Preview only show first 10 pages with watermark. For full document please download

Similar Pages

   EMBED


Share

Transcript

PD - 96230 IRLP3034PbF Applications l DC Motor Drive l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits HEXFET® Power MOSFET VDSS 40V RDS(on) typ. 1.4m: max. 1.7m: ID (Silicon Limited) 327A ID (Package Limited) 195A D c G S Benefits l Optimized for Logic Level Drive l Very Low RDS(ON) at 4.5V VGS l Superior R*Q at 4.5V VGS l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free D G D S TO-247AC IRLP3034PbF G D S Gate Drain Source Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS Parameter Max. 327 232 195 1308 341 2.3 ±20 4.6 d Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw f dv/dt TJ TSTG Avalanche Characteristics EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy d A W W/°C V V/ns -55 to + 175 °C 300 x x 10lbf in (1.1N m) e d Units c c Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Package Limited) 224 See Fig. 14, 15, 22a, 22b, mJ A mJ Thermal Resistance Symbol RθJC RθCS RθJA www.irf.com Parameter j Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Typ. Max. Units ––– 0.24 ––– 0.44 ––– 40 °C/W 1 04/21/09 IRLP3034PbF Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V(BR)DSS Drain-to-Source Breakdown Voltage ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) IDSS Gate Threshold Voltage Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage 40 ––– ––– ––– 1.0 ––– ––– ––– ––– RG(int) Internal Gate Resistance ––– ––– 0.04 1.4 1.6 ––– ––– ––– ––– ––– 2.1 Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 5mA 1.7 VGS = 10V, ID = 195A mΩ 2.0 VGS = 4.5V, ID = 172A 2.5 V VDS = VGS, ID = 250µA VDS = 40V, VGS = 0V 20 µA 250 VDS = 40V, VGS = 0V, TJ = 125°C VGS = 20V 100 nA -100 VGS = -20V d g g ––– Ω Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. Max. Units i h Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related) 286 ––– ––– ––– 108 162 ––– 29 ––– ––– 54 ––– ––– 54 ––– ––– 65 ––– ––– 827 ––– ––– 97 ––– ––– 355 ––– ––– 10315 ––– ––– 1980 ––– ––– 935 ––– ––– 2378 ––– ––– 2986 ––– Conditions S VDS = 10V, ID = 195A ID = 185A VDS = 20V nC VGS = 4.5V ID = 185A, VDS =0V, VGS = 4.5V VDD = 26V ID = 195A ns RG = 2.1Ω VGS = 4.5V VGS = 0V VDS = 25V pF ƒ = 1.0MHz VGS = 0V, VDS = 0V to 32V VGS = 0V, VDS = 0V to 32V g g i h Diode Characteristics Symbol IS Parameter Continuous Source Current VSD trr (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Qrr Reverse Recovery Charge IRRM ton Reverse Recovery Current Forward Turn-On Time ISM d Notes:  Calcuted continuous current based on maximum allowable junction temperature Bond wire current limit is 195A. Note that current limitation arising from heating of the device leds may occur with some lead mounting arrangements. ‚ Repetitive rating; pulse width limited by max. junction temperature. ƒ Limited by TJmax, starting TJ = 25°C, L = 0.013mH RG = 25Ω, IAS = 195A, VGS =10V. Part not recommended for use above this value . „ ISD ≤ 195A, di/dt ≤ 841A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. 2 Min. Typ. Max. Units ––– ––– ––– ––– 327 c 1308 Conditions MOSFET symbol A showing the integral reverse D G S p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 195A, VGS = 0V TJ = 25°C VR = 34V, ––– 39 ––– ns T = 125°C I ––– 41 ––– J F = 195A di/dt = 100A/µs TJ = 25°C ––– 39 ––– nC TJ = 125°C ––– 46 ––– ––– 1.7 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) g g … Pulse width ≤ 400µs; duty cycle ≤ 2%. † Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . ‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. ˆ Rθ is measured at TJ approximately 90°C www.irf.com IRLP3034PbF 100000 ID, Drain-to-Source Current (A) 10000 BOTTOM 1000 100000 ≤60µs PULSE WIDTH Tj = 25°C TOP ID, Drain-to-Source Current (A) VGS 15V 10V 8.0V 4.5V 3.5V 3.0V 2.7V 2.5V TOP 10000 100 10 2.5V BOTTOM 100 2.5V 10 0.1 1 10 100 0.1 V DS, Drain-to-Source Voltage (V) 1 10 100 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 10000 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) ≤60µs PULSE WIDTH Tj = 175°C 1000 1 1000 T J = 175°C 100 T J = 25°C 10 1 VDS = 25V ≤60µs PULSE WIDTH ID = 195A VGS = 10V 1.5 1.0 0.5 0.1 1 2 3 4 5 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 4. Normalized On-Resistance vs. Temperature Fig 3. Typical Transfer Characteristics VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd Ciss 10000 C oss = C ds + C gd Coss Crss 1000 5.0 ID= 185A 4.5 VGS, Gate-to-Source Voltage (V) 100000 C, Capacitance (pF) VGS 15V 10V 8.0V 4.5V 3.5V 3.0V 2.7V 2.5V VDS= 32V VDS= 20V 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 100 0.0 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage www.irf.com 0 20 40 60 80 100 120 140 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 3 IRLP3034PbF 10000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 10000 1000 T J = 175°C 100 TJ = 25°C 10 OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 100µsec 100 1msec LIMITED BY PACKAGE 10msec 10 DC 1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 1.0 0.1 0.0 0.5 1.0 1.5 2.0 2.5 0.1 VSD, Source-to-Drain Voltage (V) ID, Drain Current (A) 250 200 150 100 50 0 75 100 125 150 175 V(BR)DSS , Drain-to-Source Breakdown Voltage (V) Limited By Package 50 T C , Case Temperature (°C) Id = 5mA 48 46 44 42 40 -60 -40 -20 0 20 40 60 80 100120140160180 Fig 10. Drain-to-Source Breakdown Voltage 2.5 EAS , Single Pulse Avalanche Energy (mJ) 1000 2.0 Energy (µJ) 50 T J , Temperature ( °C ) Fig 9. Maximum Drain Current vs. Case Temperature 1.5 1.0 0.5 0.0 ID TOP 36.5A 61A BOTTOM 195A 800 600 400 200 0 0 5 10 15 20 25 30 35 VDS, Drain-to-Source Voltage (V) Fig 11. Typical COSS Stored Energy 4 100 VDS, Drain-to-Source Voltage (V) 350 25 10 Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 300 1 40 45 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 12. Maximum Avalanche Energy vs. DrainCurrent www.irf.com IRLP3034PbF Thermal Response ( Z thJC ) °C/W 1 D = 0.50 0.1 0.20 0.10 0.05 τJ 0.02 0.01 0.01 R1 R1 τJ τ1 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 R2 R2 R3 R3 Ri (°C/W) R4 R4 τC τ τ1 τ2 τ3 τ2 τ3 Ci= τi/Ri Ci i/Ri 0.0001 τ4 τ4 τi (sec) 0.02725 0.000025 0.08804 0.000077 0.20964 0.001656 0.11529 0.008408 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse) 0.01 100 0.05 0.10 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 250 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 195A 200 150 100 50 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRLP3034PbF 14 IF = 78A V R = 34V 12 2.5 TJ = 25°C TJ = 125°C 10 2.0 IRRM (A) VGS(th) , Gate threshold Voltage (V) 3.0 1.5 ID = 250µA 1.0 8 6 ID = 1.0mA 4 ID = 1.0A 0.5 2 0.0 -75 -50 -25 0 0 25 50 75 100 125 150 175 0 100 T J , Temperature ( °C ) 300 400 500 Fig. 17 - Typical Recovery Current vs. dif/dt Fig 16. Threshold Voltage vs. Temperature 14 400 IF = 117A V R = 34V 12 IF = 78A V R = 34V TJ = 25°C TJ = 125°C 10 TJ = 25°C TJ = 125°C 300 8 QRR (A) IRRM (A) 200 diF /dt (A/µs) 6 4 200 100 2 0 0 0 100 200 300 400 500 0 100 diF /dt (A/µs) 200 300 400 500 diF /dt (A/µs) Fig. 19 - Typical Stored Charge vs. dif/dt Fig. 18 - Typical Recovery Current vs. dif/dt 400 IF = 117A V R = 34V TJ = 25°C TJ = 125°C QRR (A) 300 200 100 0 0 100 200 300 400 500 diF /dt (A/µs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRLP3034PbF Driver Gate Drive D.U.T ƒ - ‚ - - „ * D.U.T. ISD Waveform Reverse Recovery Current +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG VGS 20V + V - DD IAS A 0.01Ω tp I AS Fig 22a. Unclamped Inductive Test Circuit RD VDS Fig 22b. Unclamped Inductive Waveforms VDS 90% VGS D.U.T. RG + - VDD V10V GS 10% VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % td(on) Fig 23a. Switching Time Test Circuit tr t d(off) Fig 23b. Switching Time Waveforms Id Current Regulator Same Type as D.U.T. Vds Vgs 50KΩ 12V tf .2µF .3µF D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Current Sampling Resistors Fig 24a. Gate Charge Test Circuit www.irf.com Qgs1 Qgs2 Qgd Qgodr Fig 24b. Gate Charge Waveform 7 IRLP3034PbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information (;$03/( 7+,6,6$1,5)3( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 ,5)3( +  $66(0%/< /27&2'( '$7(&2'( <($5  :((. /,1(+ TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 04/2009 8 www.irf.com