Preview only show first 10 pages with watermark. For full document please download

Single Contacts

   EMBED


Share

Transcript

Catalogue No. 1006-e Single Contacts ODU Springtac™ Contacts and ODU Lamella™ Contacts Ø 0,76 mm to Ø 60 mm 2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29 E-mail:[email protected] Site web : www.hvssystem.com Table of Contents Introduction ............................................................................................................................................................3 - Performance Requirements on Single Contacts.......................................................................................................3 - Contact Theory - Contact Resistance......................................................................................................................4 - Contact Design of Single Turned Contacts .............................................................................................................6 - Evaluation of Different Contact Designs .................................................................................................................8 Technical Information about the Application of Single ODU Contacts.....................................9 The ODU-Single Contact .................................................................................................................................10 ODU Springtac™ Sockets.........................................................................................................................10 - with Threaded Stud Termination ....................................................................................................................10 - with Crimp Termination .................................................................................................................................11 ODU Lamella™ Sockets ............................................................................................................................12 - with Threaded Stud .......................................................................................................................................12 - with Crimp Termination .................................................................................................................................13 - with Outside Thread ......................................................................................................................................14 Springtac™ Sockets, Open Both Ends ...............................................................................................15 Pins for Sockets ............................................................................................................................................16 - with Threaded Stud Termination ....................................................................................................................16 - with Crimp Termination .................................................................................................................................17 Flatsockets with Springtac contacts .........................................................................................................18 Springtac™ Pin, Solder and Threaded Stud..........................................................................................19 Applications, Applications Examples and Special Versions ..........................................................21 Crimptools..............................................................................................................................................................33 Termination Technology..................................................................................................................................35 Technical Information .......................................................................................................................................36 - Current Load........................................................................................................................................................37 - Conversion Tables, Physical Parameters.................................................................................................................38 Ordering Information .................................................................................................................(Inside Cover) 39 All dimensions in mm. All figures are Illustrations. Changes reserved. 2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29 E-mail:[email protected] Site web : www.hvssystem.com Introduction Performance Requirements for Electrical Contacts As a rule, connectors consist of housings, insulators, and contacts. Single contacts, as discussed in this catalog, are typically used without housings or insulators. Important parameters for defining contact performance are: ● contact resistance ● max. temperature ● current load ● insertion and withdrawal force ● max. number of mating cycles ● contact reliability ● life cycle ● dimensions ● cost It should be noted that there is a clear relationship between all these parameters. It is relatively easy to reduce. Insertion force or increase number of mating cycles, but it will cause an increase in contact resistance. Often, it will also have a negative effect on the contact reliability. (see Figure 1). Contact resistance and current load are two very important contact characteristics. large large Mating Cycles Electrical Contact Resistance Contact Reliability small small Optimal Region small large Insertion and Withdrawal Force, Contact Normal force Fig. 1 Shows relationship between mating cycles, electrical contact resistance, and contact reliability as a function of insertion and withdrawal force. 2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29 E-mail:[email protected] Site web : www.hvssystem.com Introduction Contact Theory - Electrical Resistance When two cylindrical conductors are pressed together as shown in Fig. 2 they create a simple electrical contact. If an electrical power source is connected to the two contacts as shown in Fig. 2 an electrical current flows and one can measure a voltage drop ∆ U along the path of the current. The voltage drop is a result of the current flowing through conductor resistance Rb and interface resistance Rk (sometimes called restriction resistance) at the point where the two conductors are in contact. The sum of the two resistances is defined as contact resistance Rd. Rd = Rb + Rk Contact resistance Rd is determined through measurement. The conductor resistance Rb can be calculated: Rb ( Ω ) = Conductor Resistance Rb = L· A L ( m ) = Conductor Length ( Ω · mm2/m ) = Specific Resistance of Conductor A ( mm2 ) = Conductor Cross Section Example: L = 75 mm (see. Fig. 2) (Cu) = 0,018 Ω · mm2/m ( µΩ · m) 2 d = 3,5 mm ⇒ A = Π · d = 9,6 mm2 4 Rb = 0,14 mΩ We now can determine Rk easily: Rk = Rd - Rb The interface resistance is a function of several parameters - some of which are: Surface plating material and finish (roughness), surface condition (corrosion), normal contact force (F), physical layout such as number of contact points, etc.. For practical application it is necessary to consider Rd of the contact as the resistance from one contact termination to the other. Brand new single contacts (also single-position connectors) have contact resistance Rd from about 50 % of conductor resistance Rb and 50 % of the interface resistance Rk, - which means that Rd is approximately (Rb + Rk). The conductor resistance Rb will generally remain constant over the life of the contact. The interface resistance Rk will typically change over time. Introduction Cylindrical Conductors (Pins) Pressed together with normal force F. F IK IK ∆U Rk Rb Rd Rb (Ω) L (Lenght) Fig. 2 ∆U Rd Ik Rb Rk = Total voltage drop = Rd · Ik = Contact resistance = Contact current = Conductor resistance = Surface resistance F Introduction Contact Principle of Machined Contacts Major categories of machined, also known as turned, cylindrical contacts are: ● Slotted contacts ● Lamella (louvered) contacts ● Springwire contacts The difference is only in the socket design. Pins are common to the three types of sockets. (Fig. 3). Slotted contact socket Lamella" socket Pin Springtac" socket Fig. 3 Slotted sockets in their simplest form have one slot with two contact points between socket and pin. Sockets with two slots have four contact points (See Fig. 4 below). Socket Pin Unmated A Mated Fig. 4 A View A - A Introduction The lamella contact (ODU Lamella™) also known as louvered contact, has many contact points. One or more of the stamped contact bands can be used in the same carrier (Fig. 5). Pin Socket Unmated Carrier Lamella A Mated A View A - A Fig. 5 The springwire contact (ODU-Springtac™) offers the largest number of contact points between pin and socket. The individual springwires are mounted in optimum position inside the socket carrier. The springwires make contact with the pin surface independently from each other ( see Fig. 3 and 6). Socket Pin Unmated Carrier Expansion Ring Springs Spark Protection A Mated A View A - A Fig. 6 A typical 4 mm contact has the following number of pin-to-socket contact points: ● Slotted contact ● Lamella™ contact ● Springtac™ contact 2 or 4 18 38 Introduction Technical Characteristics of Turned Contacts Evaluation of the Three Contact Designs ODU manufactures all three types of contact. The slotted contact is used extensively in all standard connector designs. It is less expensive to manufacture and offers relatively good performance in contact resistance and current load. It is limited in the number of mating cycles and contact force. (Fig. 7) In its simplest form (without additional springs) it is generally used only in connectors with contacts of less than 3 mm in diameter. It is therefore not discussed in this single contact catalog. The lamella (louvered) contact has important advantages over the slotted contact. For example, insertion and withdrawal forces are less, contact resistance is less, number of mating cycles is about ten times higher, and contact reliability is better (Fig. 7). With the use of contact lubricants further improvement are possible. The ODU Lamella™ contact has contact lubricant applied by the factory (without available on request). The Lamella™ contact can be manufacture very cost effectively. Insertion and Withdrawal Force ( N ) high low 0 1 The springwire contact has all the advantages of the lamella contact in addition to: 10 100 1000 10k 100k 1 Mio 100k 1 Mio Contact Resistance ( Ω ) ● extreme contact reliability due to: a) independent springwires high b) long spring path of the springwires compensates for higher alignment tolerances, especially important in springwire pins for test leads. ● very high number of mating cycles when designed with optimum normal force and high quality surface finish. No contact lubricant is needed. ● can be as small as .76 mm pin diameter and still have 15 independent springwires! low 0 1 The above technical advantages can only be realized with significant manufacturing know-how. The cost level for the three contact types is about 1:2:3 for slotted/lamella/springwire contacts. 10 100 1000 Springtac" contact Lamella" contact Slotted contact Fig. 7 10k Technical Comments Comments to the Technical Parameters of ODU Contacts (see Page 10 and on). Mechanical Parameters ● Insertion and withdrawal force: Data for Lamella™contacts is for standard contacts with lubricant and after 30 pre-conditioning mating cycles. Springtac™ data is for new contacts without lubricant. Surface finish is silver-plated for pin, socket carrier, springwires, and lamellas. All data are average values. Electrical Data ● Current load (nominal and max. continuous): Data is based on contacts terminated to correct size of conductors. No additional contact temperature rise due to incorrect conductors or cables. All measured contact temperature rise is due to contact resistance, only. For temperature rise vs. current load see table on page 34. ● Nominal current: The current which causes a 45° C temperature rise (for example: from 23° C to 68° C) ● Max. continuous current: The current which causes a temperature rise to 120° C (VDE 0627) ● Short-term current: Current load for no more than 10 ms. ● Contact resistance: total resistance Rd (see Page 4) of the contact from termination to termination. The interface resistance is clearly less than the contact resistance (see Page 4). All data are average values. ● Mating cycles: Standard for Lamella™ contact 10,000 mating cycles, Standard for Flatsocket™ 50.000 mating cycles and Standard for Springtac™ contact 100,000 mating cycles. Before the first plugging it is necessary to attach factory-made a thin lubricant film on the contacts. Both values based on the following assumptions: - clean environment - correct radial alignment - clean mating pin. ● Lubricants: Standard use only in Lamella™ contacts. For additional lubrication we suggest: Kontasynth BA 100 Spray – made by Klüber Lubrication. ● Materials (standard): Pin and carrier CuZn alloy with silver plated surfaces. Lamellas CuBe-alloy, silver-plated. Springwires CuSn-alloy silverplated. (see ordering information page 39). Springtac™ Sockets Series DSO Springtac™ Sockets with Solder or Threaded Stud Termination. – Springtac™ sockets with threaded stud termination mate with solid pins in corresponding size. – Ideal for connections with power bus bars, backplanes and contact blocks. Ød ØD M ØQ – Easily connected to cables using standard cable lugs or soldered into solder cavity. SW l g s 10,5 10,5 10,5 15 15 15 24 24 24 36 36 36 48 48 48 48 48 48 48 – – 5 5 6 7 8 11 12 14 17 19 19 22 24 27 27 32 32 2,6 3 3 4 5 5 6 8 10 12x1,5 14x1,5 16x1,5 18x1,5 20x2 22x2 24x2 27x2 32x2 32x2 1,5 3 4 4,5 8 10 13 15 22 25 30 35 40 45 50 55 60 60 70 in al M in C ax N . C urre nt Sh ont. in or A tte Cur r e r m n Co ti Cu n nt A rre ac tR nt es in ist kA an ce µΩ No m aw al Fo dr on ith rti 1,25 2 4 1,8 5,5 1,8 6,5 2,3 11 3 15 3 3,6 18 4,8 22 6,2 30 7,6 35 40 9 11,5 50 12,8 55 14,5 65 70 16 17,8 80 85 20 90 25 100 25 W se In Q Ø (T 12,5 12,5 12,5 15 19 19 22 26 30 34 38 42 46 50 54 58 62 62 62 M g SW s 15,5 15,5 15,5 22,5 22,5 22,5 33,5 33,5 33,5 47 47 47 66 66 66 66 66 66 66 Fo rce ... M d hr ea 4 4 6 7 8 9 11 14 16 18 21 23 25 27 30 32 34 36 38 l D Ø d Ø 1,5 2 2,5 3 4 5 6 8 10 12 14 16 18 20 22 24 26 28 30 Electrical Data1) rce in ) rts Pa ar d nd ta rS fo 170.106.100.201.000 170.107.100.201.000 170.109.100.201.000 170.110.100.201.000 170.111.100.201.000 170.112.100.201.000 170.113.100.201.000 170.115.100.201.000 170.117.100.201.000 170.119.100.201.000 170.120.100.201.000 170.121.100.201.000 170.122.100.201.000 170.123.100.201.000 170.124.100.201.000 170.125.100.201.000 170.126.100.201.000 170.127.100.201.000 170.128.100.201.000 Mech. Data1) Dimensions N Part Number 25 30 30 35 55 85 95 140 175 230 280 340 375 450 480 500 530 650 720 35 40 40 50 80 110 140 210 275 340 400 460 520 600 650 700 750 850 950 1,5 2,5 3 4 7 10 13 18 25 34 40 50 60 70 80 90 100 110 120 500 340 300 250 210 195 180 160 150 140 135 130 120 115 110 105 100 90 80 Standard surface finish: Carrier and springwires Ag. Other finishes on request. Dimensions in mm. - Dim. ØD and s min. dimensions. 1) See tech. info. Page 9 Additional variations and other dimensions are available on request. For ordering information see page 39 Springtac™ Sockets Series DCO Springtac™ Sockets with Crimp Termination – Springtac™ sockets with crimp termination mate with solid pins in corresponding size. ØD Q Ød – Ideal for connections to stranded copper conductors. l g s 9,8 9,8 15,5 15,5 15,5 22,5 22,5 22,5 22,5 22,5 33,5 33,5 33,5 47 47 47 66 66 66 66 66 66 135 5 5 6,5 6,5 6,5 6,5 6,5 13 12,5 17,5 22,5 22,5 22,5 28 28 28 34 34 34 54 64 69 Part No. Crimp Tools (Te Se rmin cti a on tio In m nC se m 2 ro rti on ) ssFo W r ith ce dr in aw N No al Fo m in rce al M in Cu ax N rr .C on ent Sh i t. or Cu n A tte rre rm nt Co Cu in nt A rre ac nt tR in es kA ist an ce µΩ g 7 7 12 10,5 10,5 15 15 15 15 15 24 24 24 36 36 36 48 48 48 48 48 48 –– s 1,58 1,98 4 4 6 5,5 7 8 8 9 11 14 16 18 21 23 25 27 30 32 34 40 42 l D Ø d Ø 0,76 1,02 1,5 2 2,5 3 3 4 4 5 6 8 10 12 14 16 18 20 22 24 26 28 30 Electrical Data1) Q Pa ar d nd ta rS fo 170.361.700.207.000 170.362.700.207.000 171.606.100.201.000 171.607.100.201.000 171.609.100.201.000 170.610.100.201.000 171.610.100.201.000 170.611.100.201.000 171.611.100.201.000 171.612.100.201.000 171.613.100.201.000 171.615.100.201.000 171.617.100.201.000 171.619.100.201.000 171.620.100.201.000 171.621.100.201.000 171.622.100.201.000 171.623.100.201.000 171.624.100.201.000 171.625.100.201.000 171.626.100.201.000 171.627.100.201.000 171.628.100.201.000 Mech. Data1) Dimensions rts Part Number 0,38 0,7 1 0,5 2 1,5 4 2,5 5,5 2,5 6,5 2,5 6,5 4 11 4 11 6 15 10 18 16 22 25 30 35 35 50 40 70 50 95 55 120 65 150 70 185 80 240 85 300 90 400 100 500 0,5 0,8 1,5 3 4 4,5 4,5 8 8 10 13 15 22 25 30 35 40 45 50 55 60 60 70 9 11 25 30 30 30 35 35 55 85 95 140 175 230 280 340 375 450 480 500 530 650 720 11,5 15 35 40 40 40 50 50 80 110 140 210 275 340 400 460 520 600 650 700 750 850 950 0,7 1 1,5 2,5 3 3 4 4 7 10 13 18 25 34 40 50 60 70 80 90 100 110 120 3800 2200 500 340 300 250 250 210 210 195 180 160 150 140 135 130 120 115 110 105 100 90 80 See Table Page 28 Standard surface finish: Carrier and springwires 6µ Ag. Other finishes on request. Dimensions in mm. - Dim. ØD and s min. dimensions. 1) See tech. info. Page 9 Additional variations and other dimensions are available on request. For ordering information see page 39 Sockets with Lamella™ Contacts Series LS1 Sockets with Lamella™ Contacts for Threaded Stud Termination – Lamella™ sockets with threaded stud termination mate with solid pins in corresponding size. – Ideal for connections to power bus bars, backplanes and contact blocks. – Easily connected to cables using standard cable lugs or soldered into solder cavity. Ød ØD ØQ M SW l g s Mech. Data1) ) d 15,5 15,5 22,5 22,5 22,5 33,5 33,5 33,5 33,5 33,5 33,5 12,5 2,6 3 12,5 4 15 5 19 5 19 6 22 8 26 8 26 10 30 10 30 34 12x1,5 1,25 1,8 2,3 3 3 3,6 4,8 4,8 6,2 6,2 7,6 rti 6 7 10 15 17 19 35 35 65 40 75 W In se Q Ø (T M g SW – – 5 6 7 8 8 11 11 12 12 on hr ea 10,5 10,5 15 15 15 24 24 24 24 24 24 s l D Ø Ø d 4 4 7 8 9 11 11 14 14 16 16 ith dr M Fo rce ... Pa rd nd a ta fo rS 178.106.100.201.000 1,5 178.107.100.201.000 2 178.110.100.201.000 3 178.111.100.201.000 4 178.112.100.201.000 5 178.113.100.201.000 6 178.213.100.201.000 6 178.115.100.201.000 8 178.215.100.201.000 8 178.117.100.201.000 10 178.217.100.201.000 10 Electrical Data1) in aw N No al Fo m in rce al M in Cu ax N rre .C n on t in Sh t. A or Cu tte rre Co rm nt nt Cu in ac A r r tR en es ti n ist k an ce A µΩ Dimensions rts Part Number 4 5 8 13 14 16 32 30 60 35 70 25 30 40 60 75 100 120 150 170 200 220 30 40 55 80 110 140 160 210 230 290 310 2 2,5 5 8 11 14 16 22 25 28 32 420 370 270 220 190 140 100 110 80 90 65 Standard surface finish: Carrier and springwires Ag. Other finishes on request. Dimensions in mm. - Dim. ØD and s min. dimensions. 1) See tech. info. Page 9 Additional variations and other dimensions are available on request. For ordering information see page 39 Sockets with Lamella™ Contacts Series LC1 Sockets with Lamella™ Contacts for Crimp Termination – Springtac™ sockets with crimp termination mate with solid pins in corresponding size. ØD Q Ød – Ideal for connections to stranded copper conductors. l g s g 10,5 10,5 15 15 15 24 24 24 24 24 24 s l D Ø Ø d 4 4 7 8 9 11 11 14 14 16 16 15,5 15,5 22,5 22,5 22,5 33,5 33,5 33,5 33,5 33,5 33,5 6,5 6,5 6,5 12,5 17,5 22,5 22,5 22,5 22,5 22,5 22,5 Electrical Data1) Part No. Crimp Tools Q (T Se erm cti in on at m ion In m2 C se rti ) ros on sFo W rce i th dr in a N No wal Fo m rce in al M in Cu ax N .C rr on ent Sh i t. or Cu n A tte rre rm nt Co Cu in nt A r re ac nt tR in es kA ist an ce µΩ Pa da rd ta n rS fo 178.606.100.201.000 1,5 178.607.100.201.000 2 178.610.100.201.000 3 178.611.100.201.000 4 178.612.100.201.000 5 178.613.100.201.000 6 178.713.100.201.000 6 178.615.100.201.000 8 178.715.100.201.000 8 178.617.100.201.000 10 178.717.100.201.000 10 Mech. Data1) Dimensions rts Part Number 1,5 2,5 4 6 10 16 25 25 35 35 50 6 7 10 15 17 19 35 35 65 40 75 4 5 8 13 14 16 32 30 60 35 70 25 30 40 60 75 100 120 150 170 200 220 30 40 55 80 110 140 160 210 230 290 310 2 2,5 5 8 11 14 16 22 25 28 32 420 370 270 220 190 140 100 110 80 90 65 See Table Page 28 Standard surface finish: Carrier and springwires Ag. Other finishes on request. Dimensions in mm. - Dim. ØD and s min. dimensions. 1) See tech. info. Page 9 Additional variations and other dimensions are available on request. For ordering information see page 39 Sockets with Lamella™ Contacts Series LZ1 – LF1 Series LF1 Ød M Series LZ1 ØD Ød M Sockets with Lamella™ Contacts and Outside Thread k s k 4 4 5 5 7x0,5 7x0,5 8x1 8x1 10 10 12x1,5 12x1,5 14x1 14x1 18x1,5 18x1,5 6 6 7 7 10 10 15 15 17 17 19 19 35 35 40 40 rce dr a ith W se In s – 5,5 – 5,5 – 10 – 10 – 10 – 10 – 13 – 13 M (T 7 7 7 7 12 13 13 13 13 13 19 19 26 26 26 26 Fo rti on d hr ea – 7 – 8 – 10 – 11 – 13 – 16 – 18 – 22 k D yle Z F Z F Z F Z F Z F Z F Z F Z F Ø d St Ø 178.306.100.201.000 1,5 178.346.100.201.000 1,5 178.307.100.201.000 2 178.347.100.201.000 2 178.310.100.201.000 3 178.350.100.201.000 3 178.311.100.201.000 4 178.351.100.201.000 4 178.312.100.201.000 5 178.352.100.201.000 5 178.314.100.201.000 6 178.355.100.201.000 6 178.315.100.201.000 8 178.356.100.201.000 8 178.318.100.201.000 10 178.358.100.201.000 10 Electrical Data1) in N To rq wal u F or in e ce Nm in N No m .C ur M re ax nt .C in on A 2 t. C ) Sh ur or ren tte rm t in Co Cu A 2) nt rre ac tR nt es in ist kA an ce µΩ ) M ... Pa ar d nd ta fo rS Mech. Data1) Dimensions rts Part Number 4 4 5 5 8 8 13 13 14 14 16 16 30 30 35 35 0,5 0,5 0,5 0,5 1,2 1,2 1,2 1,2 3 3 6 6 6 6 10 10 25 25 30 30 40 40 60 60 75 75 100 100 150 150 200 200 30 30 40 40 55 55 80 80 110 110 140 140 210 210 290 290 2 2 2,5 2,5 5 5 8 8 11 11 14 14 22 22 28 28 300 300 250 250 170 170 140 140 120 120 90 90 60 60 55 55 Standard surface finish: Carrier and springwires Ag. Other finishes on request. Dimensions in mm. - Dim. M and k min. dim.. 1) See tech. info. Page 9. 2) depends on mounting scheme. Additional variations and other dimensions are available on request. For ordering information see page 39 Springtac™ Sockets Series DZO – DFO L D D Springtac™ Sockets open both ends B K E K C Picture III D C G H D Picture I F B B K K Picture II Picture IV Mech. Electrical Data1) Data1) Dimensions In se r M tion ea n Forc Sin valu e e gl in e N Bu Co rd en nt ac in tR A es ist an ce – – – – 4 – – – – – – – 10 11 19 19 26 35 45 50 70 75 100 105 F E C – – – 11 13,5 18,5 – – 47,5 – – 66 K 3 8 3 6 8 – – – 4 M7x0,5 8 3 9 1,5 – – 6 20 – 10 – – – – 6 20 2 10 – – 2,5 8,5 8 16 2 14 – – – 11 10 32 5 16 – – 7 13 14 43 – 21 – – – – 16 55 – 22 – – – – 20 55 8 27 – – 17 35 22 M38x1,5 48 – SW46 50Ø – – – 30 M44x1,5 48 6 SW50 56Ø – – – 36 55 – 44 – – 30 47 B H IV III II II I II II II II III III II G 174.010.100.201.000 174.011.100.201.000 174.014.100.201.000 174.016.100.201.000 174.017.100.201.000 174.018.100.201.000 174.019.100.201.000 174.020.100.201.000 174.021.100.201.000 174.024.100.201.000 174.028.100.201.000 174.022.100.201.000 Pic tu Co ren nt um ac be tØ r D fo rS ta nd ar d Pa rts L µΩ Part Number 20 25 60 60 80 120 115 250 375 400 600 800 360 320 260 260 210 170 125 110 75 70 60 55 Standard surface finish: Carrier and springwires Ag. Other finishes on request. Dimensions in mm. - Dim. ØD and s min. dimensions. 1) See tech. info. Page 9 Additional variations and other dimensions are available on request. For ordering information see page 39 Pins for Sockets Series SS0 Pins for Sockets Series DSO, DCO, LSX, LCX, LZX, LFX with Solder or Threaded Stud Termination. ØD Ød ØQ M SW l g s Dimensions -0,03 -0,03 -0,03 -0,03 -0,03 -0,03 -0,03 -0,03 -0,03 -0,03 -0,04 -0,04 -0,04 -0,04 -0,04 -0,04 -0,04 -0,04 -0,04 -0,04 -0,04 -0,04 d 10 10 10 14 14 14 23 23 23 23 23 23 34 34 34 46 46 46 46 46 46 46 11,5 11,5 11,5 15,5 16 16 26 26 26 26 26 26 38 38 38 50 51 51 51 51 52 52 3 4 4 5 6 6 7 8 9 11 12 12 14 16 17 19 22 27 27 32 32 32 2,6 10 12,5 3 12,5 3 4 15 5 19 5 19 6 22 8 22 8 26 10 26 10 30 30 12x1,5 34 12x1,5 38 14x1,5 42 16x1,5 46 18x1,5 20x2 50 22x2 54 24x2 58 27x2 62 32x2 62 32x2 62 Q Ø (T M g s l D Ø 4 5 5 6 7 7 8 11 11 14 16 16 16 18 20 23 25 30 30 34 36 38 SW an 1,5 2 2,5 3 4 5 6 6 8 8 10 10 12 14 16 18 20 22 24 26 28 30 To ler Ø d ta rS fo 181.106.000.301.000 181.107.000.301.000 181.109.000.301.000 181.110.000.301.000 181.111.000.301.000 181.112.000.301.000 181.113.000.301.000 181.213.000.301.000 181.115.000.301.000 181.215.000.301.000 181.117.000.301.000 181.217.000.301.000 181.119.000.301.000 181.120.000.301.000 181.121.000.301.000 181.122.000.301.000 181.123.000.301.000 181.124.000.301.000 181.125.000.301.000 181.126.000.301.000 181.127.000.301.000 181.128.000.301.000 hr ea ce nd ar d M ... Pa ) rts Part Number 1,25 1,8 1,8 2,3 3 3 3,6 4,8 4,8 6,2 6,2 7,6 7,6 9 11,5 12,8 14,5 16 17,8 20 25 25 Standard surface finish: Carrier and springwires Ag. Other finishes on request. Dimensions in mm. For mechanical and electrical data see information for sockets. Additional variations and other dimensions are available on request. For ordering information see page 39 Pins for Sockets Series SC0 ØD Q Ød Pins for Sockets Series DSO, DCO, LSX, LCX, LZX, LFX with Crimp Termination. l g s Dimensions rts Pa ar d nd Q 7 7 10 10 10 14 14 14 23 23 23 23 23 23 34 34 34 46 46 46 46 46 46 46 g l D 1,57 2,1 4 4 6 7 8 9 11 11 14 14 16 16 18 21 23 25 27 30 32 34 40 42 s 0,76 1,02 1,5 2 2,5 3 4 5 6 6 8 8 10 10 12 14 16 18 20 22 24 26 28 30 Ø Ø d ta rS fo 181.603.000.301.000 181.604.000.301.000 181.606.000.301.000 181.607.000.301.000 181.609.000.301.000 181.610.000.301.000 181.611.000.301.000 181.612.000.301.000 181.613.000.301.000 181.713.000.301.000 181.615.000.301.000 181.715.000.301.000 181.617.000.301.000 181.717.000.301.000 181.619.000.301.000 181.620.000.301.000 181.621.000.301.000 181.622.000.301.000 181.623.000.301.000 181.624.000.301.000 181.625.000.301.000 181.626.000.301.000 181.627.000.301.000 181.628.000.301.000 Part No. Crimp Tools (Te Se rmin cti a on tio m nC m 2 ro ) ss- Part Number 8,5 8,5 11,5 11,5 11,5 16 16 16 26 26 26 26 26 26 38 38 38 51 51 51 51 51 51 –– 5 5 6,5 6,5 6,5 6,5 12,5 17,5 22,5 22,5 22,5 22,5 22,5 22,5 28 28 28 34 34 34 54 64 69 69 0,38 0,5 1,5 2,5 2,5 4 6 10 16 25 25 35 35 50 50 70 95 120 150 185 240 300 400 500 See Table Page 28 Standard surface finish: Carrier and springwires Ag. Other finishes on request. Dimensions in mm. For dimensions see information for sockets. Additional variations and other dimensions are available on request. For ordering information see page 39 Flat-Socket with Springwire contact Flat Springtac™ Socket (Standard 50.000 mating cycles) for test application of Pins 6,3 x 0,8 mm 4,8 x 0,8 mm 2,8 x 0,8 mm 1,6 x 0,8 mm (new) 1,6 x 0,6 mm (new) 0,64 x 0,64 mm (new) for the testing of Pins in Grid 2,54 Can be supplied in special version for Kelvin measurements. 190.216.700.201.000 190.215.700.201.000 2,8 x 0,8 3 24,5 4 20,5 1,5-2,5 4,8 6 11 10,5 ø 3,0 18 6,5 1±0,5 ø 1,5 1,6 x 0,8 2,6 2,2 1,35 4,3 10 8,3 18 190.238.700.201.000 1,6 x 0,6 6,5 0±0,3 ø 1,02 190.234.700.201.000 190.222.700.201.000 190.242.700.201.000 4 2,6 4,7 10 9,2 0,64 x 0,64 1,8 1,85 1,4 2 5,6 * Mate contact for Quick-Change-Head see page 28 4 L K I H G F E D C B 3 Ter mi Cro nation ss-S ect ion Ins in m ert m2 ion Wi F o r thd raw ce in N No min al For ma al Cu ce in N x. C rren Con ont. C t in A urr tact Res ent in ista nce A µΩ n ct P i A Co nta 6,3 x 0,8 6,8 4,8 x 0,8 20,5 6,5 1±0,5 190.235.700.201.000 190.214.700.201.000 190.218.700.201.000 Mech. Electrical Data Data Dimensions for wit hM ate Ter min atio n wit h Cri m pT erm ina tion Part Number 19,5 1,0-1,5 19,5 0,5-1,0 13,7 0,25-0,5 11,5 6,5 0±0,15 ø 1,02 6 27 36 5 22 30 1,3 27 36 4 3 16 22 2 2 1,5 13 18 2,7 1,5 1 7 9 7,5 Pins for Sockets Series SDS (Pins with threaded stud) M Ø d H9 h Springtac™ pin for Ø 1,5 bis 26 mm with Solder and Threaded Stud Termination. S1 g e L s Dimensions Mech. Electrical Data1) Data1) k 150.001.100.201.000 150.002.100.201.000 150.005.100.201.000 150.006.100.201.000 150.106.100.201.000 150.007.100.201.000 150.107.100.201.000 150.008.100.201.000 150.108.100.201.000 150.009.100.201.000 150.109.100.201.000 150.010.100.201.000 150.110.100.201.000 150.011.100.201.000 150.111.100.201.000 150.012.100.201.000 150.112.100.201.000 150.013.100.201.000 150.113.100.201.000 150.014.100.201.000 150.114.100.201.000 150.015.100.201.000 150.115.100.201.000 150.016.100.201.000 150.116.100.201.000 150.017.100.201.000 150.117.100.201.000 150.018.100.201.000 150.118.100.201.000 150.019.100.201.000 150.119.100.201.000 150.020.100.201.000 150.120.100.201.000 M (T 3 6 5 3 9 5 12,5 5,5 3,5 20 5,5 5 20 5,5 6 7 21 7 8 21 7 32 8,5 9 32 8,5 10,5 32 8,5 11,5 32 8,5 14 32 8,5 16 43 14 18 43 14 20 43 14 22 43 14 24 43 14 26 43 14 28 g h e L S1 k s 0 0 0 0 0,5 0 0,5 1 0,5 1,5 1 1,8 1 1,8 1 2 1 2 1 2 1 2 2 2,5 2 2,5 2 2,5 2 3 2 3 2 3 2 3 8 2,3 9 2,3 11,7 2,6 13,7 3 15 4 17 5 17 6 19 6 20,5 8 22 8 25 10 28 12x1,5 32 14x1,5 36 16x1,5 40 16x1,5 56 18x1,5 50 20x2 55 20x2 In hr ea tØ ac nt Co 1,5 19 2 23 3 30 4 39 5 41,5 6 46 7 46 8 60,5 9 62 10 63,5 12 66,5 14 69,5 16 91 18 95 20 99 22 104 24 109 26 114 d M se ... rti ) M on ea F n orc Sin Valu e e gl i e Bu n N Co rd en nt ac in tR A es ist an ce µ Pr ot k ar Sp ith w w ith o Pr ut ot Sp ec tio ark n ec tio n Ω Part Number 2 4 5,5 12 16 19 21 24 28 32 38 43 52 55 65 70 84 85 10 15 25 36 45 55 65 78 90 104 135 160 175 190 210 225 240 260 800 675 600 525 475 425 375 325 275 250 200 175 165 145 140 130 125 115 Standard surface finish: Carrier and springwires Ag. Other finishes on request. Dimensions in mm. For mechanical and electrical data see information for sockets. Additional variations and other dimensions are available on request. For ordering information see page 39 Contacts Massiv ODU-Sockets for spring mounted ODU Pins, with Screw- /Solder-Termination Data for contacting of massiv sockets with spring mounted pins. Dimensions in mm Dimensions M 19 20 25 28 35 40 40 55 55 60 64 67 75 78 82 84 86 88 12 12 16 22 23 26 26 40 40 40 40 40 50 50 50 50 50 50 17,5 18,5 23,5 26 33 37,5 37,5 52 51 56 59 62 70 72 75 76 78 79 3 4 5 6 x 0,75 8x1 10 12 x 1,5 12 x 1,5 16 x 1,5 16 x 1,5 18 x 1,5 20 x 2 22 x 2 24 x 2 30 x 2 30 x 2 30 x 2 33 x 2 Applications: Counterpart to ODU Springwire-Pin. For the installation in instrument panels and devices. Q (Th S 5 6 7 8 10 12 14 14 18 19 22 24 27 30 36 36 36 42 I D ø d 1,5 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 K 160.001.000.301.000 160.002.000.301.000 160.005.000.301.000 160.006.000.301.000 160.007.000.301.000 160.008.000.301.000 160.009.000.301.000 160.010.000.301.000 160.011.000.301.000 160.012.000.301.000 160.013.000.301.000 160.014.000.301.000 160.015.000.301.000 160.016.000.301.000 160.017.000.301.000 160.018.000.301.000 160.019.000.301.000 160.020.000.301.000 ø fo rS ta re nd ad ar d M ... Pa ) rts Part Number 1,5 2,2 2,5 3 3,5 4,5 5 5 5,5 5,5 6,5 8,1 9,5 11,5 11,5 13 13,2 15 Applications, Application Examples and Special Versions Application All contacts shown can be either used as stand-alone contacts or in connectors and interconnect systems. Due to the relatively large size of the single contacts it is generally better to use different styles of contacts for connectors. The single contacts shown in this catalog are used mainly for: ● Power Supplies - mainframe computers - lighting systems - data transmission systems - rack-and-panel cabinets - electric vehicles - welding ● Power Distribution ● Testing - automotive - entertainment industry - industrial electronics ● Docking Systems ● Industrial (Heavy Duty) Connections ● Grounding ● Medical Cables ● Medical Connectors Docking System Railroad Cars. Power supply for Telecommunication Power supply – Welding sleeves for plastic pipes ODU Springtac sockets (with insulation), Ø 4,0 /4,7 and 4,8 mm The connection between the equipment and the welding sleeve is made by ODU Springtac contacts, Ø 4,0 / 4,7 and 4,8 mm. Plastic insulation protects the ODU Springtac sockets against contact. Why ODU Springtac contacts? ● extremely high number of mating cycles ● high current-carrying capacity Power supply for Telecommunication ODU Springtac high-power contacts One outstanding feature of the ODU Springtac contacts, Ø 18 mm, is that they can compensate for a very large radial offset of over +/- 1 mm. Why ODU Springtac contacts? ● absolutely secure contacting ● large radial tolerance compensation ● low contact resistance Applications, Application Examples and Special Versions Medical technology – Portable inhalation devices ODU Springtac contacts, Ø 1,5 mm Medical technology – ECG Cable ODU-Lamella contacts Ø 1,5 mm ODU Springtac contacts, Ø 1,5 mm, are used at the interface between the device itself and the battery. ECG Cable with ODU MINI-SNAP and 7 ODU Lamella contacts Ø 1,5 mm. Why ODU Springtac contacts? Why ODU-Lamella contacts? ● extremely high number of mating cycles ● extremely high number of mating cycles ● high current-carrying capacity ● low insertion and withdrawal forces ● high current-carrying capacity EEG device Medical technology – Dosing Module ODU Springtac pins ODU Springtac contacts Ø 3 mm The ODU Springtac pins are located on the patient cable (electric line between the device and patient) and form the interface between the line and the electrode (contact plate that is pressed on to the skin). Custom specific solution for dosing module of anaesthesia with special insulation body and 3-pole insert. (< 100.000 mating cycles) Applications, Application Examples and Special Versions Dental treatment unit ODU Springtac contacts, Ø 1,02 mm ODU Springtac contacts Ø 1,02 mm (spring-mounted sockets – standard pins) form the high-capacity interface to dental treatment units Why ODU Springtac contacts? ● absolutely secure contacting ● can be disinfected/treated by autoclave Operating-table ODU-Springtac contacts Ø 5,00 mm The storage batteries of this mobile Operating-table-system are pluggable and equipped with ODU-Springtac contacts Ø 5,00 mm. Why ODU-Springtac contacts? ● extremely high number of mating cycles ● high current-carrying capacity Applications, Application Examples and Special Versions Safety power supply ODU-Single Contact Modular power supply unit with ODU MAC (for 220 V AC input and signals) and single contacts for DC output. ODU-MAC Au sg . (G S) Ein g. (W S) Au sg . (G S) Power Supply Safety power supply Power distribution system. (socket: crimp connection; pin: screw connection) Applications, Application Examples and Special Versions Explosion-proof plug-and-socket devices with ODU Lamella contacts Lamella contacts, Ø 4/6 and 8 mm, with spark protection (explosion protection) are used in explosion-proof plug-and-socket devices. Railway Connectors Lamella contacts Ø 4,2 mm are used in this high-quality railway connectors. Why ODU Lamella contacts? ● absolutely secure contacting ● outstanding vibrational resistance ● extremely high number of mating cycles ● low insertion and withdrawal forces ● high current-carrying capacity ● robust Applications, Application Examples and Special Versions Lamella Contacts in High speed generators Batteries for radio devices (MIL-Application) with ODU-H-sockets Applications, Application Examples and Special Versions Test adapter Manufacturers of Test adapter buy Single contacts and use them to build their own test connectors, for example, for the automobile industry. Test adapter with Quick-Change-Head Test adapter Built by ODU with ODU Springtac contacts, for example, for the automotive industry. Applications, Application Examples and Special Versions Power supply unit for pocket transmitters 6-position pin strip with ODU Springtac sockets Applications, Application Examples and Special Versions Computer Power Supply Lamp for Wafer Stepper ODU-Lamella™ socket with 2 lamellas (mates with pins mounted on bus bar). Springtac™ socket, Ø 30 mm with flange. 5/16-18 UNC 110 42 Ø 40 172.534.000.203.000 Ø 16 178.018.100.201.000 Steel Furnace Springtac™ socket Ø 26 mm with lead-in. Laser Precision Springtac™ socket Ø 6 mm. Ø 60 38 178 Ø 10 172.555.490.249.000 172.538.000.201.000 Applications, Application Examples and Special Versions Mounting Sockets Open Springtac™ socket with outside thread Ø 4 mm, 25 A. Open both ends with mounting flange. Ø9 M7 x 0,5 High-Power Battery 55 8 75 Ø 38 174.011.000.201.000 174.029.000.201.000 Battery Grounding Socket Open both end, press-in termination Ø 3 mm, 20 A. Socket Open both ends, with mounting flange and locking screw. 10 Ø6 Ø8 17,5 M4 174.010.000.201.000 14 8 174.039.000.207.000 Applications, Application Examples and Special Versions Flexible Springtac™ Pins from Ø 2mm for solder or threaded stud termination, from Ø 2 mm 9 bis 60,5 Crimp Tools Crimp tools have a safety release which opens when the correct crimp pressure is reached. Premature opening of the crimp tool is thereby prevented. 8-Point Crimp Tool adjustable for AWG 28 to 2.5 mm2 termination cross section. To adjust use gauge pin and operate at point (see adjustment table below). A contact positioner for easy positioning of the crimp contact is available on request. A semi-automatic pneumatic 8-point crimp tool can be supplied. The crimp tool has a ratchet which prevents premature opening of the crimp tool. Part-No.: 080.000.014.000.000 Hexagonal Crimp Tool for termination cross section from 2,5 to 6,0 mm2 with locking system. Part number for cross section 2,5 mm2: Part number for cross section 4,0 mm2: Part number for cross section 6,0 mm2: 080.000.012.000.000 080.000.011.000.000 080.000.011.000.000 Hydraulic Hexagonal Crimp Tool for cross sections 10 mm2 to 50 mm2 with safety valve which opens only if correct crimp pressure is reached. Part-No.: 080.000.026.000.000 Crimp Tools Hydraulic Hexagonal Crimp Tool for cross sections 70 mm2 to 500 mm2 with safety valve which opens only if correct crimp pressure is reached. Part-No. crimp tool 70 mm2 – 150 mm2: Part-No. crimp tool 185 mm2 – 300 mm2: Part-No. crimp tool 400 mm2 – 500 mm2: 080.000.017.000.000 080.000.018.000.000 080.000.020.000.000 Tools-Crimpdatas 1) 2) Cross Section (mm2) Crimp Tool Crimp Dies 0,08 - 0,25 0,38 0,5 1,5 2,5 1) 2,5 2) 4 6 10 16 25 35 50 70 95 120 150 185 240 300 400 500 080.000.014.000.000 080.000.014.000.000 080.000.014.000.000 080.000.014.000.000 080.000.014.000.000 080.000.012.000.000 080.000.011.000.000 080.000.011.000.000 080.000.026.000.000 080.000.026.000.000 080.000.026.000.000 080.000.026.000.000 080.000.026.000.000 080.000.017.000.000 080.000.017.000.000 080.000.017.000.000 080.000.017.000.000 080.000.018.000.000 080.000.018.000.000 080.000.018.000.000 080.000.020.000.000 080.000.020.000.000 080.000.026.110.000 080.000.026.116.000 080.000.026.125.000 080.000.026.135.000 080.000.026.150.000 921.000.005.000.009 921.000.005.000.011 921.000.005.000.013 921.000.005.000.014 921.000.005.000.015 921.000.005.000.016 921.000.005.000.017 921.000.005.000.019 921.000.005.000.020 Diameter "D" = < 5,5 mm Diameter "D" = > 5,5 mm Adjustment Table >0,65 <0,70 >0,65 <0,70 >0,90 <0,95 >1,40 <1,45 >1,60 <1,65 Termination Technology Single contacts can be connected to cables or bus bars using: ● Soldering ● Threaded Stud ● Crimp Barrel Soldering is not the preferred technique. Crimping is used in most applications. As a rule, any crimp contact can be soldered, as long as the cable fits into the crimp barrel. Note that the cable can be smaller in OD than the ID of the crimp barrel, which is very much in contrast with crimping where the cable has to have the correct OD to guarantee a good connection. Attention: avoid excessive heating of the contact due to incorrect termination. Threaded stud termination is generally used with cable lugs and washers, held in place with hex nuts. Nuts and washers are not part of the ODU standard product line but can be supplied on request. Crimping is the preferred termination. Crimping creates an excellent connection between cable and contact. During crimping the conductors and the crimp barrel form a gas-tight connection as the conductors cold-flow and bond with the crimp barrel. Correctly performed crimps have excellent pull strength. Crimping can be performed on small and large contacts and can be done by non-experts. For cable cross sections of 0.5 to 2.5 mm2 the crimp tool is an 8-point adjustable crimp tool. For larger cables the correct tool is a hex crimp tool. It is important to note that crimping should not increase the cross dimensions of the crimp barrel. Cable insulation is not damaged during crimping and can touch the crimp barrel. Very important is to make sure that the cable OD is exactly as specified to achieve optimum crimping. ODU suggests that the cable specifications or cable samples are supplied by the customer to verify crimp performance. Cross section of a hex crimp. 8-point crimping Cut-away view of a hex- (1) and 8-point crimp (2). 8-point crimps have two 4-point crimps one behind the other. (1) (2) ODU can with information about about correct tooling and proper crimp technique. Please provide contact and cable details (see Page 35 for ordering information). Technical Information Co n ne cti on m ax Th . re in Tor ad Nm qu e Torques M2 M3 M4 M5 M6 M8 M 10 M 12 M 14 M 16 M 18 M 20 0,2 0,5 1,2 2,0 3,0 6,0 10,0 16,0 22,0 30,0 40,0 50,0 Max. Torque for solid threaded stud and brass contact material. Current Load Current load for contacts from 1 mm to 36 mm is shown on Page 33. The current load information is based on ODU Springtac™ contacts with correctly dimensioned pin contact. ODU Lamella™ contacts with two lamella bands have nearly the same performance characteristic as Springtac™ contacts. As an example, please consider the two diagrams below. Diagram on the left is for a 1 mm contact, diagram on the right is for a 14 mm contact. Contact Material: brass, silver-plated Contact-Ø 1mm 1 mm2 Conductor Cross Section °C 120 Contact Material: brass, silver-plated Contact-Ø 14 mm 150 mm2 Conductor Cross Section °C 100 Temperature 100 Temperature 120 80 60 40 80 60 40 20 10 0 20 10 0 1 2 3 4 5 6 7 8 9 10 15 Current 20 A 24 20 40 60 80100 200 300 Current 400 480 A Both diagrams show the relationship between current load and contact temperature. Contact temperature consists of the ambient temperature at 23° C and the temperature rise across the contact due to the current. The diagrams end at 120° C because this is the upper operating temperature limit for standard ODU contacts. ODU can supply special contacts for higher temperatures of up to 500° C. When interpreting the diagrams one must keep in mind that often it is not possible to let the contact temperature rise to 120° C. Also, the ambient temperature can be higher than 23° C or the conductor cross section may not be correct. Technical Information Current Load - Springtac Contacts and Lamella Contacts Contact Material: brass, silver-plated max. Conductor Cross Section Measurement in accordance with DIN VDE 0627 120 Upper Temperature Limit °C Temperature 100 80 60 40 20 10 0 Current A Contact Ø Ø 1 Ø 1,5 4 6 5 10 Ø 3 Ø 5 Ø 6 Ø 7 Ø 8 Ø 9 Ø 10 5 40 20 40 10 40 30 30 50 25 Ø 24 Ø 28 Ø 36 30 100 110 120 145 140 175 120 100 150 100 150 200 180 300 200 300 400 100 200 300 400 100 200 300 400 500 600 600 500 500 500 600 600 500 520 500 400 400 460 400 400 800 340 400 300 300 275 300 300 80 240 200 200 300 70 210 150 75 200 50 80 130 200 400 40 150 100 35 60 100 200 30 50 100 100 24 40 80 100 200 20 30 80 75 100 200 25 100 100 Ø 30 20 60 50 100 Ø 22 25 60 100 Ø 20 20 40 70 50 Ø 18 15 50 50 Ø 16 15 30 20 10 12 20 22,5 20 Ø 12 Ø 26 15 10 10 Ø 14 10 10 Ø 2 Ø 4 8 600 660 710 600 710 700 840 800 950 1000 1200 Technical Information Conversion Tables Because ODU contacts are used worldwide, it has become necessary to define cable termination cross section not only in mm2 but also in mm and AWG. Termination Cross Section Cond. Cross Section (mm2) Conductor O/D (mm) AWG 0,08 0,15 0,25 0,38 0,50 1,00 1,33 2,09 3,33 5,27 8,30 13,30 21,10 33,50 53,60 0,33 0,41 0,51 0,64 0,81 1,02 1,30 1,63 2,06 2,59 3,25 4,11 5,18 6,53 8,26 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 The shown values may vary between cable types. The table is based on AWG which results in conductor cross sections (mm2) which are not standard in the German system. AWG = American Wire Gauge Example: Electric Copper Conductors Single conductor, not tinned, PVC-jacket. M No m .C on du ax cto pe . Re rO r M sis D t M ete anc ax r1 e Di . Co ) be am n d i -20 No eter uct °C 1 o m Ca . W ) r bl a e ll M Insu Thic ax la k Ou . Co tion nes s te nd r D u 1) iam cto et r er Co 1) nt Cu in u rr o at ent us a ( Lo Te mb Nom ad m ien i pe t na l 2) ra tu ) Ac re c De ept ns abl ity e co Cur nt re . O nt pe ra tio n Max. operating temperature 70° C. 2) -30° C Table 1 +50° C mm2 mΩ/m mm mm mm A A A/mm2 1 1,5 2,5 4 6 10 15 25 35 50 70 95 120 18,6 12,7 7,60 4,71 3,14 1,82 1,15 0,743 0,527 0,368 0,259 0,196 0,153 1,5 1,6 2,2 2,5 3,4 4,5 5,6 7,8 9,0 10,5 12,5 14,8 15,5 0,6 0,6 0,7 0,8 0,8 1,0 1,0 1,3 1,3 1,5 1,5 1,6 1,6 2,7 3,0 3,5 4,4 5,0 6,5 8,3 10,4 11,5 13,5 15,5 18,0 19,7 19 24 32 42 54 73 98 129 155 198 245 292 344 13,5 17,0 22,7 29,8 38,3 51,8 69,6 91,6 112 140 174 207 244 10 10 10 10 6 6 6 4 4 4 3 3 3 1) According 2) According to DIN ISO 6722, Part 3 to VDE 0298, Part 4 Source: Bosch Handbook 18. + 22. Edition Ordering Information Ordering Information 1. ☞ D D Series S C 0 0 Springtac™ Socket - Solder or Threaded Stud Termination Springtac™ Socket - Crimp Termination L S 1 L C 1 L Z 1 L F 1 D Z 0 D F 0 Lamella™Socket - Solder or Threaded Stud Termination Lamella™Socket - Crimp Termination Lamella™Socket - open both ends - Cylindrical Lamella™Socket - open both ends - with Flange Springtac™ Socket - open both ends - Cylindrical with Flange Springtac™ Socket - open both ends - Cylindrical with Flange S S S Pin - Solder or Threaded Stud Termination Pin - Crimp Termination Springtac™ Pin - Solder or Threaded Stud Termination S C D 0 0 S 2. ☞ Diameter (d) 3. ☞ Possible Surface Finish Carrier Carrier Carrier Carrier Carrier Carrier 4. ☞ Ag, Springs Ag (Standard) Ni, Springs Ag 1) Ni, Springs 1,25 µ Ni, 0,75 µ Au 1) Ag, Springs 1,25 µ Ni, 0,75 µ Au and Springs 1,25 µ Ni, 0,75 µ Au 1,25 µ Ni, 0,5 µ Au, Springs 1,25 µ Ni, 0,75 µ Au Termination Solder or Threaded Stud Termination (Series DS0, LS1 und SS0): Dia. Thread (M) Length (g) Example M 10 x 1 20 mm Lg Crimp Termination (Series DC0, LC1 und SC0): Cable Type with Cross Section (Best to supply Cable Sample) for example. H07 RNF ... Contact open both Ends (Series LZ1, LF1, DZ0 und DF0): Flange Diameter (D) - (larger than M) Length (s) - smaller than (k) Example: Series: Diameter (d): Surface: Termination: LS1 10 mm Standard (Ag / Ag) M10 x 1 / 20 mm Lg ODU will assign a part number for special parts 1) Not for Crimp Termination Please open Bild der Stadt Mühldorf am Inn ODU’s headquarters and factory are located in Mühldorf, at the river Inn, approximately 50 miles east of Munich, at the foothills of the Bavarian Alps. 2 rue René Laennec 51500 Taissy France Fax: 03 26 85 19 08, Tel : 03 26 82 49 29 Mühldorf, an idyllic small town with its typical Inn-Salzach architecture. E-mail:[email protected] Site web : www.hvssystem.com