Preview only show first 10 pages with watermark. For full document please download

Similar Pages

   EMBED


Share

Transcript

PD - 97378A IRFS3004-7PPbF HEXFET® Power MOSFET Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits D G Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free S VDSS RDS(on) typ. max. ID (Silicon Limited) 40V 0.90mΩ 1.25mΩ 400A ID (Package Limited) 240A c D S G S S S S D2Pak 7 Pin G D S Gate Drain Source Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C Parameter Max. d Pulsed Drain Current Maximum Power Dissipation Avalanche Characteristics EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy d Thermal Resistance Symbol RθJC RθJA www.irf.com e Parameter kl W/°C V V/ns °C 300 290 See Fig. 14, 15, 22a, 22b d Junction-to-Case Junction-to-Ambient (PCB Mount) W 2.5 ± 20 2.0 -55 to + 175 f dv/dt TJ TSTG A 240 1610 380 Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) VGS Units 400c 280c Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Wire Bond Limited) j mJ A mJ Typ. Max. Units ––– ––– 0.40 40 °C/W 1 04/22/2010 IRFS3004-7PPbF Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance RG Min. Typ. Max. Units 40 ––– ––– 2.0 ––– ––– ––– ––– ––– ––– ––– 0.038 ––– 0.90 1.25 ––– 4.0 ––– 20 ––– 250 ––– 100 ––– -100 2.0 ––– Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 5mA mΩ VGS = 10V, ID = 195A V VDS = VGS, ID = 250µA µA VDS = 40V, VGS = 0V VDS = 40V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Ω d g Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Min. Typ. Max. Units Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related) h i 1300 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 160 42 65 95 23 240 91 160 9130 2020 990 2590 2650 ––– 240 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC Conditions VDS = 10V, ID = 195A ID = 180A VDS =20V VGS = 10V ID = 180A, VDS =0V, VGS = 10V VDD = 26V ID = 240A RG = 2.7Ω VGS = 10V VGS = 0V VDS = 25V ƒ = 1.0 MHz, See Fig. 5 VGS = 0V, VDS = 0V to 32V , See Fig. 11 VGS = 0V, VDS = 0V to 32V g ns pF g i h Diode Characteristics Symbol IS Parameter Continuous Source Current VSD trr (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Qrr Reverse Recovery Charge IRRM ton Reverse Recovery Current Forward Turn-On Time ISM d Notes:  Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 240A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140) ‚ Repetitive rating; pulse width limited by max. junction temperature. ƒ Limited by TJmax, starting TJ = 25°C, L = 0.01mH RG = 25Ω, IAS = 240A, VGS =10V. Part not recommended for use above this value . 2 Min. Typ. Max. Units ––– ––– ––– Conditions c A MOSFET symbol 1610 A showing the integral reverse ––– 400 D G p-n junction diode. TJ = 25°C, IS = 195A, VGS = 0V VR = 34V, TJ = 25°C IF = 240A TJ = 125°C di/dt = 100A/µs TJ = 25°C g S ––– ––– 1.3 V ––– 49 ––– ns ––– 51 ––– ––– 37 ––– nC TJ = 125°C ––– 41 ––– ––– 3.2 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) g „ ISD ≤ 240A, di/dt ≤ 740A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. … Pulse width ≤ 400µs; duty cycle ≤ 2%. † Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . ‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom mended footprint and soldering techniques refer to application note #AN-994. ‰ Rθ is measured at TJ approximately 90°C. Š RθJC value shown is at time zero. www.irf.com IRFS3004-7PPbF 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V BOTTOM 100 10 1 4.5V ≤60µs PULSE WIDTH 0.1 1 10 Tj = 175°C 10 100 0.1 1000 1 10 100 1000 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 RDS(on) , Drain-to-Source On Resistance (Normalized) 2.0 100 T J = 175°C T J = 25°C 10 1 VDS = 25V ≤60µs PULSE WIDTH 0.1 ID = 195A VGS = 10V 1.5 1.0 0.5 3 4 5 6 7 8 -60 -40 -20 0 20 40 60 80 100120140160180 VGS, Gate-to-Source Voltage (V) T J , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature 100000 14.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd ID= 180A VGS, Gate-to-Source Voltage (V) ID, Drain-to-Source Current (A) ≤60µs PULSE WIDTH 4.5V Tj = 25°C 0.1 C oss = C ds + C gd C, Capacitance (pF) VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V Ciss 10000 Coss Crss 1000 12.0 VDS= 32V VDS= 20V 10.0 8.0 6.0 4.0 2.0 0.0 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage www.irf.com 0 50 100 150 200 250 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 3 IRFS3004-7PPbF 10000 T J = 175°C 100 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 T J = 25°C 10 1 OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 100µsec 100 1msec 10msec 10 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 0.1 1 0.0 0.5 1.0 1.5 2.0 0 VSD, Source-to-Drain Voltage (V) 300 240 180 120 60 0 50 75 100 125 150 175 V(BR)DSS , Drain-to-Source Breakdown Voltage (V) ID, Drain Current (A) Limited By Package 25 100 50 Id = 5mA 48 46 44 42 40 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 9. Maximum Drain Current vs. Case Temperature 3.5 Fig 10. Drain-to-Source Breakdown Voltage EAS , Single Pulse Avalanche Energy (mJ) 1200 3.0 ID 44A 80A BOTTOM 240A TOP 1000 2.5 Energy (µJ) 10 Fig 8. Maximum Safe Operating Area 420 360 1 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 2.0 1.5 1.0 0.5 0.0 800 600 400 200 0 -5 0 5 10 15 20 25 30 35 40 45 VDS, Drain-to-Source Voltage (V) Fig 11. Typical COSS Stored Energy 4 DC 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 12. Maximum Avalanche Energy vs. DrainCurrent www.irf.com IRFS3004-7PPbF Thermal Response ( Z thJC ) °C/W 1 D = 0.50 0.1 0.20 0.10 τJ 0.05 0.02 0.01 0.01 R1 R1 τJ τ1 R2 R2 R3 R3 τC τ τ2 τ1 τ2 τ3 τ3 τ4 τ4 Ci= τi/Ri Ci i/Ri 1E-005 τi (sec) 0.00757 0.000006 0.06508 0.000064 0.18313 0.001511 0.14378 0.009800 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 Ri (°C/W) R4 R4 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse) 0.01 100 0.05 0.10 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth 320 280 EAR , Avalanche Energy (mJ) Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 240A 240 200 160 120 80 40 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 4.5 10 4.0 9 8 3.5 3.0 2.5 ID = 250µA ID = 1.0mA ID = 1.0A 2.0 7 IRRM (A) VGS(th), Gate threshold Voltage (V) IRFS3004-7PPbF IF = 96A V R = 34V TJ = 25°C TJ = 125°C 6 5 4 1.5 3 2 1.0 -75 -50 -25 0 100 25 50 75 100 125 150 175 200 200 T J , Temperature ( °C ) IF = 144A V R = 34V TJ = 25°C TJ = 125°C 8 120 IF = 96A V R = 34V 100 TJ = 25°C TJ = 125°C QRR (nC) IRRM (A) 9 500 140 12 10 400 Fig. 17 - Typical Recovery Current vs. dif/dt Fig 16. Threshold Voltage vs. Temperature 11 300 diF /dt (A/µs) 7 6 80 60 5 4 40 3 20 2 100 200 300 400 100 500 200 300 400 500 diF /dt (A/µs) diF /dt (A/µs) Fig. 19 - Typical Stored Charge vs. dif/dt Fig. 18 - Typical Recovery Current vs. dif/dt 180 160 QRR (nC) 140 120 IF = 144A V R = 34V TJ = 25°C TJ = 125°C 100 80 60 40 20 100 200 300 400 500 diF /dt (A/µs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFS3004-7PPbF Driver Gate Drive D.U.T ƒ - ‚ - - „ * D.U.T. ISD Waveform Reverse Recovery Current +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG VGS 20V + V - DD IAS A 0.01Ω tp I AS Fig 22a. Unclamped Inductive Test Circuit RD VDS Fig 22b. Unclamped Inductive Waveforms VDS 90% VGS D.U.T. RG + - VDD V10V GS 10% VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % td(on) Fig 23a. Switching Time Test Circuit tr t d(off) Fig 23b. Switching Time Waveforms Id Current Regulator Same Type as D.U.T. Vds Vgs 50KΩ 12V tf .2µF .3µF D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Current Sampling Resistors Fig 24a. Gate Charge Test Circuit www.irf.com Qgs1 Qgs2 Qgd Qgodr Fig 24b. Gate Charge Waveform 7 IRFS3004-7PPbF D2Pak - 7 Pin Package Outline Dimensions are shown in millimeters (inches) Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 www.irf.com IRFS3004-7PPbF D2Pak - 7 Pin Part Marking Information 14 D2Pak - 7 Pin Tape and Reel Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 04/2010 www.irf.com 9