marking Information
SC563 Absolute Maximum Ratings
Recommended Operating Conditions
VIN1, VIN2 (V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +6.0
Ambient Temperature Range (°C). . . . . . . . . -40 < TA < +85
EN1, EN2(V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +6.0
VVIN (V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 to 5.5
Pin Voltage — All Other Pins (V). . . . . -0.3 to (VVIN + 0.3)
EN1 to GND(V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to VIN1
ESD PROTECTION lEVEL (kV). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
EN2 to GND(V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to VIN2
(1)
Thermal Information Thermal Resistance, Junction to Ambient(2) (°C/W) 90 Maximum Junction Temperature (°C). . . . . . . . . . . . . . . +125 Storage Temperature Range (°C). . . . . . . . . . . . . -65 to +150 Peak IR Reflow Temperature (10s to 30s) (°C) . . . . . . . . +260 Exceeding the above specifications may result in permanent damage to the device or device malfunction. Operation outside of the parameters specified in the Electrical Characteristics section is not recommended. NOTES: (1) Tested according to JEDEC standard JESD22-A114-B. (2) Calculated from package in still air, mounted to 3 x 4.5 (in), 4 layer FR4 PCB with thermal vias under the exposed pad per JESD51 standards.
Electrical Characteristics
Unless otherwise noted VVIN = Max[VOUTx + 1.0V or 2.3V], CIN1 = CIN2 = 1μF, COUT1 = COUT2 = 1μF, VEN1 = VEN2 = VVIN, -40 °C < TA =Tj < 125°C. Typical values are at TA = 25°C. All specifications apply to both LDOs unless otherwise noted.
Parameter
Symbol
Conditions
Min
Input Supply Voltage Range
VIN
Output Voltage Accuracy (1)
ΔVOUTx
IOUTx =1mA, VIN ≥ Max(VOUTx + 1.0V or 2.3V)
-3
Maximum Output Current
IMAX
Each LDO
300
2.3
IOUTx = 300mA, VINx = 3.0V to 3.6V IOUTx = 300mA, VINx = 3.0V to 3.6V, Dropout Voltage(2)
VD
Typ
-40°C < TA < 85°C IOUTx = 300mA, VINx = 2.3V to 3.0V IOUTx = 300mA, VINx = 2.3V to 3.0V -40°C < TA < 85°C
+/- 2
Max
Units
5.5
V
3
% mA
180
450
mV
180
400
mV
300
540
mV
300
490
mV
1
μA
Shutdown Current
ISD
ENx=0,
0.1
Quiescent Current
IQ
IOUTx = 0mA, VENx = VINx (per LDO)
50
Load Regulation
ΔVLOADx
IOUTx = 1mA to IMAX, -40 °C < TA <=85°C
5
40
mV
Line Regulation
ΔVLINEx
IOUTx = 1mA, -40 °C < TA <=85°C
0.02
0.1
%/V
µA
SC563 Electrical Characteristics (continued) Parameter
Symbol
Current Limit
ILIMx
Noise
eN
Rload = 50W , 10Hz < f < 100kHz
100
μVRMS/V
Power Supply Rejection Ratio
PSRR
IOUTx = 5mA, f = 1kHz,
60
dB
Under Voltage Lockout
VUVLOx
VIN Rising
UVLO Hysteresis
Conditions
Min
Typ
Max
Units
350
550
750
mA
1.95
VUVLO-HYS
Over Temperature Protection Threshold(3)
TOT
Over Temperature Threshold Hysteresis
VOT-HYS
Temperature Rising
2.1
2.25
V
100
mV
150
°C
10
°C
Digital Inputs Logic Input High Threshold
VIH
VIN = 5.5V
1.2
V
Logic Input Low Threshold
VIL
VIN = 2.5V
0.4
V
Logic Input High Current
IIH
VIN = 5.5V
1
μA
Logic Input Low Current
IIL
VIN = 5.5V
1
μA
Notes: (1) X indicates LDO1 or LDO2. (2) Dropout voltage is defined as VIN - VOUTx , when VOUTx is 100mV below the value of VOUTx at VIN ≥ Max(VOUTx + 1.0V or 2.3V). (3) Thermal shutdown does not latch LDOs off. Recovery begins if the temperature drops by the hysteresis level.
SC563
Pin Configurations and Descriptions SC563
Pin Name Pin Function
1
GND
Ground
2
OUT1
Output for LDO1 --bypass with a 1uF capacitor
3
OUT2
Output for LDO2 --bypass with a 1uF capacitor
4
GND
Ground
5
EN2
Enable for LDO2, internal 5 MW pull low.
6
VIN2
Input supply for LDO2 --bypass with a 1uF capacitor
7
VIN1
Input supply for LDO1-- bypass with a 1uF capacitor
8
EN1
Enable for LDO1, internal 5 MW pull low.
PAD
Heat sink pad, connect to ground on PCB.
SC563 Block Diagram
SC563
V IN 1 7
VREF OTP
_ Amp +
B uf
S chm itt
V IN 2 6
VREF OTP U V LO
EN2 5
S chm itt
_ Amp +
OUT1
1
GND
C urrent Lim it
U V LO
EN1 8
2
3 OUT2
B uf
C urrent Lim it
4 GND
SC563 Typical Characteristics Load Regulation (Vin=5.0V, Vout=3.3V)
Load Regulation (Vin=3.6V, Vout=3.3V) 3.40
3.40 Ta=25°C 3.38
Ta=85°C
3.35
Output Voltage (V)
Output Voltage (V)
3.35
3.33 3.30 3.28
3.33 3.30 3.28
3.25
3.25
3.23
3.23
3.20 0.00
0.05
0.10
0.15
0.20
0.25
Ta=25°C Ta=-40°C Ta=85°C
3.38
Ta=-40°C
0.30
3.20 0.00
Load Current (A)
0.20
0.25
0.30
Ta=25°C Ta=-40°C Ta=85°C
1.88 1.86
Output Voltage (V)
1.83
1.80 1.78 1.75
1.84
1.82 1.80 1.78 1.76 1.74
1.73
1.72
1.70
1.70
0.00
0.05
0.10
0.15
0.20
0.25
0.0
0.30
0.1
0.1
Load Current (A)
0.2
Load Current (A)
0.2
0.3
3.40
3.40 Ta=25°C Ta=-40°C Ta=85°C
3.38 3.36
0.3
Line Regulation (Vout=3.3V, Iout=300mA)
Line Regulation (Vout=3.3V, Iout=150mA)
Ta=25°C Ta=-40°C Ta=85°C
3.38 3.36
3.34
Output Voltage (V)
Output Voltage (V)
0.15
Load Current (A)
1.90
Ta=25°C T=-40°C Ta=85°C
1.85
Output Voltage (V)
0.10
Load Regulation (Vin=4.2V, Vout=1.8V)
Load Regulation (Vin=3.6V, Vout=1.8V) 1.90 1.88
0.05
3.32 3.30 3.28 3.26
3.34 3.32 3.30 3.28 3.26
3.24
3.24
3.22
3.22 3.20
3.20 3.5
4.0
4.5
Input Voltage (V)
5.0
5.5
3.5
4.0
4.5
5.0
5.5
Input Voltage (V)
SC563 Typical Characteristics Line Regulation (Vout=1.8V, Iout=150mA) 1.90
1.90
Ta=25°C Ta=-40°C Ta=85°C
1.88
1.86
Ta=25°C Ta=-40°C Ta=85°C
1.88 1.86
1.84
Output Voltage (V)
Output Voltage (V)
Line Regulation (Vout=1.8V, Iout=250mA)
1.82 1.80 1.78
1.76
1.84 1.82 1.80 1.78 1.76 1.74
1.74
1.72
1.72
1.70
1.70 2.5
3.0
3.5
4.0
Input Voltage (V)
4.5
5.0
2.5
5.5
350
300
300
250
Vin-Vout (V)
Vin-Vout (V)
350
150
4.0
4.5
5.0
5.5
Dropout Voltage (Vout=3.3V, Iout=150mA)
400
200
3.5
Input Voltage (V)
Dropout Voltage (Vout=3.3V, Iout=50mA)
250
3.0
200 150
100
100
T=-40°C T=85°C T=25°C
50
0
0 3.2
3.3
3.4
3.5
T=-40°C T=85°C T=25°C
50
3.2
3.6
3.3
3.4
3.5
3.6
Input Voltage (V)
Input Voltage (V)
Dropout Vs Load Current (Vout=3.3V)
Dropout Voltage (Vout=3.3V, Iout=300mA) 250
400 350
200
250
Vin-Vout (mV)
Vin-Vout (V)
300
200 150
150
100
100
50
T=-40°C T=85°C T=25°C
50
0 3.2
3.3
3.4
Input Voltage (V)
3.5
3.6
Ta=25°C Ta=-40°C Ta=85°C
0 0
50
100
150
200
Load Current (mA)
250
300
SC563 Typical Characteristics Start Up (Enable) (VOUT=3.3V)
Start Up Via VIN (VOUT=3.3V) VIN 2V/div VIN 2V/div
VOUT 2V/div
VOUT 1V/div
IOUT 100mA/div EN 2V/div
IOUT 100mA/div VIN = 5V IOUT = 300mA
100us/div
VIN = 5V IOUT = 300mA
1ms/div
Start Up (Enable) (VOUT=1.8V)
Start Up Via VIN (VOUT=1.8V) VIN 2V/div VIN 2V/div
VOUT 2V/div
VOUT 1V/div
IOUT 100mA/div EN 2V/div
IOUT 100mA/div VIN = 5V IOUT = 300mA
100us/div
VIN = 5V IOUT = 300mA
Shutdown (VOUT=3.3V)
1ms/div
Shutdown (VOUT=1.8V) VIN 2V/div
VIN 2V/div VOUT 1V/div
VOUT 1V/div IOUT 100mA/div
IOUT 100mA/div
VIN = 5V IOUT = 300mA
2ms/div
VIN = 5V IOUT = 300mA
2ms/div
SC563 Typical Waveforms LDO2=1.8V, 0 to 300mA Load Transient
LDO1=3.3V, 0 to 300mA Load Transient
VOUT 20mV/div
VOUT 20mV/div
IOUT 100mA/div
IOUT 100mA/div VIN = 3.6V IOUT = 0A to 300mA
200us/div
200us/div VIN = 3.6V IOUT = 0mA to 300mA
LDO2=1.8V, 0 to 300mA Load Transient
LDO1=3.3V, 0 to 300mA Load Transient
VOUT 20mV/div
VOUT 20mV/div
IOUT 100mA/div
IOUT 100mA/div VIN = 4.2V IOUT = 0A to 300mA
200us/div
VIN = 4.2V IOUT = 0A to 300mA
LDO1=3.3V, 0 to 300mA Load Transient
VOUT 20mV/div
200us/div
LDO2=1.8V, 0 to 300mA Load Transient
VOUT 20mV/div
IOUT 100mA/div
IOUT 100mA/div VIN = 5V IOUT = 0A to 300mA
200us/div
VIN = 5V IOUT = 0A to 300mA
200us/div
10
SC563 Typical Waveforms LDO2=1.8V Noise Spectral Density
1.0E-04
1.0E-04
1.0E-05
1.0E-05
V/Sqrt Hz
V/Sqrt Hz
LDO1=3.3V Noise Spectral Density
1.0E-06
1.0E-06
1.0E-07
1.0E-07
1.0E-08 1.0E+01
1.0E+02
1.0E+03
1.0E+04
1.0E+05
1.0E-08 1.0E+01
1.0E+02
1.0E+03
1.0E+04
1.0E+05
Frequency (Hz)
Frequency (Hz)
VIN = 5.4V, VOUT = 3.3V, Load 50 Ohms
VIN = 5.4V, VOUT = 3.3V, Load 50 Ohms
LDO2=1.8V, PSRR, Iout=100mA
LDO2=1.8V, PSRR, Iout=30mA 100
120
90
100
80
60
PSRR (dB)
PSRR (dB)
70
50 40 30 20
80 60 40 20
10 0
100
1000
10000
Frequency (Hz)
100000
1000000
0
100
1000
10000
Frequency (Hz)
100000
1000000
11
SC563 Applications Information General Description The SC563 is a dual output linear regulator with low dropout voltage, low supply current, and low output noise. The device provides a simple, low cost solution with minimal PCB area. It has a miniature package size and needs four 1µF 0402 size external capacitors for its input and output. The dual LDOs are powered from separate input supply pins. Each LDO provides up to 300mA output current.
1 and the Oscilloscope waveform is shown in the Typical Characteristics. E nable
V out
140 -510 µs
Power On and Off Control and Turn-on Delay The SC563 device has separate enable pins (EN1 and EN2) that control the LDO outputs respectively. Pulling enable pin high will enable the device when the Vin is above the its UVLO level at about 2.4V. Pulling this pin low causes the device to shutdown where it typically draws 100nA from the input supply. When the enable pins are connected to the input voltage supply, the device turn-on and turn-off has two voltage thresholds to overcome. At the turn-on event, the enable pin voltage needs to be greater than the enable threshold and the Vin voltage needs to be higher than the UVLO. The higher of the two voltages, which is the UVLO, determines the turn on time. At turn-off, the first condition of either enable threshold low or the VIN UVLO will determine the turn-off event. After the enable goes high, the IC has a delay time before the output voltage ramps up. The delay is typically between 120µs to 510µs. The 510µs is related to the lower Vin condition. With 1uF output capacitor (capacitor part number: GRM155R61A105KE15) at no load conditions, the output voltage ramp time is typically at 15µs. The device has an internal discharge MOSFET to discharge the output voltage at disable, the typical discharge time is at 2ms. The enable and disable waveforms are illustrated in Figure
15 µs
2m s
Figure 1 — Timing Diagram
The Output Noise LDO’s noise generally is characterized through noise spectral density (NSD) and total RMS value in the frequency band between 10Hz to 100KHz. The noise spectral density can be measured using a network analyzer with active probes. The RMS noise value is obtained from the noise spectral density curve by taking the square root of the area within the frequency range from 10Hz to 100kHz. The normalized output noise for SC563 is at a typical value of 100µVrms/V. The generalized output voltage noise can be approximated by: Vrms=Vout*100 µV.
Protection Features The SC563 provides protection features to ensure that no damage is incurred in the event of a fault condition. These functions include:
• • •
Under-Voltage Lockout Over-Temperature Protection Short-Circuit Protection with peak and foldback current limit
12
SC563
Under-Voltage Lockout The Under-Voltage Lockout (UVLO) circuit protects the device from operating in an unknown state if the input voltage supply is too low. When either VIN drops below the UVLO threshold, as defined in the Electrical Characteristics section, the corresponding LDO is disabled. The LDO is re-enabled when VIN is increased above the hysteresis level. When powering up with VIN below the UVLO threshold, the LDO remains disabled. Over-Temperature Protection Over-Temperature protection are separately available on both LDOs. An internal Over-Temperature (OT) protection circuit monitors the internal junction temperature. When the temperature exceeds the OT threshold as defined in the Electrical Characteristics section, the OT protection disables the corresponding LDO output. When the temperature drops below its hysteresis value, the LDO output will resume. Short-Circuit Protection Each output has short-circuit protection with peak current limit and fold back current limit. If the output current exceeds the peak current limit, the output voltage will drop and the output current will be limited to its fold back current limit value. See the waveforms in the typical operation section. If the short circuit is removed or the load current reduces to below the fold back current limit, the LDO output will rise back into regulation.
Component Selection
and stable temperature coefficients. Tantalum capacitors and Y5V capacitors are not recommended.
Thermal Considerations Although each of the two LDOs in the SC563 can provide 300mA of output current, the maximum power dissipation in the device is restricted by the miniature package size. The graphs in Figures 2 can be used as a guideline to determine whether the input voltage, output voltages, output currents, and ambient temperature of the system result in power dissipation within the operating limits are met or if further thermal relief is required. 2.5 TJ=150°C
Maximum Power Dissipation (W)
Applications Information (continued)
TJ=125°C
2
TJ=105°C
1.5
1
0.5
0 -50
-35
-20
-5
10
25
40
55
70
85
100
Ambient Temperature (C)
Figure 2 — Maximum PD vs. TA
The following procedure can be followed to determine if the thermal design of the system is adequate. The junction temperature of the SC563 can be determined in known operating conditions using the following equation:
SC563 is designed for PCB savings with small area. The recommended input and output capacitor is 1μF with 0402 package with part number GRM155R61A105KE15.
TJ = TA +(PD x θJA)
Although there is no maximum value of output capacitor specified, very large values may increase the rise time of the output voltages without affecting stability. It is recommended that the value of output capacitance be restricted to a maximum of 10μF. Ceramic capacitors of type X5R or X7R should be used because of their low ESR
TJ = Junction Temperature (°C)
where
TA = Ambient Temperature (°C) PD = Power Dissipation (W) θJA = Thermal Resistance Junction to Ambient (°C/W) 13
SC563 Applications Information (continued) Example A SC563LH is used to provide outputs of 3.3V, 150mA from LDO1 and 1.8V, 250mA from LDO2. The input voltage is 4.2V for LDO1 and 2.5V for LDO2, and the ambient temperature of the system is 60°C. PD= 0.15X(4.2 – 3.3) + 0.25X(2.5 – 1.8)
Layout Considerations The diagram in Figure 3 below illustrates proper layout of a circuit. The layout considerations are listed below:
• •
= 0.31W and TJ = 60 + (0.31 x 90) = 87.9°C This calculation shows the junction temperature is 87.9°C and it is below the maximum junction temperature of 125°C for this power dissipation. This example also demonstrates that with separate input voltages for LDO1 and LDO2, the total power dissipation can be reduced with the lower LDO output voltage fed by a lower input voltage.
•
Attach the thermal pad of the device to a copper pad with vias connected to the GND plane. This enables better heat transfer from the device to the PCB. Place the input and output capacitors close to the device for optimal transient response and device behavior. Extra copper trace length between the device input and output to the capacitor soldering pad introduces parasitic inductance. Connect all ground connections of the input and output capacitor directly to the ground plane whenever possible to minimize ground potential differences on the PCB. Shown in the evaluation board layout below, the SC563 thermal pad, ground pins, and the input and output capacitors are all connected to the ground plane through vias .
Figure 3 — SC563 Layout Example
14
SC563 Outline Drawing — MLPD-UT8 1.6X1.2 D
A
D IM E N S IO N S M ILLIM E TE R S M IN N O M M A X
B
P IN 1 IN D IC A T O R (LA S E R M A R K )
D IM A A1 A2 b D D1 E E1 e L N aaa bbb
E
A
S E A T IN G P LA N E
aaa C C
A1
A2
- 0.60 - 0.05 (0.152) 0.15 0.20 0.25 1.50 1.60 1.70 1.00 1.15 1.25 1.10 1.20 1.30 0.10 0.20 0.30 0.40 B S C 0.25 0.30 0.35 8 0.08 0.10 0.50 0.00
D1 e 1
E1
2
LxN
N
E /2
bxN bbb
e/2
C A B
D /2
NOTES:
1. C O N TR O LLIN G D IM E N S IO N S A R E IN M ILLIM E TE R S (A N G LE S IN D E G R E E S ).
2. C O P LA N A R ITY A P P LIE S T O TH E E X P O S E D P A D A S W E LL A S T H E T E R M IN A LS .
Land Pattern — MLPD-UT8 1.6X1.2 K D IM EN SIO N S
(C )
G
H
Z Y P/2
X
D IM C G H K P X Y Z
M ILLIM E TER S (1.15) 0.55 0.20 1.25 0.40 0.20 0.60 1.75
P N O TES: 1. C O N TR O LLIN G D IM EN SIO N S AR E IN M ILLIM E TE R S (AN G LES IN D EG R EES). 2. TH IS LA N D P ATTE R N IS FO R R E FE R E N C E PU R PO SES O N LY. C O N SU LT Y O U R M A N U FA C TU R IN G G R O U P TO E N S U R E YO U R C O M PA N Y 'S M AN U FAC TU R IN G G U ID E LIN E S AR E M ET. 3. TH E R M AL V IA S IN TH E LAN D PA TTER N O F TH E EXPO SED PAD S H A LL B E C O N N EC TE D TO A S YS TE M G R O U N D PLAN E. FAILU R E TO D O S O M A Y C O M P R O M ISE TH E TH ER M AL AN D /O R FU N C TIO N A L PE R FO R M A N C E O F TH E D EV IC E.
15
SC563 © Semtech 2015 All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights. Semtech assumes no responsibility or liability whatsoever for any failure or unexpected operation resulting from misuse, neglect improper installation, repair or improper handling or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified range. SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTEDTO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER’S OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise.
Contact Information Semtech Corporation Power Management Products Division 200 Flynn Road, Camarillo, CA 93012 Phone: (805) 498-2111 Fax: (805) 498-3804 www.semtech.com 16