Preview only show first 10 pages with watermark. For full document please download

Senzory Elektrického Proudu

   EMBED


Share

Transcript

ANMM Iasi 2003 Current sensors using magnetic materials Pavel Ripka Czech Technical University, Prague Current Sensors: Overview • Resistive Shunt • Contactless sensors – use B – current transformers – current comparators – Rogowski coils – magnetic field sensors » » » » in gapped core compact remote multisensor configuration GMI current sensor Current clamps Engineer’s wishlist Resistive shunts no galvanic insulation dissipated heat measured current should be interrupted DC current sensor with gapped core Magnetic yoke Measured current n2 n1=1 I1 I2 R2 V2 IH Hall sensor in narrow airgap Problems: bulky, sensitive to external fields offset drift – only Hall Large currents = Large yokes LEM Magnetooptical current sensor • • • • • optical fibre x bulk glass 1% accuracy even after temp. compensation expensive > 1000 A good for high voltages Current transformer Magnetic core lS I1 I2 s Secondary Primary N1 r1 N2 ui Z2 r2 h I1 Y’11 L1, Rv1 Y11 C11 M L2, Rv2 I2 C21 Y21 Y’21 Cm1 Ym1 Y12 C12 Cm2 C22 C’21 Y22 Rv1 Lr1, L’r2, I01 Ic Z2 Ym2 C’11 I1 U1 Ui1 Cp IR Rz R’v2 I’2 IL Lh U’2 Z2 AC Current clamps Leakage Shielding I1 Secundary winding Measudary winding Core Flux Φ2 generated by secondary winding Φ1 generated by measured conductor DC current sensor using oscilloscopic clamps AC Current Comparator Magnetic shielding Detection ring core I2 I1 Primary winding 1 2 Secondary winding N2 N1 Detection winding DET AC Current Comparator DC Current Comparator N1 Nb N2 Magnetic shielding Detection ring cores I1 I2 NS f G ref 2f I PSD R Out DC Current Comparator cover Secondary winding magnetic shielding Detection winding Detection cores Modulation winding Electrostatic shielding Novel AC/DC Comparator Detekčn í toroidy Magneti Kryt Sekundární vinutí Primární vinutí Vitrokov 8116 –as cast B (A/m) 0.8 10Hz 1kHz 10kHz 20kHz 40kHz 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 H (A/m) -0.8 -80 -60 -40 -20 0 20 40 60 80 Vitrokov 8116 – annealed B (A/m) 0.8 10Hz 1kHz 10kHz 20kHz 40kHz 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -80 H (A/m) -60 -40 -20 0 20 40 60 80 Excitation current Nexc = 10 N1 N2 16 A p-p I1 I2 N S f G I PSD R Out Testing core homogeneity Testing coil V out ~ α Generator Ratio error I1 I2 R2s N1= 10 RN1=0, 1Ω A ’ A V N2=1 00 B ’ B RN2= 1Ω εI [%] 0.02 0.01 0 -0.01 -0.02 -0.03 -0.04 -200 -150 -100 -50 0 I1 [A] 50 100 150 200 Current transformer mode Voltmeter Gen (sin) I1 Shunt 1mV/A I2 N2=100 N1=1 0 In Lock-in A’ Ref B’ RN1=0,1 Ω RN2=1 Ω A B 40 -0.1 burden 1  εI [%] amplitudová chyba fázová chyba 30 -0.2 20 -0.3 10 -0.4 0 -0.5 10 100 1000 f [Hz] C 10 4 δI [mi n.] Current transformer mode δI [min.] εI [%] 40 Bm  ls ' I   sin  0 z N 2 I 2 -0.1 amplitude error phase error 30 -0.2 I  Bm  ls ' cos  0 z N 2 I 2 20 -0.3 10 -0.4 0 -0.5 10 burden 1  100 1000 f [Hz] 10 4 AC/DC current comparator mode Voltmeter Gen (sin) I1 Shunt 1 mV/A I2 N2=100 N1=10 Lock-in In A’ Ref B’ RN1=0,1 Ω Electro nics RN2=1 Ω A B Závislost chyb komparátoru s elektronikou na frekvenci pro I1=56,6 A 0.05 25 amplitudová chyba fázová chyba 0 εI [% ] 20 -0.05 15 δI [mi 10 n.] -0.1 -0.15 5 -0.2 0 -0.25 -5 100 f [Hz] 1000 C 10 4 AC/DC current comparator mode Voltm etr Generá tor (sin) I1 Boční k 1 mV/ A Lockin I n R e f I2 N2 = 100 N1 =1 0 RN1=0 ,1 Ω Závislost chyb komparátoru s elektronikou na frekvenci pro I1=56,6 A εI [%] A ’ B ’ A B Ele ktr. čás t RN2= 1Ω 25 0.05 amplitude error amplitudová chyba phase chyba error fázová 0 εI [%] 20 15δI -0.05 [min.] 10 -0.1 -0.15 5 -0.2 0 -5 -0.25 100 f [Hz] 1000 C f [Hz] 10 4 Rogowski coil measures di/dt Digital integrator for Rogowski coil IC for power meter Digital power meter with di/dt sensor Magnetic sensors for current sensing • Magnetic field sensors – semiconductor – ferromagnetic magnetoresistors – other (GMI, optical, resonant, SQUID…) Magnetic field sensors Scalar Vector Measure the size of B (“total field B”) Measure the projection of B into the sensitive axis • single-axis • tri-axial B  Bx2  B y2  Bz2 only resonant sensors most magnetic sensors Magnetic field sensors: DC and AC AC DC Measure only changing field: induction coils Measure DC and AC fields d d Vi      NAB  dt dt Vi .. Induced voltage  .. Magnetic flux A .. Coil area N .. Number of turns most magnetic sensors Current sensor specifications • • • • • • FS range, linearity, hysteresis TC (“tempco”) of sensitivity Offset, offset tempco and long-term stability Perming (= null change after magnetic shock) Geometrical selectivity Noise – PSD , rms or p-p value • Resistance against environment – temperature, humidity, vibrations Types of magnetic field sensors • • • • • • • • Semiconductor sensors (Hall, …) Ferromagnetic magnetoresistors (AMR, GMR, …) Resonant magnetometers (Proton, Cesium, ...) SQUIDs (LTS + HTS) Induction coils Optical (Fibre optic, bulk ) Fluxgate Other principles (GMI, magnetoelastic, …) Basic rules Dipole field (from small objects) B  1/r3 Long iron pipe B  1/r2 Long straight current conductor B  1/r Linear Hall sensor Asahi Kasei Electronics: InSb Hall element (HW series) Hall integrated circuit Analog electronics: • Delivers constant current • Amplifies VH • Flips contacts • Performs compensations • May compare with threshold Honeywell Hall Sensor Using Four CrossConnected Hall Elements Vertical Hall sensor B is parallel to the substrate B I V J V2 V3 Expected Advantages: long-term stability robustness Active zone is buried into a mono-crystal, far away from the chip surface. V1 currently not used: expensive no so good Permalloy Flux concentrators Used for Hall and MR Increase sensitivity Possible problems: • TC of sensitivity • perming • linearity Cylindrical Hall device with integrated magnetic flux concentrators (Sentron AG: developed, but not in production) Feedback Hall current sensors 1 A .. 1 kA sensors LTS 25-NP 25 A, 200 kHz error 0.02 % sensitivity TC: 50 ppm/K LEM PCB - integrated current sensor 1 – the current lead 2 – the ferromagnetic yoke 3 – Vertical Hall sensor or MR Sentron Hall current sensors – compact design vnější magnetický obvod pouzdro pouzdro vodič s měřeným proudem vodič s měřeným proudem vývody Hallova generátoru vývody Hallova generátoru magnetokoncentrátory směr citlivosti vývody Hallova generátoru zapouzdření 1mm Classical Hall with Flux concentrators Inside structure of C-MOS Hall AMR bridge sensor Philips KMZ Full bridge made of meandered resistors with barber-pole strips AMR current sensor (F.W.Bell) Vout range 5 ... 50 A linearity 0.1 % sens. tempco 50..100 ppm/K typ. offset (250C) 15 mA max. offset Imeas (-25 .. 850C) 30 .. 50mA developed by: GMR bridge sensor GMR resistors configured as a Wheatstone bridge sensor (NVE) • • R2, R3 are shielded R1, R4: field is concentrated by approx. D1/D2 250 Still has nonlinear (NVE) 40 150 30 100 20 50 0 -2.5 10 0 -1.5 -0.5 0.5 Applied Field (mTesla) 1.5 2.5 Output (mV/V) unlike AMR bridge Voltage (mV) response 50 200 GMR Contactless current sensor Long straight current conductor B  1/r NVE GMR sensor measures current in close wire Advantages of magnetoresistors compared to Hall sensors: • higher sensitivity • no piezo effect • higher operational temperatures AMR very good GMR, SDT ... too much nonlinear Fluxgate sensors Most sensitive room-temperature magnetic sensors Based on non-linear magnetization characteristics of ferromagnetic core. Measure up to 1 mT with 100 pT resolution Classical fluxgates: precise, but expensive (CTU Prague) Fluxgate principle • Ferromagnetic core - non-linear B-H • Excitation and sensing coil • Core is periodically saturated by Iexc,  drops to 1 twice each period • Measured B0 causes 2nd harmonics in Vind Vind Iexc(t) (t) B(t) N Bo B()  Fluxgate principle H Hexc a) Vi Hm t  t Vi B() • In absence of external field, magnetisation is symmetrical External measured field causes assymetry – detected in induced voltage H Hexc+H0 t b) Vi t H0 t • t Hm Micro-fluxgate sensors (in development) • • • • • Shizuoka University flat coils electrodeposited core or amorphous strips electronics on chip cheap resolution still higher than MR Magnetic amplifier = current sensor based on fluxgate principle Magnetic amplifier 100mA/div DC current2 =80mA compensates I 1=40A = current sensor based on fluxgate principle Fluxgate current clamps unsymmetrical core Фext 3 3 Фext2 z y Фext1 1 Фext2 z Фext y x 2 x 2 Фext Фext1 1 Фext Fluxgate current clamps symmetrical core Φext 2 1 z y 2 Фext Фext x 2 Φext 2 1 Leakage flux Leakege Shielding Sekundární vinutí I1 Measured current Core Flux Φ2 generated by compensation winding Φ1 generated by measured conductor Fluxgate current clamps jádro senzoru core stínění shielding z y x no shielding symmetrically shielded core assymetrical shielding Suppression of external currents Error caused by external 40 A current 100 Iv [mA] unshielded non-symmetric shielding symmetrical shielding 10 1 0.1 10 100 1000 distance [mm] 40 A current clamp Relative error( % FS) 0.6 10mm unshielded non-symmetric shielding symmmetric 0.4 0.2 δ [% ] 0 -0.2 -0.4 -0.6 -0.8 -40 -30 -20 -10 0 I1 [A] 10 20 30 40 Frequency characteristics B (dB) 2 0 -2 CSLA1CD CSNE151 KZB464/501 Currclamp -4 -6 -8 -10 -12 10 100 1000 10 4 10 5 10 6 f (Hz) Error of Hall sensors δ2 (%) 1 CSLA1CD CSNE151 0.5 0 -0.5 -1 -40 -30 -20 -10 0 10 20 30 I (A) 40 Error of fluxgate-based sensors 0.4 KZB464/501 Currclamp 0.2 %) 0 -0.2 -0.4 -40 -30 -20 -10 0 f (Hz) 10 20 30 40 Resistance against external currents Sensor type FS error response to 40A CSLA1CD (Hall) 57 A 2160 mA CSNE151 (Hall) 35 A 180 mA KZB464/501 (Siemens) 40 A 120 mA Currclamp (our design) 40 A clamps 14 mA problems: low-impedance networks injected interference Fluxgate-based DC/AC current sensor (PEI Ireland) Magnetic circuit:  7 mm/10mm ring  material: electrodeposited permalloy  sandwiched into PCB. excitation winding:  integrated in the PCB  40 turns, R= 700 m. Toroid with magnetic core embedded in PCB Wire carrying current to be measured. Current sensing: Sensor Array Array of six sensors: • increased sensitivity • resistant against external currents and fields Sentron Hall sensors with field concentrators measure current flowing through the hole Remote current sensing Hall with field AMR 5 mT 6 mm 0.1 < 0.2 % 200 ppm/K offset TC resolution perming, hyst. BW power cons. 600 nT/K 6 mm 6 mm 50 T 1 T 100 kHz 55 mW fluxgate flipped concentarors linear range size linearity sensitivity TC offset@250C AMR 10 nT 10 nT 0. 5 mT 30 mm 1 ppm 30 5 nT 0.1 nT/K 100 pT < 1 nT 1 kHz 150 mW GMI current sensor Ibias= Idet~ ~ Imeas = GMI current sensor Ibias= demonstrator: 2 turns of 150 % GMI tape Idet~ ~ Imeas = GMI current sensor - parameters 2 turns 200 T + feedback FS range 2A 100 A sensitivity 0.24 Ω/A 24 Ω/A in open loop 197 ppm/ºC 30 ppm/ºC Z (0 A) 23 Ω 2.3 k Ω ∆Z/∆T 0.24 Ω/A ??? 105 mA/ºC ??? sensitivity TC offset drift Future trends AMR compact current sensors circular sensor fields di/dt coreless coils with digital integrator embedded pcb sensors Optical sensors for large currents Engineer’s wishlist • • • • constant high , high Bsat materials constant high , low Bsat materials low TC GMI materials trick how to linearize GMR, SDT Resources • • www.nve.com (GMR) www.Sentron.ch (vertical Hall) • www.ssec.honeywell.com/magnetic/ (AMR) • • www. Micronas.com (Hall) www.Infineon.com (Siemens: Hall, GMR) • www.semiconductors.Philips.com/automotive/sensors_discretes (AMR) • • • www.Geometrics.com (resonant magnetometers) measure.feld.cvut.cz/groups/maglab (fluxgate) Magnetic sensors and Magnetometers (book) Artech, 2001,www.artechouse.com