Transcript
Single and Dual, Ultralow Distortion, Ultralow Noise Op Amps AD8597/AD8599 PIN CONFIGURATIONS
Low noise: 1.1 nV/√Hz at 1 kHz Low distortion: −120 dB THD @ 1 kHz Input noise, 0.1 Hz to 10 Hz: <76 nV p-p Slew rate: 14 V/μs Wide bandwidth: 10 MHz Supply current: 4.8 mA/amp typical Low offset voltage: 10 μV typical CMRR: 120 dB Unity-gain stable ±15 V operation
NC 1 –IN 2
AD8597
+IN 3
TOP VIEW V– 4 (Not to Scale)
8
NC
7
V+
6
OUT
5
NC
NC = NO CONNECT
06274-060
FEATURES
Figure 1. AD8597 8-Lead SOIC (R-8)
APPLICATIONS
PIN 1 INDICATOR
8 NC
–IN 2
AD8597
7 V+
+IN 3
TOP VIEW
6 OUT 5 NC
V– 4
Professional audio preamplifiers ATE/precision testers Imaging systems Medical/physiological measurements Precision detectors/instruments Precision data conversion
NOTES 1. NC = NO CONNECT. 2. IT IS RECOMMENDED THAT THE EXPOSED PAD BE CONNECTED TO V–.
06274-061
NC 1
OUT A 1 –IN A 2
AD8599
+IN A 3
TOP VIEW –V 4 (Not to Scale)
8
+V
7
OUT B
6
–IN B
5
+IN B
06274-054
Figure 2. AD8597 8-Lead LFCSP (CP-8-2)
Figure 3. AD8599 8-Lead SOIC (R-8)
GENERAL DESCRIPTION The AD8597/AD8599 are very low noise, low distortion operational amplifiers ideal for use as preamplifiers. The low noise of 1.1 nV/√Hz and low harmonic distortion of −120 dB (or better) at audio bandwidths give the AD8597/AD8599 the wide dynamic range necessary for preamplifiers in audio, medical, and instrumentation applications. The excellent slew rate of 14 V/μs and 10 MHz gain bandwidth make them highly suitable for medical applications. The low distortion and fast settling time make them ideal for buffering of high resolution data converters.
The AD8597 is available in 8-lead SOIC and LFCSP packages, while the AD8599 is available in an 8-lead SOIC package. They are both specified over a −40°C to +125°C temperature range. The AD8597 and AD8599 are members of a growing series of low noise op amps offered by Analog Devices, Inc., (see Table 1). Table 1. Low Noise Op Amps Package Single Dual Quad
0.9 nV AD797
1.1 nV AD8597 AD8599
1.8 nV ADA4004-1 ADA4004-2 ADA4004-4
2.8 nV AD8675 AD8676
3.8 nV AD8671 AD8672 AD8674
Rev. C Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2007–2009 Analog Devices, Inc. All rights reserved.
AD8597/AD8599 TABLE OF CONTENTS Features .............................................................................................. 1
ESD Caution...................................................................................5
Applications ....................................................................................... 1
Typical Performance Characteristics ..............................................6
Pin Configurations ........................................................................... 1
Functional Operation..................................................................... 15
General Description ......................................................................... 1
Input Voltage Range ................................................................... 15
Revision History ............................................................................... 2
Output Phase Reversal ............................................................... 15
Specifications..................................................................................... 3
Noise and Source Impedance Considerations ........................... 15
Absolute Maximum Ratings............................................................ 5
Outline Dimensions ....................................................................... 17
Thermal Resistance ...................................................................... 5
Ordering Guide .......................................................................... 17
Power Sequencing ........................................................................ 5
REVISION HISTORY 12/09—Rev. B to Rev. C Changes to Table 1 ............................................................................ 1 10/08—Rev. A to Rev. B Added AD8597 ................................................................... Universal Added LFCSP_VD ............................................................. Universal Added Table 1.................................................................................... 1 Changes to Specifications Section .................................................. 3 Changes to Absolute Maximum Ratings Section ......................... 5 Changes to Typical Performance Characteristics Section ........... 6 Added Figure 12 and Figure 15....................................................... 7 Added Figure 18 and Figure 19....................................................... 8 Added Figure 30 and Figure 33..................................................... 10 Added Figure 34 to Figure 38........................................................ 11 Added Figure 42 and Figure 45..................................................... 12 Added Figure 52, Figure 55, Figure 57......................................... 14 Added Functional Operation Section .......................................... 15 Added Figure 58.............................................................................. 15 Updated Outline Dimensions ....................................................... 17 Changes to Ordering Guide .......................................................... 17
4/07—Rev. 0 to Rev. A Updated Layout .................................................................................5 Changes to Figure 45 Caption ...................................................... 12 Added Figure 48 ............................................................................. 12 Changes to Figure 51 Caption ...................................................... 13 2/07—Revision 0: Initial Version
Rev. C | Page 2 of 20
AD8597/AD8599 SPECIFICATIONS VSY = ±5 V, VCM = 0 V, VO = 0 V, TA = 25°C, unless otherwise specified. Table 2. Parameter INPUT CHARACTERISTICS Offset Voltage
Symbol
Conditions
Min
VOS
Typ
Max
Unit
15
120 180
μV μV
0.8 40
2.2 210 340 250 340 +2.0
μV/°C nA nA nA nA V dB dB dB dB
−40°C ≤ TA ≤ +125°C Offset Voltage Drift Input Bias Current
ΔVOS/ΔT IB
Input Offset Current
IOS
−40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C
65 −40°C ≤ TA ≤ +125°C
Input Voltage Range Common-Mode Rejection Ratio
IVR CMRR
Large Signal Voltage Gain
AVO
Input Capacitance Differential Capacitance Common-Mode Capacitance OUTPUT CHARACTERISTICS Output Voltage High
Output Voltage Low
Output Short-Circuit Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier
−2.0 V ≤ VCM ≤ +2.0 V −40°C ≤ TA ≤ +125°C RL ≥ 600 Ω, VO = −11 V to +11 V −40°C ≤ TA ≤ +125°C
−2.0 120 105 105 100
CDIFF CCM VOH
VOL
ISC ZOUT PSRR
RL = 600 Ω −40°C ≤ TA ≤ +125°C RL = 2 kΩ −40°C ≤ TA ≤ +125°C RL = 600 Ω −40°C ≤ TA ≤ +125°C RL = 2 kΩ −40°C ≤ TA ≤ +125°C
3.5 3.3 3.7 3.5
ISY
110
15.4 5.5
pF pF
3.7
V V V V V V V V mA Ω
3.8 −3.6 −3.7
120 118
140 4.8
−40°C ≤ TA ≤ +125°C DYNAMIC PERFORMANCE Slew Rate Settling Time Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Peak-to-Peak Noise Voltage Noise Density
SR tS GBP ΦM en p-p en
Correlated Current Noise Uncorrelated Current Noise Total Harmonic Distortion + Noise Channel Separation
THD + N CS
AV = −1, RL = 2 kΩ AV = 1, RL = 2 kΩ To 0.01%, step = 10 V
14 14 2 10 60
0.1 Hz to 10 Hz f = 1 kHz f = 10 Hz f = 1 kHz f = 10 Hz f = 1 kHz f = 10 Hz G = 1, RL ≥ 1 kΩ, f = 1 kHz, VRMS = 1 V f = 10 kHz
76 1.07
Rev. C | Page 3 of 20
−3.4 −3.3 −3.5 −3.4
±52 5
At 1 MHz, AV = 1 VSY = ±18 V to ±4.5 V −40°C ≤ TA ≤ +125°C
135
2.0 4.2 2.4 5.2 −120 −120
5.5 6.5
dB dB mA mA V/μs V/μs μs MHz Degrees
1.15 1.5
nV p-p nV/√Hz nV/√Hz pA/√Hz pA/√Hz pA/√Hz pA/√Hz dB dB
AD8597/AD8599 VS = ±15 V, VCM = 0 V, VO = 0 V, TA = +25°C, unless otherwise specified. Table 3. Parameter INPUT CHARACTERISTICS Offset Voltage
Symbol
Conditions
Min
VOS
Typ
Max
Unit
10
120 180
μV μV
0.8
2.2
μV/°C
25
200 300 200 300 +12.5
nA nA nA nA V dB dB dB dB
−40°C ≤ TA ≤ +125°C Offset Voltage Drift
ΔVOS/ΔT
Input Bias Current
IB
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C Input Offset Current
IOS
50 −40°C ≤ TA ≤ +125°C
Input Voltage Range Common-Mode Rejection Ratio
IVR CMRR
Large Signal Voltage Gain
AVO
Input Capacitance Differential Capacitance Common-Mode Capacitance OUTPUT CHARACTERISTICS Output Voltage High
Output Voltage Low
Output Short-Circuit Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier
−12.5 V ≤ VCM ≤ +12.5 V −40°C ≤ TA ≤ +125°C RL ≥ 600 Ω, VO = −11 V to +11 V −40°C ≤ TA ≤ +125°C
−12.5 120 115 110 106
CDIFF CCM VOH
VOL
ISC ZOUT PSRR
RL = 600 Ω −40°C ≤ TA ≤ +125°C RL = 2 kΩ −40°C ≤ TA ≤ +125°C RL = 600 Ω −40°C ≤ TA ≤ +125°C RL = 2 kΩ −40°C ≤ TA ≤ +125°C
13.1 12.8 13.5 13.2
ISY
116
12.1 5.1
pF pF
13.4
V V V V V V V V mA Ω
13.7 −13.2 −13.5
120 118
140 5.0
−40°C ≤ TA ≤ +125°C DYNAMIC PERFORMANCE Slew Rate Settling Time Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Peak-to-Peak Noise Voltage Noise Density
SR ts GBP ΦM en p-p en
Correlated Current Noise Uncorrelated Current Noise Total Harmonic Distortion + Noise Channel Separation
THD + N CS
AV = −1, RL = 2 kΩ AV = 1, RL = 2 kΩ To 0.01%, step = 10 V
16 15 2 10 65
0.1 Hz to 10 Hz f = 1 kHz f = 10 Hz f = 1 kHz f = 10 Hz f = 1 kHz f = 10 Hz G = 1, RL ≥ 1 kΩ, f = 1 kHz, VRMS = 3 V f = 10 kHz
76 1.07
Rev. C | Page 4 of 20
−12.9 −12.8 −13.4 −13.3
±52 5
At 1 MHz, AV = 1 VSY = ±18 V to ±4.5 V −40°C ≤ TA ≤ +125°C
135
1.9 4.3 2.3 5.3 −120 −120
5.7 6.75
dB dB mA mA V/μs V/μs μs MHz Degrees nV p-p
1.15 1.5
nV/√Hz nV/√Hz pA/√Hz pA/√Hz pA/√Hz pA/√Hz dB dB
AD8597/AD8599 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE
Table 4. Parameter Supply Voltage Input Voltage Differential Input Voltage1 Output Short-Circuit to GND Storage Temperature Range Operating Temperature Range Lead Temperature Range (Soldering 60 sec) Junction Temperature 1
Rating ±18 V −V ≤ VIN ≤ +V ±1 V Indefinite −65°C to +150°C −40°C to +125°C 300°C 150°C
If the differential input voltage exceeds 1 V, the current should be limited to 5 mA.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
θJA is specified with the device soldered on a circuit board with its exposed paddle soldered to a pad (if applicable) on a 4-layer JEDEC standard PCB with zero air flow. Table 5. Package Type 8-Lead LFCSP_VD (CP-8-2) 8-Lead SOIC (R-8) (AD8597) 8-Lead SOIC (R-8) (AD8599)
θJA 78 140 120
θJC 20 39 36
Unit °C/W °C/W °C/W
POWER SEQUENCING The op amp supplies should be applied simultaneously. The op amp supplies should be stable before any input signals are applied. In any case, the input current must be limited to 5 mA.
ESD CAUTION
Rev. C | Page 5 of 20
AD8597/AD8599 TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted. 70
50
AD8599 MEAN = 7.91 STDEV = 21.89 MIN = –63.02 MAX = 57.5 VSY = ±15V
60
NUMBER OF AMPLIFIERS
60
40
30 20
50
40
30 20
10
10
0 –75 –65 –55 –45 –35 –25 –15 –5 5 15 25 35 45 55 65 75 VOS (µV)
06274-001
0 –75 –65 –55 –45 –35 –25 –15 –5 5 15 25 35 45 55 65 75 VOS (µV)
Figure 4. Input Offset Voltage Distribution
60
45
AD8599 MEAN = 0.765 STDEV = 0.234 MIN = 0.338 MAX = 1.709 VSY = ±15V
40
NUMBER OF AMPLIFIERS
NUMBER OF AMPLIFIERS
Figure 7. Input Offset Voltage Distribution
AD8599 MEAN = 0.346 STDEV = 0.218 MIN = 0.010 MAX = 1.155 VSY = ±5V
50
06274-002
NUMBER OF AMPLIFIERS
70
AD8599 MEAN = 8.23 STDEV = 24.47 MIN = –72.62 MAX = 62.09 VSY = ±5V
40
30
20
35 30 25 20 15 10
10
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 TCVOS (µV)
2.2 2.4
0
06274-004
0
60
60 AD8599 MEAN = 0.461 STDEV = 0.245 MIN = 0.026 MAX = 1.26 VSY = ±5V
40
AD8599 MEAN = 0.342 STDEV = 0.221 MIN = 0.013 MAX = 1.239 VSY = ±15V
50
NUMBER OF AMPLIFIERS
50
30
20
40
30
20
10
10
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 TCVOS (µV)
2.2 2.4
0
06274-006
NUMBER OF AMPLIFIERS
2.2 2.4
Figure 8. TCVOS Distribution, −40°C ≤ TA ≤ +125°C
Figure 5. TCVOS Distribution, −40°C ≤ TA ≤ +125°C
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 TCVOS (µV)
Figure 6. TCVOS Distribution, −40°C ≤ TA ≤ +85°C
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 TCVOS (µV)
2.2 2.4
Figure 9. TCVOS Distribution, −40°C ≤ TA ≤ +85°C
Rev. C | Page 6 of 20
06274-005
0
06274-007
5
AD8597/AD8599 75
50
25
25 VOS (µV)
50
0
0
–25
–25
–50
–50
–75
–75
–100 –5.0
–2.5
AD8599 VSY = ±15V
75
0
2.5
5.0
VCM (V)
–100 –15
06274-009
–10
Figure 10. Offset Voltage vs. VCM
0 VCM (V)
5
10
15
Figure 13. Offset Voltage vs. VCM
350
350 AD8599 VSY = ±5V VCM = 0V
300 250
250
200
200
150
150
100
100
50
50
0
0
–50
–50
–100
–100
–150
–150 –25
0
25 50 TEMPERATURE (°C)
75
100
125
–200 –50
06274-011
–200 –50
AD8599 VSY = ±15V VCM = 0V
300
IB (nA)
IB (nA)
–5
Figure 11. Input Bias Current vs. Temperature
–25
0
25 50 TEMPERATURE (°C)
75
100
125
06274-012
VOS (µV)
100
AD8599 VSY = ±5V
06274-010
100
Figure 14. Input Bias Current vs. Temperature
50
350
AD8597
300
40
AD8597 VSY = ±15V
250
30
200
20
150
TA = –40°C
IB (nA)
10 0 –10
±15V
50
TA = +25°C
0
TA = +85°C
–50 –100
–20
–200
–30
–250
–25
0
25
50
75
100
125
06274-063
–40 –50 –50
TA = +125°C
–150
±5V 06274-062
VOS (µV)
100
–300 –350 –12 –10
150
TEMPERATURE (°C)
–8
–6
–4
–2
0
2
4
6
8
VCM (V)
Figure 12. Input Offset Voltage vs. Temperature
Figure 15. Input Bias Current vs. Temperature
Rev. C | Page 7 of 20
10
12
AD8597/AD8599 150
80
AD8597
AD8599 70
100
60 50
IB (nA)
IOS (nA)
50 40 IOS @ VSY = ±5V
±15V
0
±5V
30
–50
20 IOS @ VSY = ±15V
06274-065
–100
10
–25
0
25 50 TEMPERATURE (°C)
75
100
125
–150 –50
06274-013
0 –50
–25
0
25
50
75
100
125
TEMPERATURE (°C)
Figure 16. Input Offset Current vs. Temperature
Figure 19. Input Offset Current vs. Temperature
114
120 AD8599 VSY = ±5V
112
AD8599 VSY = ±15V 118 RL = 2kΩ, VO = ±11V RL = 2kΩ, VO = ±2V
108
AVO (dB)
AVO (dB)
110
RL = 600Ω, VO = ±2V 106
116 RL = 600Ω, VO = ±11V 114
104 112
–25
0
25 50 75 TEMPERATURE (°C)
100
125
150
110 –50
06274-015
100 –50
Figure 17. Large Signal Voltage Gain vs. Temperature 8
–25
0
25 50 75 TEMPERATURE (°C)
100
125
150
06274-016
102
Figure 20. Large Signal Voltage Gain vs. Temperature
350
AD8597
300
7 TA = +125°C 6
250
TA = +85°C
AD8599 VSY = ±15V
TA = –40°C
200 150
TA = +25°C
100
4
IB (nA)
TA = –40°C
3
TA = +25°C
50 0
TA = +85°C
–50 –100 –150
2
TA = +125°C
–200 –250
0 0
2
4
6
–300 –350 –12 –10
8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 VSY (V)
Figure 18. Supply Current vs. Supply Voltage
–8
–6
–4
–2
0 2 VCM (V)
4
6
Figure 21. Input Bias Current vs. VCM
Rev. C | Page 8 of 20
8
10
12
06274-014
1
06274-064
ISY (mA)
5
AD8597/AD8599 80
80
AD8599 VSY = ±5V
60
AD8599 VSY = ±15V
60
OUTPUT CURRENT (mA)
20 0 –20 –40
ISOURCE
ISINK
40 20 0 –20 –40
ISOURCE
–60
–25
0
75 25 50 TEMPERATURE (°C)
100
125
150
–80 –50
06274-017
–80 –50
–25
0
Figure 22. ISC vs. Temperature
125
150
10k OUTPUT SATURATION VOLTAGE (mV)
AD8599 VSY = ±5V
ISINK 1k ISOURCE
100 0.001
100
Figure 25. ISC vs. Temperature
0.01
0.1
1
10
100
IL (mA)
AD8599 VSY = ±15V
ISINK 1k
ISOURCE
100 0.001
06274-021
OUTPUT SATURATION VOLTAGE (mV)
10k
75 25 50 TEMPERATURE (°C)
06274-018
–60
0.01
0.1
1
10
100
IL (mA)
Figure 23. Output Saturation Voltage vs. Current Load
06274-022
OUTPUT CURRENT (mA)
ISINK 40
Figure 26. Output Saturation Voltage vs. Current Load
2.5
2.5 AD8599 VSY = ±5V
AD8599 VSY = ±15V
2.0
2.0
VCC – VOH (V)
1.5 VCC – VOH @ RL = 600Ω
1.0
VCC – VOH @ RL = 2kΩ
0.5
1.5
VCC – VOH @ RL = 2kΩ 1.0
0 –50
–25
0
25 50 75 TEMPERATURE (°C)
100
125
150
0 –50
Figure 24. Output Saturation Voltage vs. Temperature
–25
0
75 25 50 TEMPERATURE (°C)
100
125
Figure 27. Output Saturation Voltage vs. Temperature
Rev. C | Page 9 of 20
150
06274-029
0.5
06274-027
VCC – VOH (V)
VCC – VOH @ RL = 600Ω
AD8597/AD8599 0
0 AD8599 VSY = ±5V
AD8599 VSY = ±15V –0.5
–1.0 VEE – VOL @ RL = 2kΩ –1.5 VEE – VOL @ RL = 600Ω
–2.0
–1.0 VEE – VOL @ RL = 2kΩ –1.5
VEE – VOL @ RL = 600Ω
–2.0
–25
75 25 50 TEMPERATURE (°C)
0
100
125
150
–2.5 –50
06274-028
–2.5 –50
Figure 28. Output Saturation Voltage vs. Temperature
–25
0
25 50 75 TEMPERATURE (°C)
100
125
150
06274-030
VEE – VOL (V)
VEE – VOL (V)
–0.5
Figure 31. Output Saturation Voltage vs. Temperature
15.0
–13.0 VOL @ RL = 600Ω
AD8599 VSY = ±15V
14.8 14.6 –13.5
14.4
VOL @ RL = 2kΩ VOH (V)
VOL (V)
14.2 –14.0
14.0 VOH @ RL = 2kΩ
13.8 13.6 –14.5
13.4 VOH @ RL = 600Ω
100
150
13.0 –50
120
80
100 GAIN (dB) AND PHASE (Degrees)
100
60 40
CL = 20pF
20 0 –20 CL = 200pF
–40 –60 –80 –100 10
AD8597 VSY = ±5V RL = 2kΩ 100
1k
10k
50 TEMPERATURE (°C)
100
150
Figure 32. Output Voltage High vs. Temperature
06274-066
GAIN (dB) AND PHASE (Degrees)
Figure 29. Output Voltage Low vs. Temperature
0
06274-031
50 TEMPERATURE (°C)
50k
80 60 40
CL = 20pF
20 0 –20 CL = 200pF
–40 AD8597 VSY = ±15V RL = 2kΩ
–60 –80 1
FREQUENCY (kHz)
06274-067
0
06274-032
–15.0 –50
13.2
AD8599 VSY = ±15V
10
100
1k
FREQUENCY (kHz)
Figure 30. Gain and Phase vs. Frequency
Figure 33. Gain and Phase vs. Frequency
Rev. C | Page 10 of 20
10k
50k
AD8597/AD8599 50
50
40
40 AV = 100
AV = 100
30
30 20
AV = 10
GAIN (dB)
10 0 AV = 1 –10
AV = 10
10 0 AV = 1 –10 –20
–30
06274-068
AD8597 VSY = ±5V RL = 2kΩ
–40 1
10
100
1k
10k
AD8597 VSY = ±15V RL = 2kΩ
–30
06274-071
–20
–40
50k
1
10
FREQUENCY (kHz)
Figure 34. Closed-Loop Gain vs. Frequency
1k
50k
100 AV = –100
AV = –100
10
10 AV = –10
AV = –10 AV = +1
ZOUT (Ω)
AV = +1 1
1
AD8597 VSY = ±5V 0.01 10
100
1k
10k
06274-072
0.1 06274-069
0.1
AD8597 VSY = ±15V 0.01 10
100k
100
FREQUENCY (kHz)
1k
10k
100k
FREQUENCY (kHz)
Figure 35. Closed-Loop Output Impedance vs. Frequency
Figure 38. Closed-Loop Output Impedance vs. Frequency
110
120 AD8599 ±5V ≤ VSY ≤ ±15V
100 100
PSRR+ (dB) PSRR– (dB)
90 80 PSRR (dB)
80 70 60
AD8597 VSY = ±5V, ±15V
60 40
50 20 40 06274-070
CMRR (dB)
10k
Figure 37. Closed-Loop Gain vs. Frequency
100
ZOUT (Ω)
100
FREQUENCY (kHz)
30 20 1
10
100
1k
0 –20 100
10k
FREQUENCY (kHz)
Figure 36. Common-Mode Rejection Ratio vs. Frequency
1k
10k 100k FREQUENCY (Hz)
1M
Figure 39. Power Supply Rejection Ratio vs. Frequency
Rev. C | Page 11 of 20
10M
06274-038
GAIN (dB)
20
AD8597/AD8599 600
90
AD8599 MEAN = 1.30 STDEV = 0.09 MIN = 1.1 MAX = 1.5 ±5V ≤ VSY ≤ ±15V
70 60
AD8599 MEAN = 1.07 STDEV = 0.02 MIN = 1.05 MAX = 1.15 ±5V ≤ VSY ≤ ±15V
500 NUMBER OF AMPLIFIERS
NUMBER OF AMPLIFIERS
80
50 40 30
400
300
200
20 100 10
1.1
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 VOLTAGE NOISE DENSITY (nV/ Hz)
2.0
0 0.95
1.04
1.07
1.10
1.13
1.16
1.19
Figure 43. Voltage Noise Density @ 1 kHz 100
CURRTENT NOISE DENSITY (pA/ Hz)
AD8599 ±5V ≤ VSY ≤ ±15V
10
1
10
100 FREQUENCY (Hz)
1k
10
1
0.1 1
10
Figure 44. Current Noise Density vs. Frequency
Figure 41. Voltage Noise Density vs. Frequency
1
1
0.1
0.1
THD + N (%)
RL = 600Ω 0.01 AD8597 VSY = ±5V AV = +1 0.001
0.01 AD8597 VSY = ±15V AV = +1 RL = 600Ω
0.001
RL = 100kΩ 0.01
0.1
1
06274-073
0.0001 0.001
1k
100 FREQUENCY (Hz)
10
V rms (V)
0.0001 0.001
RL = 100kΩ 0.01
0.1
1
V rms (V)
Figure 42. THD + N vs. Amplitude
Figure 45. THD + N vs. Amplitude
Rev. C | Page 12 of 20
10
06274-074
1
06274-041
0.1
AD8599 ±5V ≤ VSY ≤ ±15V
06274-042
100
VOLTAGE NOISE DENSITY (nV/ Hz)
1.01
VOLTAGE NOISE DENSITY (nV/ Hz)
Figure 40. Voltage Noise Density @ 10 Hz
THD + N (%)
0.98
06274-040
1.0
06274-039
0
AD8597/AD8599 0.1
0.1 AD8599 VSY = ±15V
AD8599 VSY = ±15V VIN = 3V rms
VIN = 3V rms VIN = 5V rms VIN = 7V rms
THD + N (%)
0.01
THD + N (%)
0.01
0.001
0.001
RL = 600Ω
100
1k FREQUENCY (Hz)
10k
100k
0.0001 10
100
Figure 46. THD + N vs. Frequency
100k
20 AD8599
AD8599 15
10
10 AMPLITUDE (V)
15
0 VSY = ±15V VIN = 20V p-p AV = 1 RF = 1kΩ RL = 2kΩ VERTICAL AXIS = 5V/DIV HORIZONTAL AXIS = 4µs/DIV
–5 –10 –15 –20 –8.6
–4.6
–0.6
3.4
7.4
11.4 15.4 TIME (µs)
19.4
5 VSY = ±15V VIN = 20V p-p AV = –1 RF = 2kΩ RS = 2kΩ CL = 0pF VERTICAL AXIS = 5V/DIV HORIZONTAL AXIS = 4µs/DIV
0 –5 –10 –15
23.4
27.4
31.4
–20 –8.6
Figure 47. Large Signal Response
–4.6
–0.6
3.4
7.4
11.4 15.4 TIME (µs)
19.4
23.4
27.4
31.4
06274-048
5
06274-047
Figure 50. Large Signal Response
80
45 AD8599 40
40
35
OVERSHOOT (%)
60
20 0 VSY = ±15V, ±5V VIN = 100mV p-p AV = 1 EXTERNAL CL = 100pF EXTERNAL RL = 10kΩ VERTICAL AXIS = 20mV/DIV HORIZONTAL AXIS = 400ns/DIV
–40 –60 –80 –800 –400
0
400
800
1200 1600 2000 2400 2800 3200 TIME (ns)
30 25 20 15 10 5
06274-046
–20
AD8599 ±5V ≤ VSY ≤ ±15V AV = 1 RL = 10kΩ
Figure 48. Small Signal Response
0 10
100 CAPACITANCE (pF)
Figure 51. Overshoot vs. Capacitance
Rev. C | Page 13 of 20
1k
06274-049
AMPLITUDE (V)
10k
Figure 49. THD + N vs. Frequency
20
AMPLITUDE (mV)
1k FREQUENCY (Hz)
06274-043
0.0001 10
06274-044
RL = 2kΩ
AD8597/AD8599 45
45 AD8597 VSY = ±5V
40
AD8597 VSY = ±15V
40
35
35
30
30
OVERSHOOT (%)
OVERSHOOT (%)
OS–
25 20 OS– 15
25 20 15
OS+ 10
5 0 10
100
OS+ 06247-078
06247-077
10
5 0 10
1k
100
CAPACITANCE (pF)
Figure 52. Overshoot vs. Capacitive Load
Figure 55. Overshoot vs. Capacitive Load
0
15.0
AD8599 VSY = ±15V AV = 100 RL = 1kΩ
–20 –40
AD8599
VIN = 10V p-p VIN = 20V p-p
12.5
–60
ISY (mA)
CHANNEL SEPARATION (dB)
1k
CAPACITANCE (pF)
–80
10.0
VSY = ±15V
–100 VSY = ±5V –120
7.5
1k
10k FREQUENCY (Hz)
100k
1M
5.0 –50
06274-050
–160 100
–25
Figure 53. Channel Separation vs. Frequency
6.0 AD8599 ±5V ≤ VSY ≤ ±15V
75
100
125
AD8597
5.5
400
VSY = ±15V
ISY (mA)
200 0
5.0 VSY = ±5V
–200
06274-075
4.5
–400 –600 –800 0
1
2
3
4 5 6 TIME (Seconds)
7
8
9
10
06274-053
AMPLITUDE (nV)
25 50 TEMPERATURE (°C)
Figure 56. Supply Current vs. Temperature
800 600
0
06274-020
–140
Figure 54. Peak-to-Peak Noise
4.0 –40
–25
–10
5
20
35
50
65
80
95
TEMPERATURE (°C)
Figure 57. Supply Current vs. Temperature
Rev. C | Page 14 of 20
110
125
AD8597/AD8599 FUNCTIONAL OPERATION
These diodes are connected between the inputs and each supply rail to protect the input transistors against an electrostatic discharge event and they are normally reverse-biased. However, if the input voltage exceeds the supply voltage, these ESD diodes can become forward-biased. Without current limiting, excessive amounts of current may flow through these diodes, causing permanent damage to the device. If inputs are subject to overvoltage, insert appropriate series resistors to limit the diode current to less than 5 mA maximum. The input stage has two diodes between the input pins to protect the differential pair. Under high slew rate conditions, when the op amp is connected as a voltage follower, the diodes may become forward-biased and the source may try to drive the output. A small resistor should be placed in the feedback loop and in the noninverting input. The noise of a 100 Ω resistor at room temperature is ~1.25 nV/√Hz, which is higher than the AD8597/AD8599. Thus, there is a tradeoff between noise performance and protection. If possible, limiting should be placed earlier in the signal path. For further details, see the Amplifier Input Protection…Friend or Foe article at http://www.analog.com/amplifier_input. Because of the large transistors used to achieve low noise, the input capacitance may seem rather high. To take advantage of the low noise performance, impedance around the op amp should be low, less than 500 Ω. Under these conditions, the pole from the input capacitance should be greater than 50 MHz, which does not affect the signal bandwidth.
NOISE AND SOURCE IMPEDANCE CONSIDERATIONS The AD8597/AD8599 ultralow voltage noise of 1.1 nV/√Hz is achieved with special input transistors running at high collector current. Therefore, it is important to consider the total inputreferred noise (eN total), which includes contributions from voltage noise (eN), current noise (iN), and resistor noise (√4 kTRS). eN total = [eN2 + 4 kTRS + (iN × RS)2]1/2
(1)
where RS is the total input source resistance. This equation is plotted for the AD8597/AD8599 in Figure 58. Because optimum dc performance is obtained with matched source resistances, this case is considered even though it is clear from Equation 1 that eliminating the balancing source resistance lowers the total noise by reducing the total RS by a factor of 2. At a very low source resistance (RS < 50 Ω), the voltage noise of the amplifier dominates. As source resistance increases, the Johnson noise of RS dominates until a higher resistance of RS > 2 kΩ is achieved; the current noise component is larger than the resistor noise. 100
10
TOTAL NOISE RESISTOR NOISE ONLY 1
06274-076
The AD8597/AD8599 are not rail-to-rail input amplifiers; therefore, care is required to ensure that both inputs do not exceed the input voltage range. Under normal negative feedback operating conditions, the amplifier corrects its output to ensure that the two inputs are at the same voltage. However, if either input exceeds the input voltage range, the loop opens and large currents begin to flow through the ESD protection diodes in the amplifier.
The AD8597/AD8599 amplifiers have been carefully designed to prevent any output phase reversal if both inputs are maintained within the specified input voltage range. If one or both inputs exceed the input voltage range but remain within the supply rails, the op amp specifications, such as CMRR, are not guaranteed, but the output remains close to the correct value.
TOTAL NOISE (nV/ Hz)
INPUT VOLTAGE RANGE
OUTPUT PHASE REVERSAL Output phase reversal occurs in some amplifiers when the input common-mode voltage range is exceeded. As the commonmode voltage is moved outside the input voltage range, the outputs of these amplifiers can suddenly jump in the opposite direction to the supply rail. This is the result of the differential input pair shutting down that causes a radical shifting of internal voltages that results in the erratic output behavior.
Rev. C | Page 15 of 20
0.1 10
100
1k
SOURCE RESISTANCE (Ω)
Figure 58. Noise vs. Source Resistance
10k
AD8597/AD8599 general noise theory with extensive calculations, see the AN-358 Application Note, Noise and Operational Amplifier Circuits. A good selection table for low noise op amps can be found in AN-940 Application Note, Low Noise Amplifier Selection Guide for Optimal Noise Performance. An interesting note on using one section of a monolithic dual to phase compensate the other section is in the AN-107 Application Note, Active Feedback Improves Amplifier Phase Accuracy.
The AD8597/AD8599 are the optimum choice for low noise performance if the source resistance is kept < 1 kΩ. At higher values of source resistance, optimum performance with respect to only noise is obtained with other amplifiers from Analog Devices. Both voltage noise and current noise need to be considered. For more information on avoiding noise from grounding problems and inadequate bypassing, see the AN-345 Application Note, Grounding for Low- and High-Frequency Circuits. For
V+ 7 Q36 R18
R19
D1 D31 R31
D2
D34
6
2 INVERTING – INPUT
Q18 Q19 D39
D41
D40
D42
C1
VB Q19
OUTPUT
R1
Q20 D3 R32
3 NONINVERTING + INPUT
Q32
Q27
Q28
4 V–
Figure 59. Simplified Schematic
Rev. C | Page 16 of 20
06247-079
D2
AD8597/AD8599 OUTLINE DIMENSIONS 5.00 (0.1968) 4.80 (0.1890)
8
4.00 (0.1574) 3.80 (0.1497)
1
5 4
1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) COPLANARITY 0.10 SEATING PLANE
6.20 (0.2441) 5.80 (0.2284)
1.75 (0.0688) 1.35 (0.0532)
0.51 (0.0201) 0.31 (0.0122)
0.50 (0.0196) 0.25 (0.0099)
45°
8° 0° 0.25 (0.0098) 0.17 (0.0067)
1.27 (0.0500) 0.40 (0.0157)
012407-A
COMPLIANT TO JEDEC STANDARDS MS-012-A A CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 60. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches)
0.60 MAX
5
TOP VIEW
PIN 1 INDICATOR
2.95 2.75 SQ 2.55
8
12° MAX
0.50 0.40 0.30
0.70 MAX 0.65 TYP
0.05 MAX 0.01 NOM 0.30 0.23 0.18
SEATING PLANE
0.20 REF
1.60 1.45 1.30
EXPOSED PAD (BOTTOM VIEW)
4
0.90 MAX 0.85 NOM
0.50 BSC
0.60 MAX
1
1.89 1.74 1.59
PIN 1 INDICATOR
FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATIONS SECTION OF THIS DATA SHEET. 101708-B
3.25 3.00 SQ 2.75
Figure 61. 8-Lead Lead Frame Chip Scale Package [LFCSP_VD] 3 mm × 3 mm Body, Very Thin, Dual Lead (CP-8-2) Dimensions shown in millimeters
ORDERING GUIDE Model AD8597ACPZ-R2 1 AD8597ACPZ-REEL1 AD8597ACPZ-REEL71 AD8597ARZ1 AD8597ARZ-REEL1 AD8597ARZ-REEL71 AD8599ARZ1 AD8599ARZ-REEL1 AD8599ARZ-REEL71 1
Temperature Range −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C
Package Description 8-Lead Lead Frame Chip Scale Package [LFCSP_VD] 8-Lead Lead Frame Chip Scale Package [LFCSP_VD] 8-Lead Lead Frame Chip Scale Package [LFCSP_VD] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N]
Z = RoHS Complaint Part.
Rev. C | Page 17 of 20
Package Option CP-8-2 CP-8-2 CP-8-2 R-8 R-8 R-8 R-8 R-8 R-8
Branding A22 A22 A22
AD8597/AD8599 NOTES
Rev. C | Page 18 of 20
AD8597/AD8599 NOTES
Rev. C | Page 19 of 20
AD8597/AD8599 NOTES
©2007–2009 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D06274-0-12/09(C)
Rev. C | Page 20 of 20