Preview only show first 10 pages with watermark. For full document please download

Sensors Of Thermal Quantities (thermometers)

   EMBED


Share

Transcript

Sensors of thermal quantities (thermometers) -Temperature = thermodynamic state quantity -temperature scales: Kelvin (triple point of water 273,16 K), Celsius, Fahrenheit ITS-90 (4 ranges) electrical contact sensors of temperature: • resistive-metal(RTD) • resistive bulk semiconductor: -thermistors NTC - thermistors PTC -monocrystalic Si • semicon. with PN junction • quartz • thermocouples therm. expansion (liquid,gas,...) special (noise, acoustic,…) thermal noncontact quantum comparison of sensors: thermocouple ra nge s e ns itivity line a rity inte rcha nge a ge ing pa s s ive s pe e d e ndura nce -200..2300 -+ -+ ++ ++ RTD NTC -200..850 -80..150 + + -++ e xpe ns ive s e lfhe a ting + ++ -+ PN junction -40..100 ++ + + - 1. noncontact sensors • thermal: - gas: pV = RmT V = konst ⇒ thermodynamic equation po p =T To 2. contact sensors 2.1 metal resistive thermometers - principle: dependence of resistance of metal on temperature R = R0 (1 + α ⋅ ∆T ) wire wound resistive thermometer Worth remembering α[%/K] range [oC] Pt 0.39 -200/850 Ni 0.69 -80/320 Cu 0.43 -200/260 a) thin layer resistive thermometer kovová vrstva resistive layer passivation layer pasivační vrstva izolační podložka insulating pad kontaktní vrstva contact layer b) © Omega Platinum resistance thermometer (RTD-Resistance Temperature Detector) - criterion of Pt purity -normalized resistance (1,3910 in GB, USA, Japan, Russia) tolerances of Pt standard according to IEC -standard value of Pt resistance: Pt100: 0oC R= 100 Ω B -2 tolerance classes: A range– 200/650 B range –200/850 oC 4 tří da oC 3 Pt R 100 ≥ 1,385 Ro tolerance [°C] W 100 = 2 P aA d í ř tt 1 or 200, 500, 1000, 2000 Ω -200 0 200 400 600 ϑ[°C] resistance - temperature equation: R ϑ = R 0 [1 + Aϑ + Bϑ 2 + Cϑ 3 ( ϑ − 100 )] according to international recommendation IEC 1,385 1,45.10 0 50 α.100°C -3 100 ϑ[°C] W100 = 1,385 R0 = 100 Ω A = 3,90802.10-3 K-1 B = -5,802. 10-7 K-2 for ϑ < 0 oC C = -4,27350.10-12 K-4 ϑ > 0 oC C = 0 Nickel resistance thermometer ☺ high sensitivity,quick response, small dimensions limited temperature range ∆ϑ[°C] for –60..180 oC : R ϑ = R 0 [1 + Aϑ + Bϑ 2 + Cϑ 2 ( ϑ − 100 )] +1 ϑ[°C] A = 5,49.10-3 K-1 B = 6,80. 10-6 K-2 for ϑ > 0 oC, C = 9,24.10-9 K-3 ϑ < 0 oC, C = 0 Ni 100, 1000, 10000 Copper resistance thermometer -copper is used in range from –200 to +200 oC small resistance, oxidation of Cu -for range –50 to +200 oC is valid: R = R0 (1 + αT ) α = 4 ,26.10 −3 K −1 - application: e.g. direct measurement of temperature of motor windings 2.2 Semiconductor resistive sensors of temperature NTC, negastors α < 0 thermistors PTC, posistors α > 0 classification monocrystalline resistive sensors 2.2.1 Thermistors: thermal dependance NTC (−80°C až +200°C) 150* R=AeB/T PTC 3 R=RreAT 180* Ni (−60°C až +200°C) 2 Pt(-200°C až +1000°C) 850* 1 Rmin -100 -50 0 50 ϑj 100 ϑ [°C] negastor posistor * Omega NTC, or negastors α<0 -produced by sintering technology from the powder of metal oxides -usable range - from 4,2K to 1000 oC R = AeB/T R1 = Rr e  1 1 B  −  T1 Tr R1 - resistance at T1 Rr - resistance at Tr= 289,15K, i.e. 25oC B[K] - thermal „constant“ (in fact it depends on TR1, R2) A[Ω] – const. dependent on geom. and material    R[Ω] SiC Pt 10 7 10 6 10 5 10 4 103 -100 a) 100 200 300 b) Al2O3 1 dR B α= =− 2 R dT T 0 α ≈ −2% for high ϑ α ≈ −8% for low ϑ Stein + Hart 400 ϑ[°C] error 0,1K (0-100)oC 1 = a + b ln R + c(ln R ) 3 T PTC, posistors α>0 - made from polycristalline ferroelectric ceramics e.g. (BaTiO3) - resistance decrease with increasing temperature – then after Curie point rapid increase of resistance -relation for increase of resistance: R=RreAT A = 0,16 K-1 -application: two state sensors (thermal switches – indication of max.temp.excess) 2.2.2 semiconductor monocrystalline sensors of temperature region of operation resistivity rezistivita ρ [Ω cm] 30 20 10 10 ρ 16 3,0 5 n 10 3.10 15 1.10 15 14 20 0 16 1.10 5 1,0 3.10 ni 50 3.10 100 150 200 250 300 350 400 temperature teplota ϑ [°C] resistance of sensor ρ R= βd β - geometrical factor D – diameter of contact ρ - resistivity -3 Charge carriers concentration nosičů náboje n[cm ] koncentrace ρi internal structure of sensor Si3N4 kontakt Al ∅d N+ N+ Siemens KTY 81-87 H SiO2 α = 1%/K Back conductor zpětný kontakt -55…+150 oC +300 oC ∅D transfer curve of Si sensor 2 elements in series - R independent on polarity R[kΩ] 4 3,5 3 R = R r + k( ϑ − ϑ r ) 2 2,5 2 1,5 1 -50 0 25 50 100 ϑ[°C] Signal conditioning circuits - self - heating by measuring current I error RI 2 ∆ϑ = D D – thermal resistance, „loading constant“ ∅12 bead negastor ∅ 0,1 Pt 100: for ∆ϑ = 0.1oC → Imax=1mA thermistors [I] = µA Volt- ampére characteristics: 4 I[mA] IK U[V] 10 10 posistor 0 IR 10 -1 10 -2 -1 10 10 0 I[mA] UK UB Umax U[V] • influence of lead resistance two wires connection of resistor to bridge Ust R1 RCu Rϑ RCu R2 A Rj R3 RV = 2 RCu + R j RCu = RCuo (1 + α Cu ϑ p ) δ = 2 ∆RCu ∆R ϑ Uv three wire connection of resistor to e.g. automatically balanced bridge with servo recorder °C R2 R1 M Rvp R4 R3 Rj Rj Rj Rϑ ϑ - reduction of resistance leads influence measuring circuit with four wire connection of sensor with current source IST and auxiliary source of voltage U (RV=Rcu) Rv + Ist Rv + Rϑ − Rv Rv − − U iv + uv Rvst→∞ 0 - 20mA (4mA-20mA) converter voltage-current, output current ranges 0-20 mA or 4-20 mA advantages of current output (current loop) three wire connection of sensor to active bridge: suppression of wire resistance RV1 Rϑ + UZ RV2 R1 UA UR2 RV3 I= U ST R3 − Ust R3 R2 A Ri→∞ U A = U ST + IRV U Z = U ST + 2 IRV + IRϑ ⇒ UV IR U UZ − U A = ϑ − ST 2 2 2 • linearisation of resistance sensors of temperature converter for linearization using Pt RTD RS + Ust − i U 1 + Rϑ 2 Uv Ust RS a) Rϑ b) UR v linearized real transfer characteristic of sensor 0 ϑ ϑ Uv XTR 103 by Burr–Brown (now Texas Instruments) bridge with current sources: better linearity, elimination of leads resistance RLin Offset +UB Iref + A2 − Iref - UIn − +A1 + In U Rϑ Rz Io= 4..20mA U Ust I RL Rs I0 R CM + - • linearization of thermistors and Si sensors - linearization by parallel R connection point of inflexion inflexní bod Ist Si-senzor 1,0 negastor RP 0,5 Rϑ 0 a) Ji 0 50 b) 100 J[°C] Linearity error DJ [°C] linearity chyba 1,5 5 4 3 2 +1 0 -1 -2 -3 -4 -5 0 negastor Si-senzor c) 50 100 J[°C] - linearization by means of voltage divider: Rϑ RS I negastor RS a) Si sensor Rϑ b) Uv series-parallel connection of negastors for linearization : Rϑ Rϑ R2 Rϑ Rϑ RP R2 RS a) R1 b) R2 R3 Rϑ Rϑ Rϑ c) Remark to linearization: digital nonlinearity correction better than analogue (e.g. smart sensors) - more important is reproducibility of transfer characteristic than its linearization