Preview only show first 10 pages with watermark. For full document please download

S.t.g. Germany Gmbh

   EMBED


Share

Transcript

S.T.G. Germany GmbH PRODUCT RANGE Reed Switches High Voltage Relays DIL-SIL-Reed Relays Non-Mercury Tilt Switches Reed Sensors Automotive Sensors Liquid Level Sensors Acceleration Sensors Seat Position Sensors Proximity Sensors Inclination Sensors S.T.G. Germany GmbH Guenther_EN_2012.indd 1 1 24.10.12 14:48 Reed Switches The quality of our Reed Switches meets the very high international standards. The variety of the Reed Switch types and the stateof-the-art development enable us to cover almost all industrial applications and specifications. Our product range is complemented by the Reed Switches of M/S OKI Sensor Device Corporation, with whom we have an „International Distributor Agreement“. Our Reed Switches are available as normally-open, normally-closed mounted with biasing magnet or bistable versions. The scope of implementing Reed Switches is farranging. Especially when developing new custom applications, there may be the necessity to adapt the Reed Switch geometry to special assembly situations. By extending, cutting, bending or combinations thereof we gain the ability to customize the Reed Switch lead-outs to meet individual customer requirements. Since the use of SMT is intensifying especially in industrial applications, our product range also includes SMD and moulded Reed Switches with common connectivity. For use in automated mounting machines the SMD Reed Switches are also available in Tape & Reel packaging. Page 4 - 11 High Voltage Reed Relays Our High Voltage Reed Relays have outstanding performance characteristics in insulation resistance and stand-off voltage and thus find application in many electronic and electrotechnical areas. Page 12 - 18 Reed Relays A wide range of standard Reed Relays and our knowhow to develop customer specific Reed Relays allows us to find a solution for almost every application requirement. Page 19 - 23 2 Guenther_EN_2012.indd 2 S.T.G. Germany GmbH 24.10.12 14:48 SENSORS Proximity Sensors Proximity Sensors are based on Reed Switches which are actuated without direct physical contact. The switching operation is generally triggered by the approach respectively by the removal of a magnetic field. Proximity Sensors are used in technical processes for position detection of objects and tools, or as signal source for security measures. Proximity Sensors are implemented when mechanical limit switches are unsuitable due to adverse operating conditions, and when other non-contact switches such as inductive and capacitive sensors are too expensive. Aside the very good cost/performance ratio our Proximity Sensors stand out due to their multi-purpose applicability. This is obtained by the use of various housing types in combination with diverse connectivity. Individual solutions can be designed according to customer specifications. Page 24 - 25 Pendulum / Inclination Sensor The Pendulum / Inclination Sensor for the measurement of angles enables differential angles above 2°. The Sensor’s repetitive accuracy allows its use for very high precision requirements. The patented Sensor replaces former mercury solutions and is used in the automotive industry as well as in other fields of industry and engineering. Page 26 - 27 Automotive Sensor / ABS Sensor The Automotive Sensor / ABS Sensor is designed utilizing several Pendulum Sensors. When the preset acceleration is exceeded the Pendulum with the fixed magnet deflects and activates the Reed Switch. The Sensor can be adjusted for accelerations above 0,1g. Other customer specific Automotive Sensors, such as Door Lock Sensors and the like can also be designed. Acceleration Sensor / Crash Sensor The Acceleration Sensor / Crash Sensor can detect axial accelerations with an adjustable response value beyond a prespecified g-force (multiple gravitational acceleration). When the prescribed acceleration is exceeded a flying magnet passes a Reed Switch triggering contact. Typical automotive applications include airbag and seatbelt systems. The Acceleration Sensor can be adjusted for accelerations above 2g to meet preselected customer acceleration requirements as well as other design/package specifications. S.T.G. Germany GmbH Guenther_EN_2012.indd 3 3 24.10.12 14:48 0,02 REED SWITCHES REED SWITCHES 10 V RS R 0,01 4 1 0,8 0,6 0,4 2 0,2 0,002 0,2 am Ex 100 80 60 40 1 ple 20 A 300 V 2A Contact Protection 0,04 20 10 8 6 50 V 25 V 10 V Current in A The nomograph can 1 following A be used for determining contact arc suppression for inductive 0,5 A loads. RS 0,02 Example 1: I = 0,1 A I I 10 V = 230 V C = 0,001 µF 8 V Ω R C R = 340 Example 2: 60,01 If the current inrush is critical use the below nomograph to determine the minimum resistance. 4 I = 0,5 A C Rmin = 400 Ω Capacitive Loads 1 4 R Load Resistance in Ω 5A 0,06 Load voltage max. current inrush 200 V 0,001 REED 0,1SWITCHES 10 A 100 V 0,08 10000 2 8000 6000 1 4000 Ex am 400 30 0 30 50 pl e 2 Capacitor in µF 20 0 20 100 ple am Ex 0,001 0,1 V 0,08 1 max. current inrush 0,002 0,06 0,04 R1 10 A 5A 2A 80 60 Cable 40 RS 20 A 300 V 0,01  Capacitive Loads 0,5 A COMUS When cutting or body not be dam be no closer tha Lamp R1 Cable V RS R2 C Lamp Load As the Reed Switch blades are part of the magnetic circuit of a Reed Switch, shortening the leads results in increased pull-in and drop-out values. The above diagram illustrates a resistor/capacitor network The above diagram illustrates a resistor/capacitor network forfor protecprotecting a Reedagainst Switch high against highcurrents. inrush currents. R 1R2 and/or R2 ting a Reed Switch inrush R1 and/or are used depending upon circuit conditions. Pull-in andupon drop-out sensitivity are used depending circuit conditions. 40 COMUS    With lamp load applications it is important to note that cold lamp 30have With lamp load applications is times important to note cold lamp filaments a resistanceit10 smaller thanthat already glowing filaments have ameans resistance 10 times smaller than already glowing Example filaments. This that when being turned on, the lamp filament 4 filaments. This beinggreater turned-on, lamp filament experiences a means current that flowwhen 10 times than the when already 20 experiences current flowcurrent 10 times than when glowing. Thisa high inrush cangreater be reduced to an already acceptable t ureduced glowing. This high inrush be to resistors. an acceptable o level through the use of acurrent series can of current-limiting Another 52724_BRR_Guenther_GB_04.pmd 1 rop level through the parallel use of aswitching series ofDof current-limiting resistors. Another possibility is the a resistor across the switch. This 10 the parellel switching of a resistor across the switch. This possibility allows justisenough current to flow to the-in filament to keep it warm, yet ll u P filament to keep it warm, yet allows just enough current to flow to the not enough to make it glow. not enough to make it glow. 0 2 4 Cut-off length in mm RS 6 8 10 RS 12 R1 When cutting or bending Reed Switches, it is important that the glass R2 body not be damaged. Therefore, the cutting or bending point should be no Vcloser than 3Lamp mm to the glass body. V Lamp Cutting Lamp load with parallel or current limiting resistor across the switch Lamp load with parallel or current limiting resistor across the switch Cutting and Bending As the Reed Switch blades are part of the magnetic circuit of a Reed Switch, shortening the leads results in increased pull-in and drop-out values. 40 C  4 Unlike inductive loads, capacitive and lamp loads are prone to high 4 inrush currents which can lead to faulty operation and even contact welding. When switching charged capacitors (including cable capacitance) a 52724_BRR_Guenther_GB_04.pmd 1 sudden unloading Guenther_EN_2012.indd 4 can occur, the intensity of which is determined by Pull-in and drop-out sensitivity Bending 30 4 RS 2 The above diagram 0,02 illustrates a resistor/capacitor I network for protecting a Reed Switch against high inrush currents. R 1 and/or R2 are used depending upon circuit conditions. Load V 1 Cut-o Cutting and Bending 10 8 6 1A 0 R2 resistor across the switch Lamp load with parallel or current limiting Load 10 V R 10 20 C200 V 100 V R2 50 V 25 V Load voltage 0,2 1 20 R1 V 2000 0,8 Unlike 0,6inductive loads, capacitive and lamp loads are prone to high 1000 inrush 0,4currents 2 which can lead to faulty operation and even contact 800 welding. 600 a When0,2 switching charged capacitors (including cable capacitance) sudden unloading can occur, the intensity of which is determined 400 by 0,1 1 length of the connecting leads to the switch. This the 0,08 capacity and 0,8 be reduced by a series of resistors. The value of inrush 0,06peak can 200 these resistors on the 0,04 Load voltage in Vparticular application but should 0,6 5is6 dependent be as high as possible to ensure that the inrush current is within the 8 500 0,02 limits. 10 allowable 100 0,4 0,01 0,008 0,006 0,004 V 200 0 20 100 0,01 0,008 0,006 0,004 RS 1000 800 600 2 0,02 1 0,8 0,6 56 Load voltage in V 8 10 500 0,4 400 20 30 50 30 0 2000 400 pl e 0,1 0,08 0,06 0,04 10000 8000 6000 4000 Ex am Capacitor in µF C Current in A 6 R AT increase in % 8 Load C inrush currents which can lead faulty operation and even contact Unlike inductive loads, andturned-on, lamp loads are prone to high filaments. This means thatcapacitive whentobeing the lamp filament welding. inrush currents which can lead to faulty operation and even contact experiences a current flow 10 times greater than when already When switching charged cable capacitance) welding. glowing. This high inrush capacitors current can(including be reduced to an acceptable a sudden unloading can occur, the intensity of which is determined by a When switching charged capacitors (including cable capacitance) level through the use of a series of current-limiting resistors. Another the capacity length the connecting leads to theisswitch. ThisThis insudden unloading canof occur, theofintensity of which determined by possibility is and the parellel switching a resistor across the switch. rush be reduced a series offilament resistors. of This these thepeak capacity and length connecting leadstotoThe thevalue switch. allows just can enough currentofby tothe flow to the keep it warm, yet resistors is dependent on the particular application but The should be of as peak can beit reduced by a series of resistors. value notinrush enough to make glow. high as possible that on thethe inrush current is within the these resistorsto is ensure dependent particular application but should allowable limits. be as high as possible to ensure that the inrush current is within the RS allowable limits. Example AT increase in % I 2 I Capacitive Loads With lamp load applications it is important to note that cold lamp Capacitive Unlike inductive loads, capacitive andsmaller lamp loads prone to high filaments have aLoads resistance 10 times than are already glowing Resistance in Ω 10 The following nomograph can be used for determining contact arc suppression for inductive loads. Example 1: I = 0,1 A V = 230 V C = 0,001 µF R = 340 Ω Example 2: If the current inrush is critical use the below nomograph to determine the minimum resistance. I = 0,5 A Rmin = 400 Ω 30 4 1A 0,5 A V ContactProtection Protection Contact 8 6 AT increase in % 2A 0,04 50 V 25 V Load max. current 0,06 20 ut p- o o r D 10 0 Pull-in  6 8 GÜNTHER 2 4 Cut-off length in mm 10 12 S.T.G. Germany GmbH When cutting or bending Reed Switches, it is important that the glass body not be damaged. Therefore, the cutting or bending point should be no closer than 3 mm04.11.2002, to the glass 17:04 body. 24.10.12 14:48 REED SWITCHES UL and CSA approved REED SWITCHES UL and CSA listed NORMALLY OPEN SUBMINIATURE MICROMINIATURENORMALLY OPEN 1 0211 Moulded 0219 2522 0228 MICROMINIATURE 2322 2314 2212 SMD Type Parameters 0213 S.T.G. Type Contact form A 6228 A 0213 A 0311 A0211 A A 0312 5213 A 5228 A 6213 0219 Contact material Rh Rh Rh Rh OKI Type ORD213S-1Rh ORD228S-1RhRA-903 RhRA-901 ORD213 Rh ORD311 ORD211 ORD312 ORD219 Parameters W/VA A Switching capacity 1 1 A 10 A 6 A 10 A 10 A 10A 10 max. A A Contact form UL and CSA approved MICROMINIATURE Switching voltage 24 Rh 24 Rh 100 Rh 140 Rh 100 Ir 150Rh 400Ir 100 max. V AC/DC Rh Rh Contact material Type 0213 0211 0219 Switching capacity current 0,1 10 0,1 1 Parameters 0,5 10 0,5 1 0,5 10 0,5 0,5 0,2 1 30 10 Switching max. max. W/VA A 1 MICROMINIATURE Contact form A A A Carrying current 1,0 100 0,8 24 1,0100 1,024 1,0 0,5 100 100 Switching voltage max. max. V AC/DC A 24 0,3 100 0,3 24 Type Parameters 0213 0211 0219 Contact material Rh Rh Rh Dielectric strength 200 0,5 200 0,1 1500,5 2000,1 600 150 0,5 0,5 Switching current max. min. A VDC 0,1 100 0,5 150 0,1 NORMALLY OPENmax. Contact formcapacity A1 A1 A10 W/VA Switching Contact resistance 100 1,0 150 0,3 1001,0 150 150 100 0,3 1,0 1,0 Carrying current max. max.A mΩ 0,3 200 1,0 100 0,3 SUBMINIATURE MICROMINIATURE Contact Rh24 Rh24 Rh V AC/DC Switching voltage 100 max. 9 9 9 material 10 9 10 11 9 Ω Insulation resistance 10 10 10 10 10 10 10 10 min. 150 150 150 200 150 250 150 250 Dielectric strength min. VDC 1 200 Type Parameters 0213 0211 Switching 0219 capacity 2522 0228 2322 2314 2212 W/VA 10,1 10,1 100,5 A max. Switching current max.10…35 10…35 15…45 Pull-in sensitivity 100 10…40 200 10…50 200 100 100 100 Contact resistance max. mΩ AT 200 10…40100 10…40200 10…30 Contact form A A A A A max. AA A A V AC/DC 24 24 100 Carrying 0,3 1,0 max. 9current 9 9 AT 109 5 109 5 109 Switching 5 10voltage 5 109 5 10 5 10 50,3 10 Drop-out sensitivity 109 109 Insulation resistance min. min.Ω Contact material Rh Rh Rh current Rh Rhmax. Rh Rh Rh A Switching 0,1 0,1 0,5 VDC Dielectric strength 100 150 200 min. 1,8 1,4 Switching time without bounce max.AW ms10…40* 0,310…40* 0,316…46* 0,4 16…49* 1,0 10…40 0,4 10…40 1,8 10…40 10…40 10…40 Pull-in sensitivity W/VA Switching capacity 1 1 10 current 6 10 max. 10 10 10 max. AmΩ 0,3 0,3 1,0 Contact resistance 200 100 100 0,3 5 0,3 10 Carrying 0,3 10 0,3 5 0,3 max. 0,2 0,2 1,0 Bounce time 5 5 5 5 Drop-out sensitivity min. max.AW ms 5 9 Switching voltage 24 24 100 140 100 150 400 100 max. V AC/DC VDC Dielectric strength 100 150 200 min. Ω Insulation resistance 10 109 109 min. ms 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 Release time max. 0,3 0,4 0,3 0,4 0,3 0,3 0,3 0,4 0,4 Switching time without bounce max. ms A Switching current 0,1 0,1 0,5 0,5 0,5 0,5 0,5 0,2 max. mΩ Contact resistance 200 100 100 AT 10…40 10…40 10…30 Pull-in sensitivity 60000,3 5000max. 5000 5000 3900 Resonant frequency 0,3 0,3 0,3 0,3 Bounce time max. typ.ms Hz 0,3 11000 0,3 7500 0,3 59000,3 9 9 A Carrying current 0,3 0,3 1,0 resistance 0,8 1,0min. 1,0 1,0 0,5 max. ΩAT Insulation 10 10 1095 5 5 Drop-out sensitivity min. 200 4000,05 5000,05 200 500 Operating frequency 0,05 0,05 0,05 Release time max. max.ms Hz 0,05 500 0,05 500 0,05 5000,05 VDC Dielectric strength 100 150 200 200 150 max. 200 600 150 min. AT 10…40 10…40 10…30 Pull-in sensitivity ms 0,3 0,3 0,4 Switching time without bounce 10-1000 Vibration frequency 500010-1000 1300010-1000 5400 35g/2000 11000 10-1000 13000 35g/2000 7500 35g/2000 5900 10-1000 5900 Resonant typ. 20 gHz Hz 11000 mΩ Contact resistance 200 100 100 sensitivity 150 100min. 150 150 100 max. AT 5 5 5 Drop-out ms 0,3 0,3 0,3 Bounce time max. g 500 30 9 500 30 9 500 30 9500 5010500 30 500 50500 50 30 9 Shock 500 500 Operating frequency max.11 ms Hz 10 11 Ω Insulation resistance 10 10 10 time 10 109max. 10 10 10 min. ms 0,3 0,3 0,4 Switching without bounce ms 0,05 0,05 0,05 Release time max. 0,7 0,5 Capacitance 10-1000 0,5 10-1000 0,3 10-1000 0,7 10-1000 10-1000 10-1000 Vibration 20 g typ.Hz pF10-1000 0,410-1000 0,210-1000 0,3 AT 10…40 10…40 10…30 10…40 10…50 10…35 10…35 15…45 Pull-in sensitivity msHz 0,3 0,3 0,3 timefrequency max. 11000 -40...+125 7500 5900 Resonant °C 30 Operating temperature range -40 30 …+125 30 Bounce -40...+150 -40...+150 30 30 -40...+125 30typ. 30 30 30 Shock 11 ms g AT 5 5 5 timefrequency 5 5 max. 5 Hz 5 10 Drop-out sensitivity min. ms 0,05 0,05 0,05 Release 500 500 500 Operating max. 1035 0211 0211 0221 1035 0221 1035 0221 Type Test coil 0,4 0,3 0,4 0,3 0,4 0,4 0,2 0,3 0,3 Capacitance typ. pF ms 0,3 0,3 0,4 frequency 1,0 0,4 typ. 1,8 1,8 1,4 Switching time without bounce max. Hz 11000 7500 5900 Resonant Hz 10-1000 10-1000 10-1000 Vibration 20 g ° 1) Close differential switches Operating temperature range -40 …+125 C ms 0,3 0,3 0,3 frequency 0,3 0,3max. 0,2 1,0 Bounce time max. Hzg 500 500 500 Operating 30 30 30 Shock 11 ms 0,2 Dimensions 0211 0211 0211 0221 0221 Test coil Type ms 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 Release time max. Hz 10-1000 10-1000 10-1000 3 Vibration pF 0,4 0,2 0,3 20 g Capacitance typ. Total length A max. mm 36,0 36,0 45,0 55,0 45,0 55,0 55,0 45,0 Features Hz 11000 5900 6000 5000 5000 5000 3900 Resonant frequency typ. Super range Super Ultra High Super ultra Miniature Miniature 7500UltraShock Miniature g 30 30 30 °C 11 ms Operating temperature -40 …+125 -40.. mm Glass length B max. 10,0 11,0ultra 14,0ultra 14,1 14,1 16,5 miniature 12,0 miniature power, miniature 7,0 high perforHz 500 high 500 500SMD 400 500typ. 200 200 500 Operating frequency max. pF 0,4 0,2 0,3 Capacitance 0211 0211 0221 Type Test Glass diameter C max. mm SMD 1,8 miniature 2,2 miniature, 2,3 long life performance2,0 SMD mance 2,0coil 2,1 2,3 2,6 Hz 10-1000 10-1000 Operating 10-1000 35g/2000 10-1000 35g/2000 10-1000 Vibration 20 g °C range 1) Close differential long life 35g/2000 -40 …+125 -40...+ Wire diameter D max. mm 0,30 SMD 0,40 0,50 temperature 0,40 switches 0,50 0,50 0,50 0,35 x 0,6 g 30 30 30 50 30 50 50 30 Shock 11 ms 0211 0211 0221 Type Test coil Dimensions Additional types on request Form A A pF 0,4 0,2 0,3length 0,5 0,7 0,5 Capacitance typ. 1)Total Close differential switches 0,3A max. 0,7 mm 36,0 36,0 45,0 Dimensions B °C Operating temperature range -40 …+125 -40...+150 -40...+125 -40...+150 -40...+125 Dimensions mm Glass length B max. 7,0 10,0 12,0 Total length A max. mm 36,1 36,1 36,0 45,0 20,0 45,0 0221 1035 0221 1035 1035 0221 Type13,0 021120,0 021113,0Total Test coil mm length mm A Cmax. Glass diameter max. 36,0 36,0 45,0 1,8 2,0 2,0 Glass length B max. mm 7,0 14,0 7,0 7,0 8,7 10,0 12,0 16,2 12,0 1) Close differential switches mm Glass B Dmax. mm Wirelength diameter max. 7,0 10,0 12,0 0,30 0,40 0,50 Glass diameter C max. mm 1,8 2,2 1,8 1,8 2,2 x 2,2 2,6 x 2,6 2,0 2,0 2,0 Dimensions Glass diameter max. mm 1,8 2,0 2,0 Additional types 0,30 on requestC0,30 Wire diameter mm D max. 0,30 0,50 0,80 0,40 0,50 0,70 0,50 Total length A max. mm 36,0 36,0 45,0 55,0 45,0 mm Wire45,0 diameter 55,0 D max. 55,0 0,30 0,40 0,50 * pre-forming Actuation of Reed Switches with amm Permanent Magnet Additional types on request Glass length B max. 7,0 10,0 12,0 11,0 14,0 14,1 14,1 16,5 Additional types on request Examples of switching with the use of a moving magnet Glass diameter C max. mm 1,8 2,0 2,0 2,1 2,2 2,3 2,3 2,6 Wire diameter D max. mm Direct Actuation: 0,30 0,40 0,50 0,50 0,50 0,50 0,35 x 0,6 Rotation: 0,40 AAdditional magnet moved Examples of switching through rotational movement: typesperpendicularly on request Form A A Form A closed towards and away from a Reed Switch N S Actuation of Reed Switches with a Permanent Magnet B turns it off and on one time. magnet open Examples of switching with the use of a moving magnet D C C C D C REED SWITCHES open Actuation of Reed Switches with a Permanent Magnet N S open Directclosed Actuation: N A magnet moved parallel to a Reed Examples of switching with the use of a moving magnet A magnet moved perpendicularly Switch operates it from one to three magnet Actuation of Reed Switches with a Permanent Magnet closed closed closed towards and away from a Reed Switch S with the use N S Direct times. Examples of Nswitching of aActuation: moving magnet Actuation of Reed Switches with a Permanent Magnet turns it off and on one time. S magnet magnet A magnet moved perpendicularly open Examples of switching with the use of a movingmagnet magnet open closed towards and away from a Reed Switch N S turns itIndirect off and on one time.Shielding Actuation: Direct Actuation: magnet open A magnet moved parallel to a Reed ARotation: magnet moved parallel to a Reed Direct Actuation: With the stationary arrangement of a Reedmovement: Switch and magnet, the A magnet moved perpendicularly Examples ofitswitching through rotational Switch operates from one to three Switch operates it from one to A magnet moved perpendicularly A magnet swung towards and away contact Reeds are closed. Should the magnetic Nfield be diverted away towards and away from a Reed Switch magnetNN S S S closed three times.parallel to a Reed towards and away a Reed from a Reed Switchfrom operates it one time. A times. magnet frommoved the Reed Switch by a shield of ferro-magnetic material placed turns it off and on one time. closed magnet Switch turns it off and on one time. open Switchbetween operatesthe it from one tothe three switch and magnet, the contactsmagnet will open. When the S S times. shield is removed, the contact Reeds becomeNmagnetically open actuated closed N S open and close. N A magnet moved parallel to a Reed open N magnet Switch operates it from one to three magnet A magnet swung towards and away closed closed N N S S times. from a Reed Switch operates it one time. magnet closed open A magnet swung towards and A ring magnet moved parallel to the Reed closed open S closed magnet magnet A magnet swung andNaway S A ring magnet moved parallel thetoReed away from towards a Reed Switch Switches axis operates it fromto one open S S magnet N from a Reed Switch operates it one time. Switches axis operates it from one to operates it one time.Shielding three times. magnet Indirect Actuation: N S closed three times. magnetic open shield N magnet, the With the stationary arrangement of a Reed Switch and ring magnet S A magnet swung towards and away contact Reeds are closed. Should the magnetic field be diverted away S magnet N from a Reed Switch operates it one time. open from the Reed Switch by a shield of ferro-magnetic material placed  COMUS closed open 52724_BRR_Guenther_GB_05.pmd 1 A ring magnet moved parallel to the Reed Switches axis operates it from one to three times. Guenther_EN_2012.indd 5 GÜNTHER  S N N S ring magnet  open Rotatio Exampl close closed Indire With th contac Indirect from th With the betwe contact shield from the and cl between shield is and clos switch and the A ringbetween magnet the moved parallel to magnet, the Reedthe contacts will open. When the shield is removed, contact become magnetically actuated Switches axis operates the it from one Reeds to open 5 closed N S and close. times. A three ring magnet moved parallel to the Reed ring magnet Switches axis operates it from one to three times. open 28.10.2002, 11:43 open S.T.G. Germany GmbH closed closed N Rotat Exam  COMUS N COMUS S magnet   N S closed ring magnet 5 magnetic shield 24.10.12 14:48 REED SWITCHES UL and CSA approved REED SWITCHES NORMALLY OPEN SUBMINIATURE MICROMINIATURE 1 Type Parameters 0213 0211 0219 2522 0228 2322 2314 2212 NORMALLY OPEN Contact form A A A A A A A A MICROMINIATURE SUBMINIATURE Contact material Rh Rh Rh Rh Rh Rh Rh Rh 2312 0221 2525 0228 2315 0324 2522 2322 2325 S.T.G. Type W/VA Switching capacity 1 1 ORD221 10 ORD228VL6 ORD32410 10 10 10 max. OKI Type Parameters Switching 100 400 A 100 A max. V AC/DC A 140 A 24 A (Off Set) A 100 A 150 A A24 Contactvoltage form A Switching 0,5 Rh 0,2 Rh max. Rh 0,5 Rh 0,5 Rh0,1 Ir 0,5 Rh 0,5 Rh Rh0,1 Contactcurrent material UL and0,3 CSA approved A Carrying current 0,3 1,0 0,8 1,0 1,0 1,0 0,5 10 max. 10 10 10 6 10 6 10 10 Switching capacity W/VA max. VDC Dielectric strength 100 150 200 200 150 200 600 150 min. 100 100 230 140 230 100 140 150 100 Switching voltage max. V AC/DC Contact resistance 200 150 0,5 1000,5 max. 0,3 100 0,5 150 0,5 100 0,5 150 0,5 0,5100 0,5 Switching current AmΩ max. 9 9 9 10 9 10 Insulation resistance 1011 1,0 109 1,0 min. 1,0 10 1,0 10 0,810 1,0 10 0,810 1,0 10 1,0 Carrying current AΩ max. NORMALLY OPEN AT 10…40 10…40 150 10…30 15010…40 25010…50 200 10…35200 10…35 Pull-in sensitivity 400 15…45 200 400 200 Dielectric strength VDC min. CROMINIATURE AT 5 150 5 150 10 150 Drop-out sensitivity min.SUBMINIATURE 100 5 100 5 150 5 100 5 1505 150 Contact resistance mΩ max. 1 211 0219 2522 0228 max.2322 ms 2314 2212 1,41010 Switching time without bounce 10 109 0,4 109 1,0 1010 0,4 1010 1,8 1010 1,8 1010 10100,3 100,3 Insulation resistance Ω min. A A A A A ms A A 0,3 0,3 0,3 0,3 0,3 0,2 0,2 Bounce time max. 10…40 10…40 10…30 10…40 10…35 10…35 15…35 1,0 15…35 10…40 Pull-in sensitivity AW Rh Rh Rh Rh Rh ms Rh50,05 Rh 0,05 0,05 0,05 0,05 0,05 0,05 0,05 5 Release time max. 5 5 5 5 5 5 4 Drop-out sensitivity AW min. 1 10 6 10 1011000 107500 Hz 39001,8 Resonant typ. 10 ms 1,0 1,0 0,45900 0,4 6000 0,4 5000 1,8 5000 1,8 5000 1,8 Switchingfrequency time without bounce max. 24 100 140 100 400500 100500 Hz 200 0,2 5000,2 Operating max.150ms Bouncefrequency time 0,3 0,3 0,5 500 0,3 400 0,3 500 0,2 200 0,2 max. 0,1 0,5 0,5 0,5 0,5 0,2 Hz 10-1000 10-1000 0,05 10-1000 0,05 35g/20000,05 10-10000,0535g/2000 Vibration 20 g 0,5 ms Release time 0,05 0,05 0,0335g/2000 0,05 10-1000 0,05 max. 0,3 1,0 0,8 1,0 1,0 30 0,5 305000 Shock 11 ms1,0 Hzg Resonant frequency 6000 600030 275030 5000 50 5000 30 5000 50 5000 50 5000 typ. 150 200 200 150 600 0,4 150 0,2 0,7 200 0,5200 Capacitance typ. 200HzpF Operating frequency 400 400 500 0,3 500 0,5 500 0,3 200 0,7 200 max. 100 100 150 100 150 °C 150 -40 …+125 100 Operating temperature range -40...+150 -40...+125 -40...+150 -40...+125 Vibration Hz 20 g 35g/2000 35g/2000 10-1000 10-1000 10-1000 35g/2000 35g/2000 35g/2000 35g/2000 9 109 10 109 1010 Type 10110211 1090211 022150 Test coil 1010 Shock g 11 ms 50 50 300221 30 1035 30 0221 50 1035 50 1035 50 …40 10…30 10…40 switches 10…50 10…35 10…35 15…45 1) Close differential Capacitance pF typ. 0,5 0,5 0,3 0,3 0,7 0,7 0,7 0,7 0,3 5 5 5 5 5 ° 5 10 Dimensions Operating temperature range C -40...+125 -40...+150 -40...+150 0,3 0,4 1,0 0,4 A max. 1,8 mm 1,836,0 1,436,0 Total length Test coil Type 1035 1035 022145,0 022155,0 0221 45,0 1035 55,0 1035 55,01035 45,0 1035 0,3 0,3 0,3 B max. 0,2 mm 0,2 7,0 1,010,0 Glass length0,3 12,0 Miniature, 11,0 Miniature, 14,0Miniature,14,1 Miniature, 14,1 Miniature, 16,5 Miniature, Miniature, Miniature, Miniature, Features 0,05 0,05 0,05 0,05 C max. 0,05 mm 0,051,8 0,052,0 Glass diameter 2,0 high power 2,6 high power offset-type high 2,1 general 2,2 general 2,3 general 2,3 high power close 500 5900 6000 5000 D max. 5000 mm 50000,30 39000,40 Wire diameter 0,50 0,40 0,50 0,50 0,50 0,35 xclose 0,6 purpose purpose perdifferential purpose 500 500 400 on request 500 200 200 500 Additional types differential formance,A Form A close -1000 10-1000 35g/2000 10-1000 35g/2000 35g/2000 10-1000 differential automotive B 30 30 50 30 50 50 30 0,2 0,3 0,5 0,3 0,7 0,7 0,5 Dimensions 5 -40...+150 -40...+125 -40...+150 -40...+125 mm Total length 55,0 45,0 55,0 55,0 55,0 55,0 45,0 45,0 55,0 A max. 211 0221 1035 0221 1035 1035 0221 mm Glass length 11,0 13,0 14,1 14,1 11,0 14,1 14,0 14,0 14,1 B max. Actuation of Reed Switches a Permanent Magnet Glass diameter 2,1 2,3 2,3 2,3 2,1 2,3 2,2 2,2 2,3 C max.withmm Examples of switching withDthe use ofmm a moving magnet 0,40 Wire diameter 0,40 0,35x0,6 0,50 0,50 0,50 0,50 0,50 0,50 max. 36,0 45,0 55,0 45,0 55,0 55,0 45,0 Direct Actuation: Rotation: Additional types on request 10,0 12,0 11,0 14,0 14,1 14,1 16,5 A magnet moved perpendicularly Examples of switching through rotational movement: 2,0 2,0 2,3 2,3 2,6 closed towards and 2,1 away from a2,2 Reed Switch N S 0,40 0,50 it off and 0,40 0,50 0,50 0,35 x 0,6 turns on one time. Form A 0,50 magnet UL / CSA / ETL listed open Form A B parallel to a Reed A magnet moved Switch operates it from one to three times. closed N N S N S Examples of switching through rotational movement: S open en closed N S open A ring magnet movedmagnet parallel to the Reed Switches axis operates it from one to three times. closed N open N open open COMUS 6 open Guenther_EN_2012.indd 6  closed N closed N S S magnet ring magnet open closed N open closed Indirect Actuation: Shielding With the stationary arrangement of a Reed Switch and magnet, the contact Reeds are closed. Should the magnetic field be diverted away from the Reed Switch by a shield of ferro-magnetic material placed between the switch and the magnet, the contacts will open. When the shield is removed, the contact Reeds become magnetically actuated 2724_BRR_Guenther_GB_05.pmd 1 and close.  closed Indirect Actuation: Shielding Indirect Actuation: Shielding With the stationary arrangement of a Reed Switch and magnet, the contact With the stationary arrangement of a Reed Switch away and magnet, theReed blades are closed. Should the magnetic field be diverted from the Reeds are closed. Should the placed magnetic field bethe diverted Switch bycontact a shield of ferro-magnetic material between switchaway and fromthe thecontacts Reed Switch by a shield ferro-magnetic material the magnet, will open. When of the shield is removed, theplaced contact between the switch and the magnet, the contacts will open. When the blades become magnetically actuated and close. shield is removed, the contact Reeds become magnetically actuated and close. closed sed N closed S magnet open Rotation: Examples of switching through rotational movement: A magnet swung towards and away from a Reed Switch operates it one time. magnet Rotation: open open magnet magnet et S D A D C REED SWITCHES S magnet  magnetic shield GÜNTHER  5 28.10.2002, 11:43 S.T.G. Germany GmbH S magnet magnetic shield 24.10.12 14:48 Type Parameters Contact form Contact material max. W/VA Switching capacity max. V AC/DC Switching voltage max. A / ETL listed Switching current UL / CSA max. A Carrying current NORMALLY OPEN strength min. VDC Dielectric MINIATURE max. mΩ Contact resistance 9215 2722 2221 Insulation resistance2725 min.2715 Ω 2717 2722 A Rh 10 230 0,5 0,8 400 100 1011 20…50 5 2,0 0,5 0,10 2900 200 2000 50 0,5 REED SWITCHES AT A ADrop-out sensitivity A A min. A AT Rh max. Rh ms RhSwitch. time Rh without boun. Rh 10 10Bounce time 10 10 max. 10 ms 230 max.350 ms 500 100 230 Release time 0,3Resonant0,5 0,5 typ. 0,5 Hz frequency 0,5 1,0Operating1,0 1,0 frequency 1,0 max. 1,0 Hz 400 35 g 600 Hz 1000 150 Vibration400 100 11 ms100 g 100 100 Shock 100 9 1011 typ. 1011 pF 1011 10Capacitance 1011 20…50 10…30 20…50 Operating temperature range 20…50°C 20…50 5 5Test coil 5 10 Type 5 NORMALLY NORMALLY OPEN 1,01) Position2,0 2,0 OPEN 2,0 sensitive 2,0 MINIATURE MINIATURE 0,5 1,0Dimensions 0,5 1,0 0,5 2717 3723 3717 9210 2722 2717 3723 3717 9210 2722 0,10 0,05 0,10 0,10 0,10 A max. mm Total length A A A A A GlassAlength A 2900 A A A 2750 2900 2900 2900 B max. mm Rh Rh Rh Rh Rh Rh Rh Rh Rh Rh 200 500 200 230 200 C max. mm Glass diameter 10 40 40 10 Wire 10 1035/2000 10-1000 35g/2000 2000 mm40100 2000 100 D 40 max. diameter 500 230 400 300/350 230 500 230 400 230 50 30 50 50 50 300/350 Additional types on request 0,5 0,52,0 2,02,0 2,01,0 1,0 0,50,5 0,5 0,3 0,5 0,5 0,5 0,8 1,03,0 -40...+150 3,03,0 3,02,5 2,5 0,81,0 1000 400 1000 1000 400 1700 400 0221 400 1700 1000 1700 1000 1700 1000 100 10080 80 80 80100 100 100100 High High General High power, High 11 11 11 11 10 10 1011 101110 101110 10breakdown 1010 101110 power power wide purpose, 20…50 30…50 30…70 30…70 20…60 20…50 30…50 30…70 30…70 20…60 y differential offset voltage 5 5 10 10 15 15 15off 15 7 7 holding 2,0 2,02,0 2,02,0 2,02,0 2,00,6 0,6 0,5 0,50,5 0,50,5 0,50,5 0,50,5 0,5 0,10 0,10 0,10 on 0,10 0,10 0,05 0,10 0,10 0,10 0,05 55,0 55,0 55,0 55,0 57,0 2900 2900 2900 2900 4200 4200 4200 4200 2500 2500 19,0 19,0 19,0 19,0 13,0 200 200200 200300 300300 300500 500 2,6 2,6 2,6 2,6 2,3 x- 2000 2000 x+20g/1000 2000 2000 2000 2000 2000 2000 20g/1000 0,55 0,55 0,55 0,55 0,35x0,6 50 50 50 50 50 50 50 50 30 30 N S 0,5 0,5 0,5 0,5x0,50,5 0,5 0,50,5 0,5 x+ 1700 y -40...+150 -40...+150 1700 1700 1700 1700 y 55,0 55,0 19,0 19,0 2,62,6 0,55 0,55 C 55,0 55,0 55,0 55,0 19,0 on 19,0 19,0 19,0 2,62,6 2,62,6 0,70 0,70 0,55 0,70 A A Form A Form A B B z- holding off on S y yy y on on COMUS  off on off 52724_BRR_Guenther_GB_06.pmd x- x+ xx- x- N y SN y S x+ x+ x+ y y off off holding holding S.T.G. Germany GmbH on Guenther_EN_2012.indd 7 on x- x- z+ N S S y 1 30 0 2 2 1  off on off x+ N 4 Life Expec The life exp power. With expectancy and lamp lo maximum c z+ 1 x- x- off holding z- 6 on holding holding 55,0 19,0 2,6 0,55 C Dimensions Dimensions A max. A max. mm mm Total length Total length B max. B max. mm mm Glass length Glass length mm mm Glass diameter Glass diameter C max. C max. D max. mm D max. mm Wire diameter Wire diameter The materials used for Reed Switch magnets are generally ALNICO (an aluminium nickel Additional types ontypes request Additional on request cobalt alloy), a ceramic (barium ferrite or another metal oxide) or rare earth magnets. Due to their specific magnetic characteristics, the types of magnets differ in shape: ALNICO magnets are bar magnets with a length/diameter ratio of 3/1 to 5/1; oxide magnets are generally disc or moulded magnets. Also important to note is the difference in temperature coefficient: ALNICO: 0.02 %/K, oxide: 0.2 %/K y off holding holding 55,0 3 19,0 2,6 0,55 2 -40...+125 -40...+125 0221 0221 1 1700 The materi cobalt alloy to their spe 56,0 55,0 56,0magnets ar5 21,0 21,0generally d2 19,0 coefficient: 2,62,75 2,75 ALNICO: 0 0,60 0 0,70 0,60 1700 1700 1) Position 1) sensitive Position sensitive y 1700 C REED SWITCHES REED SWITCHES ORD2221 Pull-in sensitivity holding ORD2211 ORD9215 Parameters A A A A Contact form Rh Rh Rh Rh Contact material 10 10 50 10 Switching capacity max. W/VA 470 100 100 400 Switching voltage max. V AC/DC 0,5 0,5 in-rush 3A 0,4 0,5 Switching current max. A 1,0 2,5 1,0 1,0 Carrying current max. A 700 200 150 Dielectric strength 600 min. VDC and CSA approved UL and CSA approved 150 100 100 Contact resistance max. ULmΩ 150 1011 109 109 Insulation resistance min. 1011 Ω 15…35 10…50 20…40 Pull-in sensitivity 15…35 AW 5 4 8 min. Drop-out sensitivity 5 AW 1,8 Switching time without bounce max. 0,4 0,6 1,8 ms 0,2 Bounce time max. 0,4 0,4 ms 0,2 Type Parameters Release time max. Parameters 0,05 0,05 0,05 Type ms 0,05 form5000 Contact form 5000 Resonant frequency typ. Contact 3700 4600 Hz material Contact Operating frequency max. Contact Hz 500 500 200material 200 max. 10-1000 W/VA W/VA capacity max. Switching capacity Vibration 20 g Switching 35g/2000 Hz 10-1000 35g/2000 max. V max. AC/DC voltage Switching Shock 11 ms Switching g 30 30 V AC/DC 50 voltage 50 max. A current max. A 0,3 Switching Capacitance typ. Switching pF 0,3 0,7 current0,7 ° A current-40...+150 max. A Carrying current max. Operating temperature range Carrying C -40...+125 min. VDC Dielectric strength min. Test coil Type Dielectric 1035 0221 0221 VDC 1035 strength max. mΩ Contact Contact resistance max. mΩ resistance General Miniature, Miniature, Lamp load Features min. Ω Insulation resistance min. Ωpurpose, Insulation resistance high power high power AT Pull-in sensitivity AT Pull-in sensitivity miniature AT Drop-outDrop-out sensitivity min. AT type sensitivitymin. max. ms Switch. time without ms Switch. timeboun. without boun. max. max. ms Bounce time max. ms Bounce time Dimensions max. ms ReleaseRelease time max. ms time Total length 55,0 45,0 45,0 55,0 A max. mm Hz Resonant frequency typ. Hz Resonant frequencytyp. Glass length 14,1 16,5 17,0 14,1 B max. mm max. Hz Operating frequency max. Hz Operating frequency Glass diameter 2,3 2,8 2,8 2,3 C max. mm 35 g VibrationVibration 35Hzg Hz Wire diameter 0,50 0,6 0,5 0,50 D max. mm 11 ms 11 ms g Shock Shock g Additional types on request typ. pF Capacitance typ. pF Capacitance °CA Operating temperature range range °C Operating temperature Form Type Type Test coilTest coil D SUBMINIATURE 2317 2211 2314 D S.T.G. Type OKI Type x+ x+ x+ y The materials used for used Reedfor Switch are generally ALNICOALNIC (an a The materials Reedmagnets Switch magnets are generally cobalt alloy), a alloy), ceramic (barium (barium ferrite orferrite another metal oxide) rare earth cobalt a ceramic or another metaloroxide) or r to their specific magneticmagnetic characteristics, the typesthe of types magnets differ in sd to their specific characteristics, of magnets 7 to of magnetsmagnets are bar magnets with a length/diameter ratio of 3/1 5/1; m are bar magnets with a length/diameter ratio 3/1oxide to 5/1 generallygenerally disc or moulded magnets. Also important to note istothe differenc disc or moulded magnets. Also important note is the d coefficient: coefficient: ALNICO:ALNICO: 0.02 %/K, oxide: %/K 0.2 %/K 0.02 %/K,0.2 oxide: 24.10.12 14:48 REED SWITCHES UL / CSA / ETL listed Parameters Contact form Contact material Switching capacity max. Switching voltage max. Switching current max. Carrying current max. Dielectric strength min. Contact resistance max. Insulation resistance min. Pull-in sensitivity Drop-out sensitivity min. Switching time without bounce max. Bounce time max. Release time max. Resonant frequency typ. Operating frequency max. Vibration 20 g Shock 11 ms Capacitance typ. Operating temperature range Test coil Features S.T.G. Type OKI Type W/VA V AC/DC A A VDC mΩ Ω AW AW ms ms ms Hz Hz Hz g pF ° C Type 3723 A Rh 40 230 2,0 3,0 400 80 1011 30…70 15 2,0 0,5 0,10 4200 300 35g/2000 50 0,5 1700 High power, NORMALLY OPEN MINIATURE 9210 0229 3715 3717 ORD2210V ORD229 A A A A Rh Rh Rh Rh 100 50 40 40 300/350 300 230 400 1,0 0,5 2,0 2,0 2,5 2,5 3,0 3,0 1000 500 500 1000 100 100 100 80 1010 1010 1011 1011 30…70 30…70 20…60 20…60 15 15 7 6 2,0 2,0 0,6 0,6 0,5 0,5 0,5 0,5 0,10 0,10 0,05 0,05 4200 4200 2500 2500 300 300 500 500 35g/2000 35g/2000 10-1000 10-1000 50 50 30 30 0,5 0,5 0,5 0,5 -40...+150 -40...+125 1700 1700 0221 0221 High power High power close A max. B max. C max. D max. mm mm mm mm 55,0 19,0 2,6 0,70 55,0 19,0 2,6 0,70 55,0 19,0 2,6 0,70 A A Rh Rh 60 60 400 230 3,0 3,0 4,0 4,0 850 400 80 80 1011 1011 30…70 30…70 15 15 2,5 2,5 0,5 0,5 0,10 0,10 2400 2400 200 200 35g/1000 35g/1000 50 50 0,5 0,5 -40...+150 1800 1800 Vacuum, High High power, high power breakdown close voltage differential 56,0 21,0 2,75 0,60 55,0 24,5 3,8 0,80 differential Dimensions Total length Glass length Glass diameter Wire diameter COMPACT 3817 3823 56,0 21,0 2,75 0,60 High power 55,0 24,5 3,8 0,80 Additional types on request Form A Life Expectancy: The life expectancy of a Reed Switch is about 105...106 switching cycles with maximum power. With a low load the life expectancy can reach 5x108 operations. The mechanical life expectancy can reach at least 109 operations. Through the switching of inductive, capacitive and lamp loads, the life expectancy is considerably reduced due to exceeding the specified maximum current. In General: For all Reed Switches the standard pull-in sensitivity is given in the table. Other pull-in sensitivities are available on request. Normally Closed and Bistable Reed Switches: All Reed Switches are available in a normally closed or bistable version. Pull-In Sensitivity Tolerance: The given pull-in sensitivity of the Reed Switch has a test equipment tolerance of ± 2 AT. 8 Guenther_EN_2012.indd 8 S.T.G. Germany GmbH 24.10.12 14:48 REED SWITCHES ETL listed Parameters Type Contact form Contact material Switching capacity max. W/VA Switching voltage max. V AC/DC max. Switching current A max. Carrying current A min. Dielectric strength VDC max. Contact resistance mΩ min. Insulation resistance Ω Pull-in sensitivity AW min. Drop-out sensitivity AW Switching time without bounce max. ms Bounce time max. ms Release time max. ms Resonant frequency typ. Hz Operating frequency max. Hz Vibration 35 g Hz Shock 11 ms g Capacitance typ. pF ° C Operating temperature range Type Test coil Features 1517 A Rh 30 1000 1,0 2,0 3000 80 1011 75…130 25 3,5 0,5 0,20 900 100 500 50 0,8 1500 High break 1515 A Rh 40 800 1,0 3,0 1500 80 1011 75…130 25 1,5 0,5 0,20 900 100 500 50 0,8 1513 A Rh 120 1000 3,0 5,0 3000 80 1011 75…130 30 3,5 0,5 0,20 900 100 500 50 0,8 1500 1500 High power down High NORMALLY OPEN STANDARD 1525 1520 A A Rh Rh 80 60/80 250 250 1,3 1,3 2,0 2,0 800 800 80 80 1011 1011 75…130 75…130 25 25 3,5 3,5 0,5 0,5 0,20 0,20 900 900 100 100 500 500 50 50 0,8 0,8 -40...+150 1500 1500 General purpose power, 1565 B Rh 80 250 1,3 2,0 800 80 1011 1595 Bistable Rh 80 250 1,3 2,0 800 80 1011 3,5 0,5 0,20 900 100 500 50 0,8 3,5 0,5 0,20 900 100 500 50 0,8 High Normally Bistable power, closed 1523 A Rh 120 250 3,0 5,0 800 80 1011 75…130 30 3,5 0,5 0,20 900 100 500 50 0,8 1500 Lamp load general lamp load purpose Dimensions Total length Glass length Glass diameter Wire diameter A max. B max. C max. D max. mm mm mm mm 79 52,0 5,4 2,5 x 0,5 79 52,0 5,4 2,5 x 0,5 79 52,0 5,4 2,5 x 0,5 79 52,0 5,4 2,5 x 0,5 79 52,0 5,4 2,5x0,5 79 52,0 5,4 2,5x0,5 79 52,0 5,4 2,5 x 0,5 79 52,0 5,4 2,5 x 0,5 Additional types on request Form A Test coil type 0551 0211 0221 1035 1500 1700 1800 6500 Length in mm 26 10 15 13 48,2 20,5 23 28 Outer-ø in mm 16 11 11 14 14,2 14 15 16 Inner-ø in mm 3,5 2,3 2,9 2,6 5,7 2,65 3,8 5,8 S.T.G. Germany GmbH Guenther_EN_2012.indd 9 Cu-wire-ø in mm 0,08 0,063 0,071 0,063 0,09 0,08 0,08 0,07 Number of turns 5.000 5.000 5.000 10.000 10.000 10.000 10.000 10.000 Nom. resistance Ω 550 600 450 1.650 1.000 1.000 1.000 1.490 9 24.10.12 14:48 or R2 max. max. current inrush p 0,002 am 20 A OperatingExfrequency Vibration 0,001 0,1 10 A 2 pl e ms 80 60 ms 0,5 Lamp 40 Hz 6000 300 V Hz max. 200 20 200 V Hz 35 g 20g/1000 100 V g 0,08 Shock 11 ms 30 50 Vresistor across the 10 Lamp load with parallel 5orAcurrent limiting switch Capacitance typ. 25 V pF 1,58 0,06 Operating 2 A range Cutting andtemperature Bending 0,04 10 V 6 -40...+125 C ° As Test the Reed magnetic circuit of4a Reed coil Switch blades are part of the Type 0551 1A Switch, shortening the leads results in increased pull-in and general drop-out Miniature Features 0,5 A values. RS 0,02 Pull-in and drop-out sensitivity V R 40 0,01 Load C 1 RS 150 1,0 2,0R2 R1 0,5 200 Lamp 200 10 1,0 150 9 15…40 200 150 1,0 1,0 2,0 150 200 Lamp 150 200 10 10 109 V 9 15…40* 250 20g/1000 9 15…40 150 15…40* 0,8 0,8 0551 Miniature general 3325 Miniature high purpose with power 20 Pull-in and drop-out sensitivity 50 1035 cropped AT increase in % 56,5 0 50 -40...+150 cropped rop 1000 1000 0,8 0,8 50 Example D N.C. contact 10 A max. mm 56,5 Example and lamp loads are prone to high Unlike inductive loads, capacitive Glass length B max. mm 14,0 inrush currents which can lead to faulty operation and even contact 20 Glass diameter C max. mm 2,54 welding. t -ou mmcable capacitance) When switching charged capacitors (including a Wire diameter D max. 3,0 p Dro sudden unloading can occur, the intensity of which is determined by 10 types onofrequest the Additional capacity and length the connecting leads to the switch. This Pull-in inrush peak can be reduced by a series of resistors. The value of these resistors is dependent on the particular application but should 2 to ensure 4 6 the inrush 8 10 12 be as high0as possible that current is within the Cut-off length in mm allowable limits. 250 1,5 40 with Dimensions 250 2000 -40...+125 30 30 Capacitive Loads Total length 250 2000 30 purpose 2 I 0,5 RS 100 Cutting and Bending 1,5 0,6 0,6 0,6 0,6 As the Reed Switch blades are part of the magnetic circuit of a Reed 0,5 0,02 0,02 0,02 0,02 Switch, shortening the leads results in increased pull-in and drop-out 6000 values. 1,5 R2 100 4 8 5 Lamp load with parallel or current8limiting resistor 5across the switch 1,0 2,0 2,0 2,0 2,0 1,0100 ms V typ. 4 RS AT increase in % Lamp 3 00 max. 1 Resonant frequency le 0 ce) a ed by This of hould n the Resistance in Ω Current in A 0,006 Release time V 0,2 0,004 max. 400 30 R150 RS AW 500 0,02 0 high ntact min. 0 20 100 0 0,6 56 Load voltage in V 0,01 Bounce time 0,008 00 00 0 0 0,04 8 Drop-out sensitivity 10 0,4without20 Switching time bounce 000 00 00 00 With lamp load applications it is important to note that cold lamp CHANGE OVER filaments have a resistance 10 times smaller than already glowing filaments. This means that when being turned-on, the lamp filament SUBMINIATURE experiences a current flow 10 times greater than when already 0651 3325 3425 3336 3436 glowing. This high inrush current can be reduced to an acceptable ORT551-1 level through the use of a series of current-limiting resistors. Another possibility is the parellel switching the switch.CThis C C C of a resistor across C allows just enough current to flow to the filament to keep it warm, yet Rh Rh Rh Rh Rh not enough to make it glow. 3 5 5 20 20 30 filaments 0,8 have a resistance 10 times smaller than already glowing Switching current max. A 0,2 0,2 0,6 filaments. This means that when being turned-on, the lamp filament 1000 0,4 Carrying current max.greaterAthan when already 0,5800 0,5 experiences a2 current flow 10 times glowing. Thisstrength high inrush currentmin. can be reduced to an acceptable 600 Dielectric VDC 150 150 V 0,2 level through the use of a series of current-limiting resistors. Another 400 Contact resistance max. mΩ 100 100 possibility 0,1 is the 1 parellel switching of a resistor across the switch. This 0,08just enough Ω Insulation resistance min. 109 109 allows 0,8 current to flow to the filament to keep it warm, yet 0,06 notPull-in enough to make it glow. 200 sensitivity AW 10…30 10…30* Ex am 000 The following nomograph can be used for determining contact arc suppression for inductive R loads. 10000 S.T.G. Type 0551 Example 1: I = 0,1 A I 8000 10 V = 230 V Parameters OKI Type ORT551 6000 C = 0,001 µF 8 R = 340 Ω Contact form C 4000 Example 2: 6 Contact material If the current inrush is critical use Rh the below nomograph to determine Switching 4capacitythe minimum max. 3 resistance. W/VA 2000 I = 0,5 A C lamp load applications it is important With to note that cold lamp Switching voltage max. 30 Rmin = 400 VΩAC/DC 1 Load voltage 000 UL and CSA listed Contact Protection Capacitor in µF 0000 000 000 REED SWITCHES REED SWITCHES t -ou 50 1035 3336 with cropped N.C. contact N.C. contact Pull-in 2 4 Cut-off length in mm 55 6 8 55 10 12 55 55 14,0 14,0 14,0 14,0 14,0 When cutting or bending Reed Switches, it is important that the glass 2,54 2,3 2,3the cutting or bending 2,3 2,3 body not be damaged. Therefore, point should be no closer0,35 thanx30,75 mm to the glass body. 0,35 x 0,75 3,0 0,35 x 0,75 0,35 x 0,75 * pre-forming Cutting Form C When cutting or bending Reed Switches, it is important that the glass body not be damaged. Therefore, the cutting or bending point should Cable be no closer than 3 mm to the glass body. R1 RS C V R2 Load Cutting Bending TheCutting above diagram illustrates a resistor/capacitor network for and Bending protecting a Reed Switch against and/or As the Reed Switch blades arehigh partinrush of the currents. magneticRcircuit of aRReed 1 2 are Switch, used depending upon conditions. shortening the circuit leads results in increased pull-in and drop-out Bending values.  COMUS  When cutting or bending Reed Switches, it is important that the glass body not be damaged. Therefore, the cutting or bending point should be no closer than 3 mm to the glass body.  GÜNTHER  4 10 52724_BRR_Guenther_GB_04.pmd Guenther_EN_2012.indd 10 1 S.T.G. Germany GmbH 04.11.2002, 17:04 24.10.12 14:48 REED SWITCHES ETL listed Parameters Contact form Contact material Switching capacity Switching voltage Switching current Carrying current Dielectric strength Contact resistance Insulation resistance Pull-in sensitivity Drop-out sensitivity Switching time without bounce Bounce time Release time Resonant frequency Operating frequency Vibration Shock Capacitance Operating temperature range Test coil 10000 8000 6000 4000 2000 1000 800 600 1925 C Rh max. 60 W/VA 140 max. V AC/DC 1,0 max. A 2,0 max. A 250 min. VDC 100 max. mΩ 109 min. Ω 50…100 AW 20 min. AW 4,0 max. ms 0,5 max. ms 0,15 max. ms typ. Hz 100 max. Hz 2000 35 g Hz 50 11 ms g 1,0 typ. pF ° C Type 1500 Type COMPACT 1915 1917 C C Rh Rh 60 60 250 400 1,0 1,0 2,0 2,0 500 1000 100 100 109 109 50…100 50…100 20 20 4,0 4,0 0,5 0,5 0,15 0,15 100 100 2000 2000 50 50 1,0 1,0 1500 CHANGE OVER 1965 B Rh 60 140 1,0 2,0 250 100 109 1995 Bistable Rh 60 140 1,0 2,0 250 100 109 4,0 0,5 0,15 100 2000 50 1,0 4,0 0,5 0,15 100 2000 50 1,0 -40...+150 1500 STANDARD 1625 1665 1620 C B C Rh Rh Rh 60 60 60 230 230 230 1,0 1,0 1,0 2,0 2,0 2,0 400 400 400 100 100 100 109 109 109 80…120 80…120 20 20 4,0 4,0 4,0 0,5 0,5 0,5 0,10 0,10 0,10 100 100 100 500 500 500 50 50 50 1,0 1,0 1,0 1500 1695 Bistable Rh 60 230 1,0 2,0 400 100 109 4,0 0,5 0,10 100 500 50 1,0 1500 Features Bistable High power High power Normally Long life General Normally Bistable General With lamp load applications it is important to note that cold lamp closed purpose closed purpose filaments have a resistance 10 times smaller than already glowing filaments. This means that when being turned-on, the lamp filament experiences a current flow 10 times greater than when already glowing. This high inrush current can be reduced to an acceptable level through the use of a series of current-limiting resistors. Another possibility is the parellel switching of a resistor across the switch. This allowsDimensions just enough current to flow to the filament to keep it warm, yet not enough to make it glow. A max. mm Total length 70 70 81 70 81 70 81 81 70 Glass length B max. mm 36,0 36,0 52,0 36,0 52,0 36,0 52,0 52,0 36,0 RS Glass diameter C max. mm 5,6 5,6 5,6 5,6 5,6 5,6 5,6 5,6 5,6 Wire diameter 2,5 x 0,5 2,5 x 0,5 2,5 x 0,5 2,5 x 0,5 2,5 x 0,5 2,5 x 0,5 2,5 x 0,5 2,5 x 0,5 2,5 x 0,5 RS R1 D max. mm R2 Additional types on request V V Lamp 400 Lamp Form C 200 100 80 60 40 Lamp load with parallel or current limiting resistor across the switch Cutting and Bending As the Reed Switch blades are part of the magnetic circuit of a Reed Switch, shortening the leads results in increased pull-in and drop-out values. 20 40 10 8 6 one to high en contact Example AT increase in % 1 Approvals: Under ETL No. 3105897(conforms to UL Std. 508 / certified to CAN/CSA Std. C22.2 No. 14) listed reed switches: 1513, 1515, 1517, 1520, 1523, 1525, 1565, 1595, 1620, 1623, 1625, 1665, 1695, 1915, 1917, 1925, 1965. 1995, 2312, 2314, 2315, 2317, 2322, 2325, 2522, 2525, 2715, 2717, 2722, 2725, 3325, 3336, 3425, 3436, 3715, 3717, 3723, 3817, 3823. 30 4 2 Pull-in and drop-out sensitivity 20 p Dro 10 0 t -ou Under UL-No.: E70063 and CSA-No.: LR86615 approved Reed Switches: Pull-in 2 4 Cut-off length in mm 6 0211, 0213, 0221, 0228, 0219, 2211, 2212, 0229, 9210, 0234, 0233, 0551, 0324, 2221. 8 10 12 When cutting or bending Reed Switches, it is important that the glass body not be damaged. Therefore, the cutting or bending point should be no closer than 3 mm to the glass body. acitance) a ermined by witch. This value of Guenther_EN_2012.indd but should S.T.G. Germany GmbH 11 Cutting 11 24.10.12 14:48 HIGH VOLTAGE REED RELAYS Introduction GÜNTHER® High Voltage Reed Relay technology is based upon our extensive experience in the design and manufacture of Reed Switches and Reed Relays. GÜNTHER® High Voltage Reed Relays have outstanding performance characteristics in insulation resistance and stand-off voltage. The high dielectric stand-off voltage between the open contacts as well as the high switching voltage are achieved by using high vacuum Reed Switches. A proven assembly and potting technique assures the following relay characteristics: ●  Stand-off voltage across open contacts from 3 KV up to 14 KV max. ●  Stand-off voltage between coil and contact from 10 KV up to 25 KV max. ●  Switching voltage from 1.5 KV up to 10 KV max. GÜNTHER® High Voltage Reed Relays are offered in a variety of contact configurations: ● 1 N.O., 2 N.O. or 4 N.O. contacts (normally open contacts) ●  1 N.C. (normally closed contact) ●  1 N.C. / 1 N.O. (1 normally closed contact/ 1 normally open contact) GÜNTHER® High Voltage Reed Relays offer mounting flexibility enabling the customer to match different application requirements: ●  Coil and Reed Switch connecting pins in the base plate for PCB mounting. ●  Coil connecting pins in the base plate for PCB mounting and Reed Switch connections with cable. ●  Coil connecting pins in the base plate for PCB mounting and Reed Switch connecting pins on top of the relay.    GÜNTHER® High Voltage Reed Relays have additional features: ● Immunity against harsh environmental conditions (eg. high humidity) by using hermetically sealed switching contacts potted in a strong plastic case. ●  High shock and vibration resistance. ●  Low contact capacitance and high switching frequency in comparison with electro-mechanical, open relay contacts. ●  Washable and resistant to standard automatic cleaning methods. GÜNTHER® High Voltage Reed Relays find application in many areas of the electrotechnical and electronic industry: ●  Electronic medical equipment ●  Cable tester arrays and cable test equipment ●  Copy machines ●  Laser optical systems and infra-red equipment ●  Test equipment 12 Guenther_EN_2012.indd 12 S.T.G. Germany GmbH 24.10.12 14:48 HIGH VOLTAGE REED RELAYS Standard Types - Selection Chart 1270 Number of contacts: Contact form: Coil and Reed Switch terminals: See type 1270 Contact form: 1 contact 1 normally open Number of contacts: Contact form: Coil terminals: Reed Switch terminals: See type 1280 Contact form: 1 contact 1 normally open Soldering pins on bottom Soldering pins on top Number of contacts: Contact form: Coil terminals: Reed Switch terminals: See type 1290 Contact form: 1 contact 1 normally open Soldering pins on bottom High voltage cable on top 1272 Number of contacts: Contact form: Coil terminals: Reed Switch terminals: 2 contacts 2 normally open Soldering pins on bottom Switch 1: soldering pins on bottom Switch 2: soldering pins on top 1274 Number of contacts: Contact form: Coil and Reed Switch terminals: 4 contacts 4 normally open 4270 1280 4280 1290 4290 1294 See type 1274 Reed Switch terminals: 5272 Number of contacts: Contact form: Coil and Reed Switch terminals: 5292 See type 5272 Reed Switch terminals: S.T.G. Germany GmbH Guenther_EN_2012.indd 13 Soldering pins on bottom 1 normally closed 1 normally closed 1 normally closed Soldering pins on bottom High voltage cable at sides 2 contacts 1 normally open / 1 normally closed Soldering pins on bottom High voltage cable at sides 13 24.10.12 14:49 HIGH VOLTAGE REED RELAYS HIGH VOLTAGE REED RELAYS CONTACT FORM Type CONTACT FORM Data Contact Parameters max. SwitchingContact voltage Parameters Switching voltage min. Dielectric strength Dielectric strength max. Switching capacity Switching capacity max. Switching current Switching current max. Carrying current Carrying current Contact resistance Contact resistance max. ..6 Dielectric strength coil/contact VDC VDC VDC VDC VDC VDC VDC VDC Ω Ω 5 4 1 8 35 VDC Drop-outWeight time Pin configuration Dimensions 5 4 1 8 35 12 ..6 approx. g 20 10 2 4 2 18 18 200 200 - 1 x 109 ..6 ..6 36 720 5 24 4 20 1 4 8 36 35 720 ..6 12 5 10 4 2 1 18 8 200 35 ..6 3392 3391 1280 1280 3316 3390 3391 ..6 ..6 1290 1290 1290 ..6 20.000 1 4 36 720 ..6 ..6 3392 1290 ..6 5 12 10 1 2 18 200 20 55 4 8 35 20.000 - -35...+90 1 x 109 -20...+70 3,5 -35…+ 90 18 3,5 1,5 -20…+ 70 55 1,5 2 3 1 12 24 10 20 2 4 18 36 200 720 4 24 20 4 36 720 20.000 1 x 109 1,5 2 3 20 - 1,5 -20…+70 3,5 18 55 24 20.000 -35...+90 1 x 109 -20...+70 3,5 -35…+90 ms g page 24 12 10 ms page max. approx. Weight ..6 20.000 Dielectric strength contact/contact VDC VDC coil/contact Dielectric strength Ω Insulation resistance coil/contact contact/contact VDC Dielectric strength ° Storage temperature C Ω coil/contact Insulation resistance ° Operating temperature C °C Storage temperature Pull-in time incl. bounce ms °C Operating temperature Drop-out time ms Pull-in time incl. bounce Dimensions ..6 3392 3316 3390 1 NORMALLY OPEN 1270 1280 1280 3316 3390 3391 3392 ..6 ..6 ..6 1280 1280 1280 1280 7.500 5.000 10.000 VACpeak / VDC 10.000 5.000 7.500 1.500 1.500 max. VACVDC 1.500 5.000 7.000 7.500 10.000 1.500 5.000 7.500 10.000 1.500 5.00014.000 7.500 10.000 peak 10.000 14.000 7.000 10.000 3.000 3.000 min. VDC 3.000 7.000 10.000 14.000 3.000 7.000 10.000 14.000 3.000 7.000 10.000 14.000 50 50 50 W 50 30 50 50 30 max. W 30 50 50 50 30 50 50 50 30 50 50 50 3 3 3 A 3 1 3 3 1 max. A 1 3 3 3 1 3 3 3 1 3 3 3 5 5 5 A 5 2 5 5 2 max. A 2 5 5 5 2 5 5 5 2 5 5 5 250 250 250 mΩ 250 250 80 250 max. mΩ 80 80 250 250 250 80 250 250 250 80 250 250 250 Nominal coil voltage Nominal coil voltage Pull-in voltage max. max. Pull-in voltage Drop-out voltage min. min Drop-out voltage Operating voltage max. max. Operating voltage Coil resistance +/-15 % +/-15 % Coil resistance Relay Parameters 1270 3392 ..6 1270 1270 1270 3316 3390 3391 ..6 ..6 1270 1270 1270 Coil Parameters Coil Parameters Relay Parameters 3391 3390 3316 Type Data 1 NORMALLY OPEN 1) 1 NORMALLY OPEN 4 - 1 x 109 -35...+90 -20...+70 3,5 1,5 18 65 20 2 553 4 1 2 2 Pin configuration 4 3 3 4 Switches with contact code 90-92 are tungsten-plated and should be used 1 only for switching power above approx.110 mW. General Parameters Insulation Resistance 1) Also available with high voltage cable (relay type 1290) All characteristics for pull-in voltage, drop-out The insulation resistance is measured with a Tera Ohmmeter at 500V Switches with contact code 90-92 are tungsten-plated and should be used only for switching power above approx. 10 mW. voltage and coil resistance at 200C +/-3°C ambient DC. The ambient climate is 200C +/-3°C and 50 % relative humidity. temperature. For other temperatures see diagram Insulation Resistance General Parameters "temperature range". Switching Voltage, Switching Current Rating The insulation resistance is measured with a and TeraPower Ohmmeter at 500V All characteristics for pull-in voltage, drop-out voltage and coil 0 The values for switching switching current and power DC.listed The ambient climate is 20voltage, C +/-3°C and 50 % relative humidity. resistance at 200C +/-3°C ambient temperature. For other Contact Resistance rating are absolute limits. If any of these values is exceeded, a reduction temperatures see diagram "temperature range". Voltage, Power Rating Initial value at nominal voltage measured by the ofSwitching life expectancy willSwitching result (see Current followingand power diagram). Contact Kelvin Resistance The listed values for switching voltage, switching current and power test method at 20V/100mA. Initial value at nominal voltage measured by the Kelvin test method rating are absolute limits. If any of these values is exceeded, a reduction at 20V/100mA. of life expectancy will result (see following power diagram). Soldering During soldering make sure no mechanical stress Soldering is applied to terminals the thermoplastic During soldering make shure nobecause mechanical stress is applied to material might be molding damaged. terminalsmoulding because the thermoplastic material might be damaged. Order Example: Order Example: 33 92 1270 05 6 33 92 1270 05 6 Product group Product group Contact code Version code Version StandardContact type Nominal coil voltage Standard type Nominal coil voltage 05 = 5V 05 = 5V 12 = 12V 12 = 12V 24 = 24V 24 = 24V  COMUS  Switching voltage [V] Prohibited area Switching current [A]  GÜNTHER  17 RR_Guenther_GB_17.pmd 14 1 Guenther_EN_2012.indd 14 S.T.G. Germany GmbH 28.10.2002, 11:53 24.10.12 14:49 HIGH VOLTAGE REED RELAYS CONTACT FORM 2 NORMALLY OPEN Type 3316 Dielectric strength Switching capacity max. VACpeak Switching current Carrying current Contact resistance Nominal coil voltage max. Operating voltage max. Drop-out voltage min. Coil resistance Relay Parameters Dielectric strength Dielectric strength +/-15 % 5.000 7.500 10.000 1.500 5.000 7.500 10.000 1.500 5.000 7.500 10.000 50 30 5 5 5 2 3 250 250 3 250 ..6 ..6 7.000 10.000 14.000 3.000 1 50 50 50 30 5 5 5 2 3 80 3 250 3 250 250 ..6 50 50 5 5 5 3 3 250 24 5 12 VDC 0,5 1,2 2,4 0,5 1 1 0,5 1 Ω 15 85 275 12 175 12 VDC 7 29 10 7,5 20 14,5 27 42 4 7,5 10.000 Ω 1 x 109 1 x 109 1 x 109 C -35...+90 20 2 27 42 10.000 8.000 24 14,5 10.000 10.000 175 8.000 -35...+90 -35...+90 C -20... +70 -20... +70 -20... +70 ms 1,5 1,5 1,5 ° ms 3,5 page 3,5 18 g 18 130 2 5 3 3,5 18 55 1 6 4 7 5 3 1 B 250 10 VDC VDC Pull-in time incl. bounce 16 4 3 250 12 20 ..6 50 5 10 1294 7.000 10.000 14.000 1 80 ..6 24 4 ° approx. 50 ..6 12 Operating temperature Pin configuration 50 ..6 5 VDC coil/contact Drop-out time ..6 VDC Storage temperature Weight 80 ..6 7.000 10.000 14.000 3.000 3 2 mΩ Insulation resistance coil/contact Dimensions 30 A contact/contact 3392 1.500 1 Pull-in voltage 3391 1294 A Coil Parameters 3390 1294 ..6 1274 3316 1294 max. max. 3392 1274 3.000 max. 3391 1274 VDC W 3390 1274 ..6 1272 3316 1272 min. max. 3392 1272 ..6 Switching voltage 3391 1272 Data Contact Parameters 3390 4 NORMALLY OPEN 140 C 8 6 4 2 7 5 3 1 B C 8 6 4 2 Switches with contact code 90-92 are tungsten-plated and should be used only for switching power above approx. 10 mW. Dielectric Strength Tested in a radiation (e.g. light, x-ray) free environment by applying a DC voltage across the open contacts, between adjacent contacts and between coil and contact. The trigger current is 100 µA. The unused contacts should not be connected during the test. Switching Time Pull-in time including bounce time at nominal voltage and 20 Hz: 1,5 … 3,5 ms Release time (without diode) at nominal voltage and 20 Hz: 0,4 … 1,5 ms V Coil voltage t V Contact Capacitance (Typical Values) Die Kapazitätswerte gelten als typische Werte. Capacitance: N.O. Across open contacts 0,8 - 1,2 pF Between open contacts and coil 1,4 - 2,2 pF Between closed contacts and coil 2,3 - 3,5 pF Reed Switch t Operate delay Bounce time Release delay S.T.G. Germany GmbH Guenther_EN_2012.indd 15 15 24.10.12 14:49 HIGH VOLTAGE REED RELAYS CONTACT FORM 1 NORMALLY CLOSED + 1 NORMALLY OPEN Type Switching voltage 3390 3391 3392 3316 3390 3391 3392 ..6 ..6 ..6 ..6 ..6 ..6 ..6 ..6 5272 Data Contact Parameters 3316 5272 5272 max. VACpeak 1.500 5.000 Switching capacity max. W 30 50 Carrying current max. Dielectric strength min. Switching current max. Contact resistance max. Coil Parameters Nominal coil voltage Pull-in voltage max. Operating voltage max. Drop-out voltage min. Coil resistance Relay Parameters Dielectric strength Dielectric strength +/-15 % coil/contact contact/contact Insulation resistance coil/contact Storage temperature VDC A A mΩ 2 5.000 50 50 30 50 10.000 3 3 14.000 3 5 250 3.000 5 250 250 1 2 10.000 14.000 3 3 3 50 250 12 VDC 0,5 1 2 0,5 1 Ω 27 345 27 VDC 7,5 20 14,5 27 135 4 7,5 20 2 27 135 10.000 Ω 1 x 109 1 x 109 8.000 C 24 14,5 10.000 345 8.000 -35...+90 -35...+90 C -20... +70 -20... +70 ms 1,5 1,5 ° page 3,5 3,5 18 g 18 130 3 7 A+ C 250 10 VDC VDC 5 250 5 10 50 5 24 4 10.000 7.000 5 80 5292 7.500 12 Dimensions approx. 1.500 5 VDC ms Drop-out time 5292 10.000 5 80 5292 VDC Pull-in time incl. bounce Weight 1 5292 7.500 7.000 ° Operating temperature Pin configuration 3.000 5272 140 BD 4 3 8 7 A+ C BD 4 8 Switches with contact code 90-92 are tungsten-plated and should be used only for switching power above approx. 10 mW. Life Expectancy The life expectancy of a Reed Relay is at least 105...106 operations at nominal load. At minimum load the life expectancy can endure up to 5 x 108 operations. The mechanical life expectancy is 109 operations (minimum). Through the switching of higher loads, especially inductive or capacitive and lamp loads, life expectancy can be considerably reduced due to exceeding the permissible maximum current. Shock and Vibration During shock and vibration tests the relays must be energized with nominal voltage. The contact should not open or close longer than 10 µs. Vibration stability: 20 g/50 … 500 Hz Shock stability: 35 g/11 ms half sine wave. Proper contact protection will reduce electromagnetic interference and rapid contact erosion. Suppressing diodes in connection with inductive loads may cause extreme contact wear. 16 Guenther_EN_2012.indd 16 S.T.G. Germany GmbH 24.10.12 14:49 HIGH VOLTAGE REED RELAYS CONTACT FORM 1 NORMALLY OPEN Type 3316 3390 3391 3392 3316 4270 4270 4270 4270 4280 ..6 ..6 ..6 ..6 ..6 Data CONTACT FORM Contact Parameters Type 3316 3390 3391 3392 3316 min. Switching capacity max. Switching current Switching voltage Carrying Dielectriccurrent strength 3 3 1 3 1 max. A max. VACpeak 1.500 5.000 7.500 10.000 1.500 5 14.000 2 5 3.000 max. A min. VDC 3.0002 7.0005 10.000 250 250 80 250 80 max. mΩ max. W 30 50 50 50 30 max. max. max. Pull-in voltage max. Drop-out voltage Nominal coil voltage Operating voltage Pull-in voltage min. Operating voltage max. Coil Parameters max. max. +/-15% min. Coil resistance Drop-out voltage Coil resistance Relay Parameters +/-15 % Dielectric strength coil/contact Relay Parameters A 1 A 3 2 5 mΩ VDC 80 VDC VDC VDC VDC VDC 6,5 50 Ω VDC Operating temperature Storage temperature C°C ° Operating Pull-in timetemperature incl. bounce max. Pull-in time incl. bounce Drop-out time Drop-out time Dimensions approx. approx. Cms 5 250 12 4 10 0,5 5 3 5 250 4 6,5 Ω 0,5 50 VDC VDC 50 50 30 W contact/contact VDC Dielectric strength Dielectric strength coil/contact VDC coil/contact Insulation resistance Dielectric strength contact/contact VDCΩ Storage temperature Ω °C Insulation resistance coil/contact Dimensions Weight Weight Pin Pin configuration configuration ..6 ..6 3391 3392 3316 6 . . 7.000 6 . 10.000 .6 . 14.000 .6 . 3.000 .6 .7.000 .6 ..6 ..6 ..6 14.000 10.000 VDC. . 3.000 Contact Parameters Contact resistance Nominal coil voltage ..6 3390 Data Dielectric strength Carrying current Coil Parameters 3391 3392 HIGH VOLTAGE REED RELAYS 4280 4280 4280 10.000 4290 7.500 4280 5.000 4280 7.500 4270 5.000 4270 1.500 4280 10.000 4280 1.5004270 VACpeak / VDC4270 max. Switching current ) 3390 1 Normally Closed Switching voltage Contact resistance Switching capacity 1 1 12 14,5 10 1 400 14,5 400 3 3 3 3 5.000 7.500 10.000 1.500 5 5 14.000 5 10.000 7.000 3.000 250 250 250 50 50 50 30 1 5 3 2 250 24 80 5 20 2 24 27 20 2675 27 675 msms ms page 10 20 0,5 5 46,5 1 12 14,5 10 2 24 27 20 6,5 50 400 675 2 27 675 20.000 20.000 1 x 109 1-35…+ x 109 90 20.000 1 x 109 -35…+ 1 x 109 90 7.500 10.000 2 80 50 50 5 5 5 3 250 12 0,5 1 4 COMUS 24 20 2 14,5 50 27 400 675 20.000 - 1 x 109 3,5 1,5 3,5 1,5 3,5 -20...+ 70 1,5 20 18 55 3 1,5 18 65 22- 1+ When mounting relays side by side a gap of approximately half the relay-width is recommended to avoid mutual magnetic influence.  250 10 6,5 3,570 -20...+ 4 3 250 5 2- 4 Switches contact code 90-92 are tungsten-plated andcontact shouldprotection be used only switching power above approx. 10 mW. Shock andwith Vibration Proper will for reduce electromagnetic During shock and vibration tests the relays must interference and rapid contact erosion. Suppressing Operating be energized Temperature with nominal voltage. The contact diodes in connection with inductive loads may cause The operating is the internal of the relay (ambient should not opentemperature or close longer than 10 µs.temperature extreme contact wear. temperature plus self Factor heating). stability: If relays 20 areg/50 operating higher ambient temperatures (ϑu) than + 20 °C, the pull-in voltage Vibration … 500atHz 1,4 and the maximum calculated Operating as follows: Temperature Shock stability: 35 coil g/11voltage ms halfmust sinebe wave. Pull-in voltage = Pull-in voltage at 20 °C x k1 The operating temperature is the internal temperature 1,2 Life Expectancy Maximum coil voltage voltage 20 °Cof x the k2 relay (ambient temperature plus self heating). The life expectancy of = a Max. Reedcoil Relay is at at least 1,0 at higher ambient temperatures 105...106 operations at nominal load. At minimum If relays are operating 0 When relays can sideendure by sideup a gap approximately half the relay-width is recommended (ϑu) than +20 C, the pull-in voltage and the maximum 8 load themounting life expectancy to 5 xof10 0,8 to avoid mutual magnetic influence. coil voltage must be calculated as follows: operations. 0 Pull-in voltage = Pull-in voltage at 20 C x k1 9 The mechanical life expectancy is 10 operations 0,6 Maximum coil voltage = Max. coil voltage at 200C x k2 (minimum).  3 -35...+ 90 21+ ..6 50 -20…+90 70 -35...+ 55 4290 7.000 10.000 14.000 3 3 3 4 4 1+ 1+ 1) Also available with high voltage cable (relay type 4290) Switches with contact code 90-92 are tungsten-plated and should be used only for switching power above approx. 10 mW. Through the switching of higher loads, especially inductive or capacitive and lamp loads, life expectancy can be considerably reduced due to exceeding the permissible maximum current. ..6 -20…+ -35...+ 9070 55 2- 3 14,5 20.000 1,520 1855 page g g 5 4 1400 3392 5.000 ..6 1 250 24 0,550 250 5 3 12250 3,570 -20...+ ° 5 3 3391 4290 50 50 50 30 50 3390 4290  4 1+ k1 - value k2 - value 0,4 0,2 -40 -20 0 +20 +40 +60 +80 Temperature in °C GÜNTHER  19 52274_BRR_Guenther_GB_19.pmd 1 28.10.2002, 11:55 S.T.G. Germany GmbH Guenther_EN_2012.indd 17 17 24.10.12 14:49 HIGH VOLTAGE REED RELAYS HIGH VOLTAGE REED RELAYS 60 4 2 4 4 21 0,5 4 Ø 0,8 3 Ø 0,8 1 15 60 33.. 1270 .. 6 21 4 3 21 21 0,5 68 2 68 33.. 4270 .. 6 33.. 1280 .. 6 15 1 33.. 4280 .. 6 21 2 15 68 1 21 55 4 0,5 48 10 Ø 0,8 25 18,5 27 21 55 70 27 B 1 17 15 41,5 6 C 3 Outer-Ø 4 / Wire-Ø 0,8 29,5 8 7 2 C 14 12 33.. 1294 .. 6 18,5 Ø 0,8 27 55 41,5 70 D B 13 4 21 Outer-Ø 4 / Wire-Ø 0,8 17 8 7 21 27 55 4 25 10 Ø 0,8 25 21 48 200 GÜNTHER 33.. 5292 ..6 21 0,5 GÜNTHER 33.. 5272 ..6 75 0,5 48 4 75 C A B Bottom view 33.. 1274 .. 6 10 18 16 13 11 4 Bottom view 3 200 GÜNTHER 33.. 1294 ..6 21 0,5 75 6,5 25 15 4 48 Ø 0,8 2 33.. 1272 .. 6 75 5 4 33.. 4290 .. 6 GÜNTHER 33.. 1274 ..6 4 68 21 33.. 1290 .. 6 10 Ø 0,8 3 1 21 Ø 0,8 21 4 0,5 4 4 6 0,5 3 60 5 21 200 Outer-Ø 4 / Wire-Ø 0,8 10 60 18 C A+ D B- 14 Bottom view Bottom view 33.. 5292 .. 6 33.. 5272 .. 6 Dimensions in mm 18 20  Guenther_EN_2012.indd 18 COMUS  S.T.G. Germany GmbH  GÜNTHER  24.10.12 14:49 DIL-SIL-REED RELAYS Version DIL-High Profile Contact Form 1 Normally Open 2 Normally Open 1 Change Over 3570 1210 ... 3572 1220 ... 3563 1231 ... 3573 1231 ... Features - Industry-standard housing - Industry-standard housing - Industry-standard housing - Industry-standard housing Type 1 Change Over Coil Parameters VDC 5 12 24 5 12 24 5 12 24 5 12 24 Pull-in voltage max. VDC 3,8 9 18 3,8 9 18 3,8 9 18 3,5 8 16 Drop-out voltage min. VDC 0,8 1 2 0,8 1 2 1 2 4 1 2 4 Operating voltage max. VDC 20 30 40 10 20 40 10 18 35 10 18 35 Coil resistance ±10% Switching voltage max. W/VA Dielectric strength max. Switching capacity max. Switching current max. A 1,0 1,0 0,5 1,0 Carrying current max. mΩ 150 150 200 150 Contact resistance min. VDC 200 200 140 200 Dielectric strength coil/contact VDC 1000 1000 1000 500 Insulation resistance coil/contact Ω 1010 1010 1010 1010 Nominal coil voltage 500 1000 2150 140 Ω Contact Parameters 500 2150 200 500 2150 200 500 2150 10 10 3 5 V 100 AC/DC 100 AC/DC 70 AC / 100 DC 100 AC/DC A 0,5 0,5 0,25 0,5 Relay Parameters Storage temperature ° C -40...+105 -40...+105 -40...+105 -40...+105 Operating temperature ° C -35...+80 -35...+80 -35...+80 -35...+80 ms 0,5 0,5 2,0 1,2 Pull-in time incl. bounce Drop-out time Dimensions Weight Pin configuration (top view) ms 0,5 0,5 3,0 0,8 page 21 21 21 21 approx. g 2,3 2,3 2,3 2,3 1 2 114 213 14 1 13 2 1 2 1 14 2 13 114 14 213 13 14 1 13 2 1 2 1 14 2 13 1 14 14 2 13 114 2 1 2 1 14 2 114 2 14 1 14 2 1 2 6 7 69 78 96 87 6 7 69 78 6 78 6 87 6 7 6 78 69 78 8 69 78 6 7 69 78 69 78 9 8 96 87 6 7 General Parameters Life Expectancy The life expectancy of a Reed Relay is at least 105...106 operations at nominal load. At minimum load the life expectancy can be up to 5 x 108 operations. The mechanical life expectancy is 109 operations (minimum). Through the switching of higher loads, especially inductive or capacitive and lamp loads, life expectancy can be considerably reduced due to exceeding the permissible maximum current. 9 8 Order Example: 35 70 1210 05 1 Product group Contact code Standard type Version 1 = without diode 3 = with diode Nominal coil voltage 05 = 5V 12 = 12V 24 = 24V S.T.G. Germany GmbH Guenther_EN_2012.indd 19 19 24.10.12 14:49 DIL-SIL-REED RELAYS Version Contact Form DIL-Low Profile SIL 1 Normally Open 1 Normally Open Type Features Coil Parameters Nominal coil voltage Pull-in voltage max. Operating voltage max. Drop-out voltage min. Coil resistance ±10% Contact Parameters VDC max. A max. Contact resistance max. Dielectric strength min. Relay Parameters Dielectric strength coil/contact Insulation resistance coil/contact Storage temperature Operating temperature Pull-in time incl. bounce time max. Drop-out time with diode Dimensions Weight 1 2 9 20 500 Ω Switching current Carrying current 0,8 15 W/VA max. 24 VDC max. Switching voltage 12 3,8 Switching capacity 3570 1331 ... - Industry-standard 5 VDC VDC 3570 1301 ... - Industry-standard 1000 100 AC/DC A Vibration resist. Shock resistance 0,8 1,5 500 1000 18 3,8 30 15 2000 1,0 9 30 200 VDC 1000 150 1000 10 1010 10 C C -40...+105 -40...+105 0,5 0,5 -35...+80 ° ms ms -35...+80 0,5 page 0,5 21 21 1,8 1 2 14 13 14 13 1 3 1 3 6 7 6 7 9 8 9 8 5 7 5 7 20 g / 5...2000 Hz 10 g / 5...500 Hz 100 g / 11 ms 50 g / 11 ms Sine half wave Sine half wave 1,6 1 2 Change Over Washability Resistant to Caltron, Freon, alcohol and distilled (pure) water. During the final rinsing phase only the purest substances should be used. 2000 1,0 200 Ω 2 40 0,5 150 ° 18 10 mΩ VDC 24 100 AC/DC 0,5 Vibration and Shock Resistance During the evaluation of vibration and shock resistance, the relays are driven with nominal voltage. The switches should not open longer than 10 µsec. Normally Open 12 10 V approx. g Pin configuration (top view) 5 Capacitance The capacitance parameters are regarded as typical and are calculated for versions without shielding: N.O. Change Over across open contact 0,8 pF 2,5 pF between open contact and coil 1,5 pF 2,5 pF between closed contact and coil 3,0 pF 2,5 pF Capacitance, measured... Solderability By using laser welding in manufacture, a number of our DIL-SILReed Relays are suitable for enhanced soldering requirements. Hole Diameter in PCB: Ø 0,65 mm 20 Guenther_EN_2012.indd 20 S.T.G. Germany GmbH 24.10.12 14:49 DIL-SIL-REED RELAYS DIL-High Profile DIL-Low Profile 7,10 7,10 7,10 SIL Dimensions in mm Pull-in and Drop-out Voltage, Coil Resistance The tolerances indicated are valid at 25 °C ± 3 °C. The temperature coefficient of the coil resistance is 0,4 % / °C. Switching Voltage, Current and Capacity The parameters as listed for switching voltage, current and capacity are maximum values. Exceeding any one of these values causes overload and reduces relay life expectancy. Temperature Range The operating temperature of the relay is the equivalent of the internal temperature. If the relays are used in ambient temperatures (ϑa) higher than 20 °C, the maximum permissible operating voltage (UT) must be calculated according to the table indicated below, using the formula: UT = Umax x k1 (Umax = max. permissible operating voltage) ϑu (°C) 20 30 40 50 60 70 k1 1,00 0,96 0,92 0,78 0,74 0,70 Switching Time When using dry Reed Switches in relays, contact bounce may occur. Pull-in time (incl. bounce time) typ. 0,5...1,8 ms at nominal voltage and 20 Hz Drop-out time (with diode) typ. 0,5...1,5 ms at nominal voltage and 20 Hz Comment Relay versions with 15 V nominal coil voltage are available upon request. Contact Resistance The contact resistance indicated is valid for new relays at nominal coil voltage. The four-point method at 2 VDC / 100 mA or 10 mA is applied. Custom solutions for special applications, especially for switching signals smaller than 1 mV at 10 µA (low-level-applications) or applications requiring dynamic contact resistance measurement can be produced for special switching needs. S.T.G. Germany GmbH Guenther_EN_2012.indd 21 21 24.10.12 14:49 REED RELAYS Customer Specific DIL-REED RELAYS Introduction The customer specific Reed Relays are Dual-In-Line-Relays with standard housing height of 7,5 mm and a base area of 19 x 10 mm.These relays are potted with a permanent flexible plastic material subject to no mechanical force. The advantage of the customer specific DIL-Reed Relays is that a wide variation of special pin configurations, contact arrangements and other applications can be realized. S.T.G. is thus able to produce the relay to meet special customer requirements. Due to the small housing these relays can replace standard housing relays mounted on a PCB. Version Customer Specific Reed Relays in DIL-Housing Contact Form Type Features 1 Normally Open 2 Change Over 3875 1342 ...1) 3865 1251 ...1) - High insulation resistance - Industry-standard - Low input power Coil Parameters Nominal coil voltage Pull-in voltage max. Operating voltage max. Drop-out voltage min. Coil resistance ±10% Contact Parameters Switching capacity max. Switching current max. Contact resistance max. Switching voltage Carrying current Dielectric strength Relay Parameters Dielectric strength Ω W/VA 1 320 2 20 1000 1,0 A mΩ VDC VDC Ω C ° C ° ms ms page approx. g 24 5 18 3,8 40 7 4 3200 10 A Pull-in time incl. bounce time max. Pin configuration 12 9 max. Storage temperature Weight VDC VDC 12 230 coil/contact Dimensions 3,8 V AC/DC Insulation resistance coil/contact Drop-out time with diode 5 VDC max. min. Operating temperature VDC 0,5 1 100 12 9 2 16 500 2,0 1000 -35...+100 -35...+100 1,0 1,5 0,4 23 2,3 2000 1,0 4000 -20...+80 4 30 20 150 1012 18 100 150 400 24 200 1010 -20...+80 1,0 23 3,2 (top view) 1) Also available with diode 22 Guenther_EN_2012.indd 22 S.T.G. Germany GmbH 24.10.12 14:49 REED RELAYS Customer Specific DIL-REED RELAYS Pull-in and Drop-out Voltage, Coil Resistance The tolerances indicated are valid at 25 °C ± 3 °C. The temperature coefficient of the coil resistance is 0,4 % / °C. Switching Voltage, Current and Capacity The parameters as listed for switching voltage, current and capacity are maximum values. Exceeding any one of these values causes overload and reduces relay life expectancy. Temperature Range The operating temperature of the relay is the equivalent of the internal temperature. If the relays are used in ambient temperatures (ϑa) higher than 20 °C, the maximum permissible operating voltage (UT) must be calculated according to the table indicated below, using the formula: UT = Umax x k1 (Umax = max. permissible operating voltage) ϑu (°C) 20 30 40 50 60 70 k1 1,00 0,96 0,92 0,78 0,74 0,70 Order Example: 38 75 1342 05 1 Product group Contact code Standard type Contact Resistance The contact resistance indicated is valid for new relays at nominal coil voltage. The four-point method at 2 VDC / 100 mA or 10 mA is applied. Custom solutions for special applications, especially for switching signals smaller than 1 mV at 10 µA (low-level-applications) or applications requiring dynamic contact resistance measurement can be produced for special switching needs. Nominal coil voltage 05 = 5V 12 = 12V 24 = 24V During and immediately after the soldering process no mechanical stress should occur on the soldering pins. Customized special versions can be developed and manufactured pursuant to customer requirements. S.T.G. Germany GmbH Guenther_EN_2012.indd 23 Version 1 = without diode 3 = with diode 23 24.10.12 14:49 Proximity sensors Type Parameters Contact Form Switching Capacity 4414 4414 4428 4428 4429 4429 4451 4451 4452 1525 1625 1525 1625 3823 0551 2725 0551 2325 121 121 111 111 111 111 311 311 311 A C A C A C A C A W/VA 80 60 80 60 60 3 10 3 10 Switching Voltage max. VAC 250 230 250 230 230 30 230 30 100 Switching Current max. A 1,3 1,0 1,3 1,0 3,0 0,2 0,5 0,2 0,5 Carrying Current max. A 2,0 2,0 2,0 2,0 4,0 0,5 1,0 0,5 1,0 Dielectric Strength Contact Resistance Connecting Wire VDC 800 400 800 400 400 150 400 150 200 max. mΩ 80 100 80 100 80 100 100 100 150 2m LIYY 2 x 0,14 3 x 0,14 2 x 0,14 3 x 0,14 2 x 0,14 3 x 0,14 2 x 0,14 3 x 0,14 2 x 0,14 4414 4414 4428 4428 4429 4429 4451 4451 4451 10 – 20 10 – 20 10 – 20 10 – 20 10 – 20 10 – 20 10 – 20 10 – 20 5 – 10 Recommended Magnet Operating Distance mm C Operating Temperature -40 … +150 ° Housing Material Polystyrol Polystyrol Polystyrol Polystyrol Polystyrol Polystyrol Polystyrol Polystyrol Polystyrol 4414 4428 4451 4452 4429 Magnets Type 4414 4428 4429 4451 4452 4400 4400 4400 4400 4400 110 110 110 310 310 000 000 000 000 000 0830 With Housing o Housing Material 0830 0830 o o 0624 o 0515 0515 o Dimensions in mm See below 4414M 4428M 4451M 4452M 24 Guenther_EN_2012.indd 24 0630 0815 0830 Polystyrol Polystyrol Polystyrol Polystyrol Polystyrol Plain Magnet Material 0618 Alnico o o o o o 5x15 6x18 6x30 8x15 8x30 4429M S.T.G. Germany GmbH 24.10.12 14:49 Proximity sensors Parameters Type Contact Form Switching Capacity 4426 4426 4432 4433 4433 4415 4415 4431 4411 4412 2325 0551 2725 2725 0551 2325 0551 1525 2725 3823 121 121 321 321 321 321 321 021 021 021 A C A A C A C A A A W/VA 10 3 10 10 3 10 3 80 10 60 Switching Voltage max. VAC 100 30 230 230 30 100 30 250 230 230 Switching Current max. A 0,5 0,2 0,5 0,5 0,2 0,5 0,2 1,3 0,5 3,0 Carrying Current max. A 1,0 0,5 1,0 1,0 0,5 1,0 0,5 2,0 1,0 4,0 Dielectric Strength Contact Resistance Connecting Wire VDC 200 150 400 400 150 200 150 800 400 400 max. mΩ 150 100 100 100 100 150 100 80 100 80 2m LIYY 2 x 0,14 3 x 0,14 2 x 0,14 2 x 0,14 3 x 0,14 2 x 0,14 3 x 0,14 6x18 6x18 8x30 8x30 8x30 8x30 8x30 8x30 11.1 11.2 5-20 5-20 10-20 10-20 10-20 10-20 10-20 10-20 5-20 5-20 Brass Alu Alu Recommended Magnet Operating Distance Operating Temperature Housing Material 4426 mm C 3 x 0,5 3 x 0,75 3 x 0,75 - 40... + 150 ° Polystyrol Polystyrol Polystyrol Polystyrol Polystyrol Polystyrol Polystyrol 4432 4433 4415 4431 4411 4412 Ordering Information: Blue is our standard colour for the highly shock-resistant polystyrene housing. Customized colours - clear, white, and brown - can be specially ordered. Standard cable length: 1m 44 51 2725 3 1 1 Product Group Case Type Sensor Type Color: 0 = natural 1 = white 2 = brown 3 = blue 4 = clear S.T.G. Germany GmbH Guenther_EN_2012.indd 25 Connection Method: 0 = without cable 1 = with cable 2 = with soldering pins Options: 0 = unencapsulated 1 = encapsulated 2 = potted 25 24.10.12 14:49 Sensor Inclination / ACCELERATION, dampened PRODUCT DESCRIPTION Precision tilt or pendulum switch / sensor Applicable as e.g. acceleration sensor Variable switching angle depending on installation Hg-free Suitable to be soldered APPLICATION Different applications, when an exact switching angle is required. The inclination setting can be adjusted directly on the circuit board or application. The oil damping makes the sensor insensitive to vibrations. ORDER NUMBER TECHNICAL DATA Function Contact arrangement Contact material Min. differential switching angle Electrical data Max. switching voltage Max. switching current Max. carrying current Max. switching capacity Max. contact resistance Min. insulation resistance [V] [mA] [mA] [W/VA] [mOhm] [Ohm] 1 FA / NO Rh [°] 3 5601.2003.201 (standard type) 100 400 1000 10 300 109 Sensor with connecting cords We assist you with difficult applications! Ambient conditions Operating temperature range [°C] -40...+125 Other features Weight (approx.) 5 [g] ACCESSORIES & SPECIALS DIMENSIONS FUNCTION 22,4 13 Tilt Switch: At a specific angle, the reed switch is activated. By changing the position of the sensor on the object, the switching angle can be changed. Acceleration sensor: Acceleration will activate the pendulum. The switching activating point corresponds to a specific deflection ß and thus to a specific acceleration. The acceleration can be calculated according to the following formula: 27 a = tanß * g If the switching angle at a specific acceleration is needed, the following formula is applicable: ß m*a ß m*g 9,5 RELATION ACCELERATION / ANGLE ß = arctan a * g ß = Switching angle a = Acceleration g = Gravity acceleration (9,81 m/s2) PLEASE NOTE: The inclination of the object influences the acceleration! The sensor is filled with silicon oil! Original size 26 Guenther_EN_2012.indd 26 S.T.G. Germany GmbH 24.10.12 14:49 Sensor Inclination / ACCELERATION PRODUCT DESCRIPTION Precision tilt or pendulum sensor Applicable as e.g. acceleration sensor Variable switching angle depending on installation Hg-free Suitable to be soldered APPLICATION Different applications, when an exact switching angle is required. The inclination setting can be adjusted directly on the circuit board or application. ORDER NUMBER TECHNICAL DATA Function Contact arrangement Contact material Min. differerential switching angles Electrical data Max. switching voltage Max. switching current Max. carrying current Max. switching capacity Max. contact resistance Min. insulation resistance [V] [mA] [mA] [W/VA] [mOhm] [Ohm] 1 FA / NO Rh [°] 3 5601.2001.223 (standard type) 100 400 1000 10 300 109 Sensor with connecting cords. We assist you with difficult applications. Ambient conditions Operating temperature range [°C] -40...+125 Other features Weight (approx.) 2 [g] ACCESSORIES & SPECIALS DIMENSIONS FUNCTION Tilt Switch: At a specific angle, the reed switch is activated. By changing the position of the sensor on the object, the switching angle can be changed. 22,5 Acceleration sensor: Acceleration will activate the pendulum. The switching activating point corresponds to a specific deflection ß and thus to a specific acceleration. The acceleration can be calculated according to the following formula: a = tanß * g If the switching angle at a specific acceleration is needed, the following formula is applicable: ß ß = arctan a * g m*a ß 8,9 17 22 m*g RELATION ACCELERATION / ANGLE ß = Switching angle a = Acceleration g = Gravity acceleration (9,81 m/s2) PLEASE NOTE: The inclination of the object influences the acceleration! In case of vibrations, faults may occur! Original size S.T.G. Germany GmbH Guenther_EN_2012.indd 27 27 24.10.12 14:49 S.T.G. GERMANY GMBH Virnsberger Str. 51 D-90431 Nürnberg Germany Phone: +49 (0) 911 6552-0 Fax +49 (0) 911 6552-239 [email protected] www.stg-germany.de S.C. S.T.G. Switch Technology Guenther S.R.L. All specifications and details given are subject to change without notice 28 Guenther_EN_2012.indd 28 10/2012 Gheorghe Baritiu Str. 30 515400 Blaj / Alba Romania Phone: +40 (0) 258 711 600 Fax +40 (0) 258 711 161 www.stg-germany.de S.T.G. Germany GmbH 24.10.12 14:49