Transcript
PD - 96230
IRLP3034PbF Applications l DC Motor Drive l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits
HEXFET® Power MOSFET
VDSS 40V RDS(on) typ. 1.4m: max. 1.7m: ID (Silicon Limited) 327A ID (Package Limited) 195A
D
c
G S
Benefits l Optimized for Logic Level Drive l Very Low RDS(ON) at 4.5V VGS l Superior R*Q at 4.5V VGS l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free
D
G
D
S
TO-247AC IRLP3034PbF
G
D
S
Gate
Drain
Source
Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS
Parameter
Max. 327 232 195 1308 341 2.3 ±20 4.6
d
Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw
f
dv/dt TJ TSTG
Avalanche Characteristics EAS (Thermally limited) IAR EAR
Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy
d
A
W W/°C V V/ns
-55 to + 175 °C 300
x
x
10lbf in (1.1N m)
e
d
Units
c c
Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Package Limited)
224 See Fig. 14, 15, 22a, 22b,
mJ A mJ
Thermal Resistance Symbol RθJC RθCS RθJA
www.irf.com
Parameter
j
Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient
Typ.
Max.
Units
––– 0.24 –––
0.44 ––– 40
°C/W
1 04/21/09
IRLP3034PbF Static @ TJ = 25°C (unless otherwise specified) Symbol
Parameter
Min. Typ. Max. Units
V(BR)DSS Drain-to-Source Breakdown Voltage ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient RDS(on)
Static Drain-to-Source On-Resistance
VGS(th) IDSS
Gate Threshold Voltage Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage
40 ––– ––– ––– 1.0 ––– ––– ––– –––
RG(int)
Internal Gate Resistance
–––
––– 0.04 1.4 1.6 ––– ––– ––– ––– ––– 2.1
Conditions
––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 5mA 1.7 VGS = 10V, ID = 195A mΩ 2.0 VGS = 4.5V, ID = 172A 2.5 V VDS = VGS, ID = 250µA VDS = 40V, VGS = 0V 20 µA 250 VDS = 40V, VGS = 0V, TJ = 125°C VGS = 20V 100 nA -100 VGS = -20V
d
g g
–––
Ω
Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR)
Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
Min. Typ. Max. Units
i h
Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related)
286 ––– ––– ––– 108 162 ––– 29 ––– ––– 54 ––– ––– 54 ––– ––– 65 ––– ––– 827 ––– ––– 97 ––– ––– 355 ––– ––– 10315 ––– ––– 1980 ––– ––– 935 ––– ––– 2378 ––– ––– 2986 –––
Conditions
S
VDS = 10V, ID = 195A ID = 185A VDS = 20V nC VGS = 4.5V ID = 185A, VDS =0V, VGS = 4.5V VDD = 26V ID = 195A ns RG = 2.1Ω VGS = 4.5V VGS = 0V VDS = 25V pF ƒ = 1.0MHz VGS = 0V, VDS = 0V to 32V VGS = 0V, VDS = 0V to 32V
g
g
i h
Diode Characteristics Symbol IS
Parameter Continuous Source Current
VSD trr
(Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM ton
Reverse Recovery Current Forward Turn-On Time
ISM
d
Notes:
Calcuted continuous current based on maximum allowable junction temperature Bond wire current limit is 195A. Note that current limitation arising from heating of the device leds may occur with some lead mounting arrangements. Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.013mH RG = 25Ω, IAS = 195A, VGS =10V. Part not recommended for use above this value . ISD ≤ 195A, di/dt ≤ 841A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
2
Min. Typ. Max. Units –––
–––
–––
–––
327
c
1308
Conditions MOSFET symbol
A
showing the integral reverse
D
G
S p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 195A, VGS = 0V TJ = 25°C VR = 34V, ––– 39 ––– ns T = 125°C I ––– 41 ––– J F = 195A di/dt = 100A/µs TJ = 25°C ––– 39 ––– nC TJ = 125°C ––– 46 ––– ––– 1.7 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
g
g
Pulse width ≤ 400µs; duty cycle ≤ 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS .
Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS.
Rθ is measured at TJ approximately 90°C
www.irf.com
IRLP3034PbF 100000
ID, Drain-to-Source Current (A)
10000
BOTTOM
1000
100000 ≤60µs PULSE WIDTH Tj = 25°C
TOP
ID, Drain-to-Source Current (A)
VGS 15V 10V 8.0V 4.5V 3.5V 3.0V 2.7V 2.5V
TOP
10000
100
10 2.5V
BOTTOM
100 2.5V 10
0.1
1
10
100
0.1
V DS, Drain-to-Source Voltage (V)
1
10
100
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
10000
2.0 RDS(on) , Drain-to-Source On Resistance (Normalized)
ID, Drain-to-Source Current (A)
≤60µs PULSE WIDTH Tj = 175°C
1000
1
1000 T J = 175°C
100
T J = 25°C
10
1 VDS = 25V ≤60µs PULSE WIDTH
ID = 195A VGS = 10V 1.5
1.0
0.5
0.1 1
2
3
4
5
-60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 4. Normalized On-Resistance vs. Temperature
Fig 3. Typical Transfer Characteristics VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd
Ciss
10000
C oss = C ds + C gd
Coss Crss 1000
5.0 ID= 185A
4.5 VGS, Gate-to-Source Voltage (V)
100000
C, Capacitance (pF)
VGS 15V 10V 8.0V 4.5V 3.5V 3.0V 2.7V 2.5V
VDS= 32V VDS= 20V
4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
100
0.0 1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
0
20
40
60
80
100
120
140
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3
IRLP3034PbF 10000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
10000
1000 T J = 175°C 100 TJ = 25°C 10
OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 100µsec
100
1msec
LIMITED BY PACKAGE 10msec
10
DC
1
Tc = 25°C Tj = 175°C Single Pulse
VGS = 0V 1.0
0.1
0.0
0.5
1.0
1.5
2.0
2.5
0.1
VSD, Source-to-Drain Voltage (V)
ID, Drain Current (A)
250 200 150 100 50 0 75
100
125
150
175
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
Limited By Package
50
T C , Case Temperature (°C)
Id = 5mA 48
46
44
42
40 -60 -40 -20 0 20 40 60 80 100120140160180
Fig 10. Drain-to-Source Breakdown Voltage
2.5
EAS , Single Pulse Avalanche Energy (mJ)
1000
2.0
Energy (µJ)
50
T J , Temperature ( °C )
Fig 9. Maximum Drain Current vs. Case Temperature
1.5
1.0
0.5
0.0
ID TOP 36.5A 61A BOTTOM 195A
800
600
400
200
0 0
5
10
15
20
25
30
35
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
4
100
VDS, Drain-to-Source Voltage (V)
350
25
10
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode Forward Voltage
300
1
40
45
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
www.irf.com
IRLP3034PbF
Thermal Response ( Z thJC ) °C/W
1
D = 0.50 0.1
0.20 0.10 0.05
τJ
0.02 0.01
0.01
R1 R1 τJ τ1
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-006
1E-005
R2 R2
R3 R3
Ri (°C/W)
R4 R4 τC τ
τ1
τ2
τ3
τ2
τ3
Ci= τi/Ri Ci i/Ri
0.0001
τ4
τ4
τi (sec)
0.02725
0.000025
0.08804
0.000077
0.20964
0.001656
0.11529
0.008408
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000
Avalanche Current (A)
Duty Cycle = Single Pulse
Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse)
0.01
100
0.05 0.10 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 1 1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
250
Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 195A
200
150
100
50
0 25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
IRLP3034PbF 14 IF = 78A V R = 34V
12
2.5
TJ = 25°C TJ = 125°C
10
2.0 IRRM (A)
VGS(th) , Gate threshold Voltage (V)
3.0
1.5 ID = 250µA
1.0
8 6
ID = 1.0mA
4
ID = 1.0A 0.5
2
0.0 -75 -50 -25
0
0
25 50 75 100 125 150 175
0
100
T J , Temperature ( °C )
300
400
500
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage vs. Temperature 14
400 IF = 117A V R = 34V
12
IF = 78A V R = 34V
TJ = 25°C TJ = 125°C
10
TJ = 25°C TJ = 125°C
300
8
QRR (A)
IRRM (A)
200
diF /dt (A/µs)
6 4
200
100
2 0
0 0
100
200
300
400
500
0
100
diF /dt (A/µs)
200
300
400
500
diF /dt (A/µs)
Fig. 19 - Typical Stored Charge vs. dif/dt
Fig. 18 - Typical Recovery Current vs. dif/dt 400 IF = 117A V R = 34V TJ = 25°C TJ = 125°C
QRR (A)
300
200
100
0 0
100
200
300
400
500
diF /dt (A/µs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRLP3034PbF Driver Gate Drive
D.U.T
-
-
-
*
D.U.T. ISD Waveform Reverse Recovery Current
+
RG
• • • •
dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test
VDD
P.W. Period VGS=10V
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
+
D=
Period
P.W.
+
+ -
Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
Re-Applied Voltage
Body Diode
VDD
Forward Drop
Inductor Current Inductor Curent ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V
DRIVER
L
VDS
tp
D.U.T
RG VGS 20V
+ V - DD
IAS
A
0.01Ω
tp
I AS
Fig 22a. Unclamped Inductive Test Circuit RD
VDS
Fig 22b. Unclamped Inductive Waveforms VDS 90%
VGS
D.U.T.
RG
+
- VDD
V10V GS
10% VGS
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
td(on)
Fig 23a. Switching Time Test Circuit
tr
t d(off)
Fig 23b. Switching Time Waveforms Id
Current Regulator Same Type as D.U.T.
Vds Vgs
50KΩ 12V
tf
.2µF .3µF
D.U.T.
+ V - DS
Vgs(th) VGS 3mA
IG
ID
Current Sampling Resistors
Fig 24a. Gate Charge Test Circuit
www.irf.com
Qgs1 Qgs2
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
7
IRLP3034PbF TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information (;$03/( 7+,6,6$1,5)3( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH
,17(51$7,21$/ 5(&7,),(5 /2*2
3$57180%(5 ,5)3(
+
$66(0%/< /27&2'(
'$7(&2'( <($5 :((. /,1(+
TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 04/2009
8
www.irf.com