Transcript
S.T.G. Germany GmbH PRODUCT RANGE Reed Switches High Voltage Relays DIL-SIL-Reed Relays Non-Mercury Tilt Switches Reed Sensors Automotive Sensors Liquid Level Sensors Acceleration Sensors Seat Position Sensors Proximity Sensors Inclination Sensors
S.T.G. Germany GmbH Guenther_EN_2012.indd 1
1
24.10.12 14:48
Reed Switches
The quality of our Reed Switches meets the very high international standards. The variety of the Reed Switch types and the stateof-the-art development enable us to cover almost all industrial applications and specifications. Our product range is complemented by the Reed Switches of M/S OKI Sensor Device Corporation, with whom we have an „International Distributor Agreement“. Our Reed Switches are available as normally-open, normally-closed mounted with biasing magnet or bistable versions. The scope of implementing Reed Switches is farranging. Especially when developing new custom applications, there may be the necessity to adapt the Reed Switch geometry to special assembly situations. By extending, cutting, bending or combinations thereof we gain the ability to customize the Reed Switch lead-outs to meet individual customer requirements. Since the use of SMT is intensifying especially in industrial applications, our product range also includes SMD and moulded Reed Switches with common connectivity. For use in automated mounting machines the SMD Reed Switches are also available in Tape & Reel packaging. Page 4 - 11
High Voltage Reed Relays
Our High Voltage Reed Relays have outstanding performance characteristics in insulation resistance and stand-off voltage and thus find application in many electronic and electrotechnical areas. Page 12 - 18
Reed Relays
A wide range of standard Reed Relays and our knowhow to develop customer specific Reed Relays allows us to find a solution for almost every application requirement. Page 19 - 23
2
Guenther_EN_2012.indd 2
S.T.G. Germany GmbH 24.10.12 14:48
SENSORS Proximity Sensors
Proximity Sensors are based on Reed Switches which are actuated without direct physical contact. The switching operation is generally triggered by the approach respectively by the removal of a magnetic field. Proximity Sensors are used in technical processes for position detection of objects and tools, or as signal source for security measures. Proximity Sensors are implemented when mechanical limit switches are unsuitable due to adverse operating conditions, and when other non-contact switches such as inductive and capacitive sensors are too expensive. Aside the very good cost/performance ratio our Proximity Sensors stand out due to their multi-purpose applicability. This is obtained by the use of various housing types in combination with diverse connectivity. Individual solutions can be designed according to customer specifications. Page 24 - 25
Pendulum / Inclination Sensor
The Pendulum / Inclination Sensor for the measurement of angles enables differential angles above 2°. The Sensor’s repetitive accuracy allows its use for very high precision requirements. The patented Sensor replaces former mercury solutions and is used in the automotive industry as well as in other fields of industry and engineering. Page 26 - 27
Automotive Sensor / ABS Sensor
The Automotive Sensor / ABS Sensor is designed utilizing several Pendulum Sensors. When the preset acceleration is exceeded the Pendulum with the fixed magnet deflects and activates the Reed Switch. The Sensor can be adjusted for accelerations above 0,1g. Other customer specific Automotive Sensors, such as Door Lock Sensors and the like can also be designed.
Acceleration Sensor / Crash Sensor
The Acceleration Sensor / Crash Sensor can detect axial accelerations with an adjustable response value beyond a prespecified g-force (multiple gravitational acceleration). When the prescribed acceleration is exceeded a flying magnet passes a Reed Switch triggering contact. Typical automotive applications include airbag and seatbelt systems. The Acceleration Sensor can be adjusted for accelerations above 2g to meet preselected customer acceleration requirements as well as other design/package specifications.
S.T.G. Germany GmbH Guenther_EN_2012.indd 3
3
24.10.12 14:48
0,02
REED SWITCHES REED SWITCHES
10 V
RS R
0,01
4 1 0,8 0,6 0,4
2
0,2
0,002
0,2 am Ex
100 80 60 40
1
ple
20 A
300 V
2A Contact Protection 0,04
20 10 8 6
50 V 25 V
10 V
Current in A
The nomograph can 1 following A be used for determining contact arc suppression for inductive 0,5 A loads. RS 0,02 Example 1: I = 0,1 A I I 10 V = 230 V C = 0,001 µF 8 V Ω R C R = 340 Example 2: 60,01 If the current inrush is critical use the below nomograph to determine the minimum resistance. 4 I = 0,5 A C Rmin = 400 Ω Capacitive Loads 1
4 R
Load Resistance in Ω
5A
0,06
Load voltage
max. current inrush
200 V 0,001 REED 0,1SWITCHES 10 A 100 V 0,08
10000 2 8000 6000 1 4000
Ex am
400 30 0
30 50
pl e
2
Capacitor in µF
20
0 20 100
ple
am Ex
0,001
0,1 V 0,08
1
max. current inrush
0,002
0,06 0,04
R1 10 A 5A 2A
80 60
Cable
40
RS
20 A
300 V
0,01
Capacitive Loads
0,5 A
COMUS
When cutting or body not be dam be no closer tha
Lamp
R1
Cable
V
RS
R2
C
Lamp
Load
As the Reed Switch blades are part of the magnetic circuit of a Reed Switch, shortening the leads results in increased pull-in and drop-out values. The above diagram illustrates a resistor/capacitor network The above diagram illustrates a resistor/capacitor network forfor protecprotecting a Reedagainst Switch high against highcurrents. inrush currents. R 1R2 and/or R2 ting a Reed Switch inrush R1 and/or are used depending upon circuit conditions. Pull-in andupon drop-out sensitivity are used depending circuit conditions. 40
COMUS
With lamp load applications it is important to note that cold lamp 30have With lamp load applications is times important to note cold lamp filaments a resistanceit10 smaller thanthat already glowing filaments have ameans resistance 10 times smaller than already glowing Example filaments. This that when being turned on, the lamp filament 4 filaments. This beinggreater turned-on, lamp filament experiences a means current that flowwhen 10 times than the when already 20 experiences current flowcurrent 10 times than when glowing. Thisa high inrush cangreater be reduced to an already acceptable t ureduced glowing. This high inrush be to resistors. an acceptable o level through the use of acurrent series can of current-limiting Another 52724_BRR_Guenther_GB_04.pmd 1 rop level through the parallel use of aswitching series ofDof current-limiting resistors. Another possibility is the a resistor across the switch. This 10 the parellel switching of a resistor across the switch. This possibility allows justisenough current to flow to the-in filament to keep it warm, yet ll u P filament to keep it warm, yet allows just enough current to flow to the not enough to make it glow. not enough to make it glow. 0
2 4 Cut-off length in mm RS
6
8
10 RS
12
R1
When cutting or bending Reed Switches, it is important that the glass R2 body not be damaged. Therefore, the cutting or bending point should be no Vcloser than 3Lamp mm to the glass body. V Lamp
Cutting
Lamp load with parallel or current limiting resistor across the switch Lamp load with parallel or current limiting resistor across the switch
Cutting and Bending
As the Reed Switch blades are part of the magnetic circuit of a Reed Switch, shortening the leads results in increased pull-in and drop-out values.
40
C
4 Unlike inductive loads, capacitive and lamp loads are prone to high 4 inrush currents which can lead to faulty operation and even contact welding. When switching charged capacitors (including cable capacitance) a 52724_BRR_Guenther_GB_04.pmd 1 sudden unloading Guenther_EN_2012.indd 4 can occur, the intensity of which is determined by
Pull-in and drop-out sensitivity
Bending
30
4
RS 2 The above diagram 0,02 illustrates a resistor/capacitor I network for protecting a Reed Switch against high inrush currents. R 1 and/or R2 are used depending upon circuit conditions. Load V 1
Cut-o
Cutting and Bending
10 8 6
1A
0
R2 resistor across the switch Lamp load with parallel or current limiting
Load
10 V
R
10
20
C200 V 100 V R2 50 V 25 V
Load voltage
0,2
1
20
R1
V
2000
0,8 Unlike 0,6inductive loads, capacitive and lamp loads are prone to high 1000 inrush 0,4currents 2 which can lead to faulty operation and even contact 800 welding. 600 a When0,2 switching charged capacitors (including cable capacitance) sudden unloading can occur, the intensity of which is determined 400 by 0,1 1 length of the connecting leads to the switch. This the 0,08 capacity and 0,8 be reduced by a series of resistors. The value of inrush 0,06peak can 200 these resistors on the 0,04 Load voltage in Vparticular application but should 0,6 5is6 dependent be as high as possible to ensure that the inrush current is within the 8 500 0,02 limits. 10 allowable 100 0,4 0,01 0,008 0,006 0,004
V
200
0 20 100
0,01 0,008 0,006 0,004
RS
1000 800 600
2
0,02
1 0,8 0,6 56 Load voltage in V 8 10 500 0,4 400 20 30 50 30 0
2000
400
pl e
0,1 0,08 0,06 0,04
10000 8000 6000 4000
Ex am
Capacitor in µF
C
Current in A
6
R
AT increase in %
8
Load
C
inrush currents which can lead faulty operation and even contact Unlike inductive loads, andturned-on, lamp loads are prone to high filaments. This means thatcapacitive whentobeing the lamp filament welding. inrush currents which can lead to faulty operation and even contact experiences a current flow 10 times greater than when already When switching charged cable capacitance) welding. glowing. This high inrush capacitors current can(including be reduced to an acceptable a sudden unloading can occur, the intensity of which is determined by a When switching charged capacitors (including cable capacitance) level through the use of a series of current-limiting resistors. Another the capacity length the connecting leads to theisswitch. ThisThis insudden unloading canof occur, theofintensity of which determined by possibility is and the parellel switching a resistor across the switch. rush be reduced a series offilament resistors. of This these thepeak capacity and length connecting leadstotoThe thevalue switch. allows just can enough currentofby tothe flow to the keep it warm, yet resistors is dependent on the particular application but The should be of as peak can beit reduced by a series of resistors. value notinrush enough to make glow. high as possible that on thethe inrush current is within the these resistorsto is ensure dependent particular application but should allowable limits. be as high as possible to ensure that the inrush current is within the RS allowable limits.
Example AT increase in %
I
2
I
Capacitive Loads With lamp load applications it is important to note that cold lamp Capacitive Unlike inductive loads, capacitive andsmaller lamp loads prone to high filaments have aLoads resistance 10 times than are already glowing
Resistance in Ω
10
The following nomograph can be used for determining contact arc suppression for inductive loads. Example 1: I = 0,1 A V = 230 V C = 0,001 µF R = 340 Ω Example 2: If the current inrush is critical use the below nomograph to determine the minimum resistance. I = 0,5 A Rmin = 400 Ω
30
4
1A 0,5 A
V
ContactProtection Protection Contact
8 6
AT increase in %
2A
0,04
50 V 25 V
Load
max. current
0,06
20
ut p- o o r D
10
0
Pull-in
6 8 GÜNTHER
2 4 Cut-off length in mm
10
12
S.T.G. Germany GmbH
When cutting or bending Reed Switches, it is important that the glass body not be damaged. Therefore, the cutting or bending point should be no closer than 3 mm04.11.2002, to the glass 17:04 body. 24.10.12 14:48
REED SWITCHES
UL and CSA approved
REED SWITCHES UL and CSA listed NORMALLY OPEN SUBMINIATURE MICROMINIATURENORMALLY OPEN 1 0211 Moulded 0219 2522 0228 MICROMINIATURE 2322 2314 2212
SMD Type Parameters 0213 S.T.G. Type Contact form A 6228 A 0213 A 0311 A0211 A A 0312 5213 A 5228 A 6213 0219 Contact material Rh Rh Rh Rh OKI Type ORD213S-1Rh ORD228S-1RhRA-903 RhRA-901 ORD213 Rh ORD311 ORD211 ORD312 ORD219 Parameters W/VA A Switching capacity 1 1 A 10 A 6 A 10 A 10 A 10A 10 max. A A Contact form UL and CSA approved MICROMINIATURE Switching voltage 24 Rh 24 Rh 100 Rh 140 Rh 100 Ir 150Rh 400Ir 100 max. V AC/DC Rh Rh Contact material Type 0213 0211 0219 Switching capacity current 0,1 10 0,1 1 Parameters 0,5 10 0,5 1 0,5 10 0,5 0,5 0,2 1 30 10 Switching max. max. W/VA A 1 MICROMINIATURE Contact form A A A Carrying current 1,0 100 0,8 24 1,0100 1,024 1,0 0,5 100 100 Switching voltage max. max. V AC/DC A 24 0,3 100 0,3 24 Type Parameters 0213 0211 0219 Contact material Rh Rh Rh Dielectric strength 200 0,5 200 0,1 1500,5 2000,1 600 150 0,5 0,5 Switching current max. min. A VDC 0,1 100 0,5 150 0,1 NORMALLY OPENmax. Contact formcapacity A1 A1 A10 W/VA Switching Contact resistance 100 1,0 150 0,3 1001,0 150 150 100 0,3 1,0 1,0 Carrying current max. max.A mΩ 0,3 200 1,0 100 0,3 SUBMINIATURE MICROMINIATURE Contact Rh24 Rh24 Rh V AC/DC Switching voltage 100 max. 9 9 9 material 10 9 10 11 9 Ω Insulation resistance 10 10 10 10 10 10 10 10 min. 150 150 150 200 150 250 150 250 Dielectric strength min. VDC 1 200 Type Parameters 0213 0211 Switching 0219 capacity 2522 0228 2322 2314 2212 W/VA 10,1 10,1 100,5 A max. Switching current max.10…35 10…35 15…45 Pull-in sensitivity 100 10…40 200 10…50 200 100 100 100 Contact resistance max. mΩ AT 200 10…40100 10…40200 10…30 Contact form A A A A A max. AA A A V AC/DC 24 24 100 Carrying 0,3 1,0 max. 9current 9 9 AT 109 5 109 5 109 Switching 5 10voltage 5 109 5 10 5 10 50,3 10 Drop-out sensitivity 109 109 Insulation resistance min. min.Ω Contact material Rh Rh Rh current Rh Rhmax. Rh Rh Rh A Switching 0,1 0,1 0,5 VDC Dielectric strength 100 150 200 min. 1,8 1,4 Switching time without bounce max.AW ms10…40* 0,310…40* 0,316…46* 0,4 16…49* 1,0 10…40 0,4 10…40 1,8 10…40 10…40 10…40 Pull-in sensitivity W/VA Switching capacity 1 1 10 current 6 10 max. 10 10 10 max. AmΩ 0,3 0,3 1,0 Contact resistance 200 100 100 0,3 5 0,3 10 Carrying 0,3 10 0,3 5 0,3 max. 0,2 0,2 1,0 Bounce time 5 5 5 5 Drop-out sensitivity min. max.AW ms 5 9 Switching voltage 24 24 100 140 100 150 400 100 max. V AC/DC VDC Dielectric strength 100 150 200 min. Ω Insulation resistance 10 109 109 min. ms 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 Release time max. 0,3 0,4 0,3 0,4 0,3 0,3 0,3 0,4 0,4 Switching time without bounce max. ms A Switching current 0,1 0,1 0,5 0,5 0,5 0,5 0,5 0,2 max. mΩ Contact resistance 200 100 100 AT 10…40 10…40 10…30 Pull-in sensitivity 60000,3 5000max. 5000 5000 3900 Resonant frequency 0,3 0,3 0,3 0,3 Bounce time max. typ.ms Hz 0,3 11000 0,3 7500 0,3 59000,3 9 9 A Carrying current 0,3 0,3 1,0 resistance 0,8 1,0min. 1,0 1,0 0,5 max. ΩAT Insulation 10 10 1095 5 5 Drop-out sensitivity min. 200 4000,05 5000,05 200 500 Operating frequency 0,05 0,05 0,05 Release time max. max.ms Hz 0,05 500 0,05 500 0,05 5000,05 VDC Dielectric strength 100 150 200 200 150 max. 200 600 150 min. AT 10…40 10…40 10…30 Pull-in sensitivity ms 0,3 0,3 0,4 Switching time without bounce 10-1000 Vibration frequency 500010-1000 1300010-1000 5400 35g/2000 11000 10-1000 13000 35g/2000 7500 35g/2000 5900 10-1000 5900 Resonant typ. 20 gHz Hz 11000 mΩ Contact resistance 200 100 100 sensitivity 150 100min. 150 150 100 max. AT 5 5 5 Drop-out ms 0,3 0,3 0,3 Bounce time max. g 500 30 9 500 30 9 500 30 9500 5010500 30 500 50500 50 30 9 Shock 500 500 Operating frequency max.11 ms Hz 10 11 Ω Insulation resistance 10 10 10 time 10 109max. 10 10 10 min. ms 0,3 0,3 0,4 Switching without bounce ms 0,05 0,05 0,05 Release time max. 0,7 0,5 Capacitance 10-1000 0,5 10-1000 0,3 10-1000 0,7 10-1000 10-1000 10-1000 Vibration 20 g typ.Hz pF10-1000 0,410-1000 0,210-1000 0,3 AT 10…40 10…40 10…30 10…40 10…50 10…35 10…35 15…45 Pull-in sensitivity msHz 0,3 0,3 0,3 timefrequency max. 11000 -40...+125 7500 5900 Resonant °C 30 Operating temperature range -40 30 …+125 30 Bounce -40...+150 -40...+150 30 30 -40...+125 30typ. 30 30 30 Shock 11 ms g AT 5 5 5 timefrequency 5 5 max. 5 Hz 5 10 Drop-out sensitivity min. ms 0,05 0,05 0,05 Release 500 500 500 Operating max. 1035 0211 0211 0221 1035 0221 1035 0221 Type Test coil 0,4 0,3 0,4 0,3 0,4 0,4 0,2 0,3 0,3 Capacitance typ. pF ms 0,3 0,3 0,4 frequency 1,0 0,4 typ. 1,8 1,8 1,4 Switching time without bounce max. Hz 11000 7500 5900 Resonant Hz 10-1000 10-1000 10-1000 Vibration 20 g ° 1) Close differential switches Operating temperature range -40 …+125 C ms 0,3 0,3 0,3 frequency 0,3 0,3max. 0,2 1,0 Bounce time max. Hzg 500 500 500 Operating 30 30 30 Shock 11 ms 0,2 Dimensions 0211 0211 0211 0221 0221 Test coil Type ms 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 Release time max. Hz 10-1000 10-1000 10-1000 3 Vibration pF 0,4 0,2 0,3 20 g Capacitance typ. Total length A max. mm 36,0 36,0 45,0 55,0 45,0 55,0 55,0 45,0 Features Hz 11000 5900 6000 5000 5000 5000 3900 Resonant frequency typ. Super range Super Ultra High Super ultra Miniature Miniature 7500UltraShock Miniature g 30 30 30 °C 11 ms Operating temperature -40 …+125 -40.. mm Glass length B max. 10,0 11,0ultra 14,0ultra 14,1 14,1 16,5 miniature 12,0 miniature power, miniature 7,0 high perforHz 500 high 500 500SMD 400 500typ. 200 200 500 Operating frequency max. pF 0,4 0,2 0,3 Capacitance 0211 0211 0221 Type Test Glass diameter C max. mm SMD 1,8 miniature 2,2 miniature, 2,3 long life performance2,0 SMD mance 2,0coil 2,1 2,3 2,6 Hz 10-1000 10-1000 Operating 10-1000 35g/2000 10-1000 35g/2000 10-1000 Vibration 20 g °C range 1) Close differential long life 35g/2000 -40 …+125 -40...+ Wire diameter D max. mm 0,30 SMD 0,40 0,50 temperature 0,40 switches 0,50 0,50 0,50 0,35 x 0,6 g 30 30 30 50 30 50 50 30 Shock 11 ms 0211 0211 0221 Type Test coil Dimensions Additional types on request Form A A pF 0,4 0,2 0,3length 0,5 0,7 0,5 Capacitance typ. 1)Total Close differential switches 0,3A max. 0,7 mm 36,0 36,0 45,0 Dimensions B °C Operating temperature range -40 …+125 -40...+150 -40...+125 -40...+150 -40...+125 Dimensions mm Glass length B max. 7,0 10,0 12,0 Total length A max. mm 36,1 36,1 36,0 45,0 20,0 45,0 0221 1035 0221 1035 1035 0221 Type13,0 021120,0 021113,0Total Test coil mm length mm A Cmax. Glass diameter max. 36,0 36,0 45,0 1,8 2,0 2,0 Glass length B max. mm 7,0 14,0 7,0 7,0 8,7 10,0 12,0 16,2 12,0 1) Close differential switches mm Glass B Dmax. mm Wirelength diameter max. 7,0 10,0 12,0 0,30 0,40 0,50 Glass diameter C max. mm 1,8 2,2 1,8 1,8 2,2 x 2,2 2,6 x 2,6 2,0 2,0 2,0 Dimensions Glass diameter max. mm 1,8 2,0 2,0 Additional types 0,30 on requestC0,30 Wire diameter mm D max. 0,30 0,50 0,80 0,40 0,50 0,70 0,50 Total length A max. mm 36,0 36,0 45,0 55,0 45,0 mm Wire45,0 diameter 55,0 D max. 55,0 0,30 0,40 0,50 * pre-forming Actuation of Reed Switches with amm Permanent Magnet Additional types on request Glass length B max. 7,0 10,0 12,0 11,0 14,0 14,1 14,1 16,5 Additional types on request Examples of switching with the use of a moving magnet Glass diameter C max. mm 1,8 2,0 2,0 2,1 2,2 2,3 2,3 2,6 Wire diameter D max. mm Direct Actuation: 0,30 0,40 0,50 0,50 0,50 0,50 0,35 x 0,6 Rotation: 0,40 AAdditional magnet moved Examples of switching through rotational movement: typesperpendicularly on request Form A A Form A closed towards and away from a Reed Switch N S Actuation of Reed Switches with a Permanent Magnet B turns it off and on one time. magnet open Examples of switching with the use of a moving magnet D
C
C
C
D
C
REED SWITCHES
open Actuation of Reed Switches with a Permanent Magnet
N S open Directclosed Actuation: N A magnet moved parallel to a Reed Examples of switching with the use of a moving magnet A magnet moved perpendicularly Switch operates it from one to three magnet Actuation of Reed Switches with a Permanent Magnet closed closed closed towards and away from a Reed Switch S with the use N S Direct times. Examples of Nswitching of aActuation: moving magnet Actuation of Reed Switches with a Permanent Magnet turns it off and on one time. S magnet magnet A magnet moved perpendicularly open Examples of switching with the use of a movingmagnet magnet open closed towards and away from a Reed Switch N S turns itIndirect off and on one time.Shielding Actuation: Direct Actuation: magnet open A magnet moved parallel to a Reed ARotation: magnet moved parallel to a Reed Direct Actuation: With the stationary arrangement of a Reedmovement: Switch and magnet, the A magnet moved perpendicularly Examples ofitswitching through rotational Switch operates from one to three Switch operates it from one to A magnet moved perpendicularly A magnet swung towards and away contact Reeds are closed. Should the magnetic Nfield be diverted away towards and away from a Reed Switch magnetNN S S S closed three times.parallel to a Reed towards and away a Reed from a Reed Switchfrom operates it one time. A times. magnet frommoved the Reed Switch by a shield of ferro-magnetic material placed turns it off and on one time. closed magnet Switch turns it off and on one time. open Switchbetween operatesthe it from one tothe three switch and magnet, the contactsmagnet will open. When the S S times. shield is removed, the contact Reeds becomeNmagnetically open actuated closed N S open and close. N A magnet moved parallel to a Reed open N magnet Switch operates it from one to three magnet A magnet swung towards and away closed closed N N S S times. from a Reed Switch operates it one time. magnet closed open A magnet swung towards and A ring magnet moved parallel to the Reed closed open S closed magnet magnet A magnet swung andNaway S A ring magnet moved parallel thetoReed away from towards a Reed Switch Switches axis operates it fromto one open S S magnet N from a Reed Switch operates it one time. Switches axis operates it from one to operates it one time.Shielding three times. magnet Indirect Actuation: N S closed three times. magnetic open shield N magnet, the With the stationary arrangement of a Reed Switch and ring magnet S A magnet swung towards and away contact Reeds are closed. Should the magnetic field be diverted away S magnet N from a Reed Switch operates it one time. open from the Reed Switch by a shield of ferro-magnetic material placed
COMUS
closed
open 52724_BRR_Guenther_GB_05.pmd
1
A ring magnet moved parallel to the Reed Switches axis operates it from one to three times. Guenther_EN_2012.indd 5
GÜNTHER
S N
N S ring magnet
open
Rotatio Exampl
close
closed
Indire With th contac Indirect from th With the betwe contact shield from the and cl between
shield is and clos
switch and the A ringbetween magnet the moved parallel to magnet, the Reedthe contacts will open. When the shield is removed, contact become magnetically actuated Switches axis operates the it from one Reeds to open 5 closed N S and close. times. A three ring magnet moved parallel to the Reed ring magnet
Switches axis operates it from one to three times. open 28.10.2002, 11:43 open
S.T.G. Germany GmbH
closed
closed N
Rotat Exam
COMUS N
COMUS
S
magnet
N S closed ring magnet
5
magnetic shield 24.10.12 14:48
REED SWITCHES
UL and CSA approved
REED SWITCHES
NORMALLY OPEN SUBMINIATURE MICROMINIATURE 1 Type Parameters 0213 0211 0219 2522 0228 2322 2314 2212 NORMALLY OPEN Contact form A A A A A A A A MICROMINIATURE SUBMINIATURE Contact material Rh Rh Rh Rh Rh Rh Rh Rh 2312 0221 2525 0228 2315 0324 2522 2322 2325 S.T.G. Type W/VA Switching capacity 1 1 ORD221 10 ORD228VL6 ORD32410 10 10 10 max. OKI Type Parameters Switching 100 400 A 100 A max. V AC/DC A 140 A 24 A (Off Set) A 100 A 150 A A24 Contactvoltage form A Switching 0,5 Rh 0,2 Rh max. Rh 0,5 Rh 0,5 Rh0,1 Ir 0,5 Rh 0,5 Rh Rh0,1 Contactcurrent material UL and0,3 CSA approved A Carrying current 0,3 1,0 0,8 1,0 1,0 1,0 0,5 10 max. 10 10 10 6 10 6 10 10 Switching capacity W/VA max. VDC Dielectric strength 100 150 200 200 150 200 600 150 min. 100 100 230 140 230 100 140 150 100 Switching voltage max. V AC/DC Contact resistance 200 150 0,5 1000,5 max. 0,3 100 0,5 150 0,5 100 0,5 150 0,5 0,5100 0,5 Switching current AmΩ max. 9 9 9 10 9 10 Insulation resistance 1011 1,0 109 1,0 min. 1,0 10 1,0 10 0,810 1,0 10 0,810 1,0 10 1,0 Carrying current AΩ max. NORMALLY OPEN AT 10…40 10…40 150 10…30 15010…40 25010…50 200 10…35200 10…35 Pull-in sensitivity 400 15…45 200 400 200 Dielectric strength VDC min. CROMINIATURE AT 5 150 5 150 10 150 Drop-out sensitivity min.SUBMINIATURE 100 5 100 5 150 5 100 5 1505 150 Contact resistance mΩ max. 1 211 0219 2522 0228 max.2322 ms 2314 2212 1,41010 Switching time without bounce 10 109 0,4 109 1,0 1010 0,4 1010 1,8 1010 1,8 1010 10100,3 100,3 Insulation resistance Ω min. A A A A A ms A A 0,3 0,3 0,3 0,3 0,3 0,2 0,2 Bounce time max. 10…40 10…40 10…30 10…40 10…35 10…35 15…35 1,0 15…35 10…40 Pull-in sensitivity AW Rh Rh Rh Rh Rh ms Rh50,05 Rh 0,05 0,05 0,05 0,05 0,05 0,05 0,05 5 Release time max. 5 5 5 5 5 5 4 Drop-out sensitivity AW min. 1 10 6 10 1011000 107500 Hz 39001,8 Resonant typ. 10 ms 1,0 1,0 0,45900 0,4 6000 0,4 5000 1,8 5000 1,8 5000 1,8 Switchingfrequency time without bounce max. 24 100 140 100 400500 100500 Hz 200 0,2 5000,2 Operating max.150ms Bouncefrequency time 0,3 0,3 0,5 500 0,3 400 0,3 500 0,2 200 0,2 max. 0,1 0,5 0,5 0,5 0,5 0,2 Hz 10-1000 10-1000 0,05 10-1000 0,05 35g/20000,05 10-10000,0535g/2000 Vibration 20 g 0,5 ms Release time 0,05 0,05 0,0335g/2000 0,05 10-1000 0,05 max. 0,3 1,0 0,8 1,0 1,0 30 0,5 305000 Shock 11 ms1,0 Hzg Resonant frequency 6000 600030 275030 5000 50 5000 30 5000 50 5000 50 5000 typ. 150 200 200 150 600 0,4 150 0,2 0,7 200 0,5200 Capacitance typ. 200HzpF Operating frequency 400 400 500 0,3 500 0,5 500 0,3 200 0,7 200 max. 100 100 150 100 150 °C 150 -40 …+125 100 Operating temperature range -40...+150 -40...+125 -40...+150 -40...+125 Vibration Hz 20 g 35g/2000 35g/2000 10-1000 10-1000 10-1000 35g/2000 35g/2000 35g/2000 35g/2000 9 109 10 109 1010 Type 10110211 1090211 022150 Test coil 1010 Shock g 11 ms 50 50 300221 30 1035 30 0221 50 1035 50 1035 50 …40 10…30 10…40 switches 10…50 10…35 10…35 15…45 1) Close differential Capacitance pF typ. 0,5 0,5 0,3 0,3 0,7 0,7 0,7 0,7 0,3 5 5 5 5 5 ° 5 10 Dimensions Operating temperature range C -40...+125 -40...+150 -40...+150 0,3 0,4 1,0 0,4 A max. 1,8 mm 1,836,0 1,436,0 Total length Test coil Type 1035 1035 022145,0 022155,0 0221 45,0 1035 55,0 1035 55,01035 45,0 1035 0,3 0,3 0,3 B max. 0,2 mm 0,2 7,0 1,010,0 Glass length0,3 12,0 Miniature, 11,0 Miniature, 14,0Miniature,14,1 Miniature, 14,1 Miniature, 16,5 Miniature, Miniature, Miniature, Miniature, Features 0,05 0,05 0,05 0,05 C max. 0,05 mm 0,051,8 0,052,0 Glass diameter 2,0 high power 2,6 high power offset-type high 2,1 general 2,2 general 2,3 general 2,3 high power close 500 5900 6000 5000 D max. 5000 mm 50000,30 39000,40 Wire diameter 0,50 0,40 0,50 0,50 0,50 0,35 xclose 0,6 purpose purpose perdifferential purpose 500 500 400 on request 500 200 200 500 Additional types differential formance,A Form A close -1000 10-1000 35g/2000 10-1000 35g/2000 35g/2000 10-1000 differential automotive B 30 30 50 30 50 50 30 0,2 0,3 0,5 0,3 0,7 0,7 0,5 Dimensions 5 -40...+150 -40...+125 -40...+150 -40...+125 mm Total length 55,0 45,0 55,0 55,0 55,0 55,0 45,0 45,0 55,0 A max. 211 0221 1035 0221 1035 1035 0221 mm Glass length 11,0 13,0 14,1 14,1 11,0 14,1 14,0 14,0 14,1 B max. Actuation of Reed Switches a Permanent Magnet Glass diameter 2,1 2,3 2,3 2,3 2,1 2,3 2,2 2,2 2,3 C max.withmm Examples of switching withDthe use ofmm a moving magnet 0,40 Wire diameter 0,40 0,35x0,6 0,50 0,50 0,50 0,50 0,50 0,50 max. 36,0 45,0 55,0 45,0 55,0 55,0 45,0 Direct Actuation: Rotation: Additional types on request 10,0 12,0 11,0 14,0 14,1 14,1 16,5 A magnet moved perpendicularly Examples of switching through rotational movement: 2,0 2,0 2,3 2,3 2,6 closed towards and 2,1 away from a2,2 Reed Switch N S 0,40 0,50 it off and 0,40 0,50 0,50 0,35 x 0,6 turns on one time. Form A 0,50 magnet UL / CSA / ETL listed
open
Form A
B parallel to a Reed A magnet moved Switch operates it from one to three times.
closed N N
S
N
S
Examples of switching through rotational movement:
S
open
en
closed N
S
open
A ring magnet movedmagnet parallel to the Reed Switches axis operates it from one to three times.
closed
N
open N
open
open
COMUS
6
open
Guenther_EN_2012.indd 6
closed N
closed N S S magnet ring magnet open
closed N
open
closed
Indirect Actuation: Shielding With the stationary arrangement of a Reed Switch and magnet, the contact Reeds are closed. Should the magnetic field be diverted away from the Reed Switch by a shield of ferro-magnetic material placed between the switch and the magnet, the contacts will open. When the shield is removed, the contact Reeds become magnetically actuated 2724_BRR_Guenther_GB_05.pmd 1 and close.
closed
Indirect Actuation: Shielding Indirect Actuation: Shielding With the stationary arrangement of a Reed Switch and magnet, the contact With the stationary arrangement of a Reed Switch away and magnet, theReed blades are closed. Should the magnetic field be diverted from the Reeds are closed. Should the placed magnetic field bethe diverted Switch bycontact a shield of ferro-magnetic material between switchaway and fromthe thecontacts Reed Switch by a shield ferro-magnetic material the magnet, will open. When of the shield is removed, theplaced contact between the switch and the magnet, the contacts will open. When the blades become magnetically actuated and close. shield is removed, the contact Reeds become magnetically actuated and close.
closed
sed
N
closed
S magnet open
Rotation: Examples of switching through rotational movement: A magnet swung towards and away from a Reed Switch operates it one time. magnet Rotation:
open
open
magnet
magnet
et
S
D
A
D
C
REED SWITCHES
S
magnet
magnetic shield
GÜNTHER
5
28.10.2002, 11:43
S.T.G. Germany GmbH
S
magnet
magnetic shield
24.10.12 14:48
Type Parameters Contact form Contact material max. W/VA Switching capacity max. V AC/DC Switching voltage max. A / ETL listed Switching current UL / CSA max. A Carrying current NORMALLY OPEN strength min. VDC Dielectric MINIATURE max. mΩ Contact resistance 9215 2722 2221 Insulation resistance2725 min.2715 Ω 2717
2722 A Rh 10 230 0,5 0,8 400 100 1011 20…50 5 2,0 0,5 0,10 2900 200 2000 50 0,5
REED SWITCHES
AT A ADrop-out sensitivity A A min. A AT Rh max. Rh ms RhSwitch. time Rh without boun. Rh 10 10Bounce time 10 10 max. 10 ms 230 max.350 ms 500 100 230 Release time 0,3Resonant0,5 0,5 typ. 0,5 Hz frequency 0,5 1,0Operating1,0 1,0 frequency 1,0 max. 1,0 Hz 400 35 g 600 Hz 1000 150 Vibration400 100 11 ms100 g 100 100 Shock 100 9 1011 typ. 1011 pF 1011 10Capacitance 1011 20…50 10…30 20…50 Operating temperature range 20…50°C 20…50 5 5Test coil 5 10 Type 5 NORMALLY NORMALLY OPEN 1,01) Position2,0 2,0 OPEN 2,0 sensitive 2,0 MINIATURE MINIATURE 0,5 1,0Dimensions 0,5 1,0 0,5 2717 3723 3717 9210 2722 2717 3723 3717 9210 2722 0,10 0,05 0,10 0,10 0,10 A max. mm Total length A A A A A GlassAlength A 2900 A A A 2750 2900 2900 2900 B max. mm Rh Rh Rh Rh Rh Rh Rh Rh Rh Rh 200 500 200 230 200 C max. mm Glass diameter 10 40 40 10 Wire 10 1035/2000 10-1000 35g/2000 2000 mm40100 2000 100 D 40 max. diameter 500 230 400 300/350 230 500 230 400 230 50 30 50 50 50 300/350 Additional types on request 0,5 0,52,0 2,02,0 2,01,0 1,0 0,50,5 0,5 0,3 0,5 0,5 0,5 0,8 1,03,0 -40...+150 3,03,0 3,02,5 2,5 0,81,0 1000 400 1000 1000 400 1700 400 0221 400 1700 1000 1700 1000 1700 1000 100 10080 80 80 80100 100 100100 High High General High power, High 11 11 11 11 10 10 1011 101110 101110 10breakdown 1010 101110 power power wide purpose, 20…50 30…50 30…70 30…70 20…60 20…50 30…50 30…70 30…70 20…60 y differential offset voltage 5 5 10 10 15 15 15off 15 7 7 holding 2,0 2,02,0 2,02,0 2,02,0 2,00,6 0,6 0,5 0,50,5 0,50,5 0,50,5 0,50,5 0,5 0,10 0,10 0,10 on 0,10 0,10 0,05 0,10 0,10 0,10 0,05 55,0 55,0 55,0 55,0 57,0 2900 2900 2900 2900 4200 4200 4200 4200 2500 2500 19,0 19,0 19,0 19,0 13,0 200 200200 200300 300300 300500 500 2,6 2,6 2,6 2,6 2,3 x- 2000 2000 x+20g/1000 2000 2000 2000 2000 2000 2000 20g/1000 0,55 0,55 0,55 0,55 0,35x0,6 50 50 50 50 50 50 50 50 30 30 N S 0,5 0,5 0,5 0,5x0,50,5 0,5 0,50,5 0,5 x+ 1700
y
-40...+150 -40...+150 1700 1700 1700 1700
y
55,0 55,0 19,0 19,0 2,62,6 0,55 0,55
C
55,0 55,0 55,0 55,0 19,0 on 19,0 19,0 19,0 2,62,6 2,62,6 0,70 0,70 0,55 0,70 A
A Form A Form A
B
B
z-
holding
off
on
S
y
yy
y
on on
COMUS
off
on off
52724_BRR_Guenther_GB_06.pmd
x-
x+
xx-
x-
N
y
SN
y
S
x+
x+ x+
y
y off off holding holding
S.T.G. Germany GmbH on Guenther_EN_2012.indd 7
on
x-
x-
z+
N
S
S
y
1 30
0 2 2 1
off on
off
x+
N
4
Life Expec The life exp power. With expectancy and lamp lo maximum c
z+
1
x-
x-
off
holding
z-
6 on
holding
holding
55,0 19,0 2,6 0,55
C
Dimensions Dimensions A max. A max. mm mm Total length Total length B max. B max. mm mm Glass length Glass length mm mm Glass diameter Glass diameter C max. C max. D max. mm D max. mm Wire diameter Wire diameter The materials used for Reed Switch magnets are generally ALNICO (an aluminium nickel Additional types ontypes request Additional on request cobalt alloy), a ceramic (barium ferrite or another metal oxide) or rare earth magnets. Due to their specific magnetic characteristics, the types of magnets differ in shape: ALNICO magnets are bar magnets with a length/diameter ratio of 3/1 to 5/1; oxide magnets are generally disc or moulded magnets. Also important to note is the difference in temperature coefficient: ALNICO: 0.02 %/K, oxide: 0.2 %/K y off holding holding
55,0 3 19,0 2,6 0,55 2
-40...+125 -40...+125 0221 0221 1 1700 The materi cobalt alloy to their spe 56,0 55,0 56,0magnets ar5 21,0 21,0generally d2 19,0 coefficient: 2,62,75 2,75 ALNICO: 0 0,60 0 0,70 0,60
1700 1700
1) Position 1) sensitive Position sensitive
y
1700
C
REED SWITCHES REED SWITCHES
ORD2221 Pull-in sensitivity
holding
ORD2211 ORD9215 Parameters A A A A Contact form Rh Rh Rh Rh Contact material 10 10 50 10 Switching capacity max. W/VA 470 100 100 400 Switching voltage max. V AC/DC 0,5 0,5 in-rush 3A 0,4 0,5 Switching current max. A 1,0 2,5 1,0 1,0 Carrying current max. A 700 200 150 Dielectric strength 600 min. VDC and CSA approved UL and CSA approved 150 100 100 Contact resistance max. ULmΩ 150 1011 109 109 Insulation resistance min. 1011 Ω 15…35 10…50 20…40 Pull-in sensitivity 15…35 AW 5 4 8 min. Drop-out sensitivity 5 AW 1,8 Switching time without bounce max. 0,4 0,6 1,8 ms 0,2 Bounce time max. 0,4 0,4 ms 0,2 Type Parameters Release time max. Parameters 0,05 0,05 0,05 Type ms 0,05 form5000 Contact form 5000 Resonant frequency typ. Contact 3700 4600 Hz material Contact Operating frequency max. Contact Hz 500 500 200material 200 max. 10-1000 W/VA W/VA capacity max. Switching capacity Vibration 20 g Switching 35g/2000 Hz 10-1000 35g/2000 max. V max. AC/DC voltage Switching Shock 11 ms Switching g 30 30 V AC/DC 50 voltage 50 max. A current max. A 0,3 Switching Capacitance typ. Switching pF 0,3 0,7 current0,7 ° A current-40...+150 max. A Carrying current max. Operating temperature range Carrying C -40...+125 min. VDC Dielectric strength min. Test coil Type Dielectric 1035 0221 0221 VDC 1035 strength max. mΩ Contact Contact resistance max. mΩ resistance General Miniature, Miniature, Lamp load Features min. Ω Insulation resistance min. Ωpurpose, Insulation resistance high power high power AT Pull-in sensitivity AT Pull-in sensitivity miniature AT Drop-outDrop-out sensitivity min. AT type sensitivitymin. max. ms Switch. time without ms Switch. timeboun. without boun. max. max. ms Bounce time max. ms Bounce time Dimensions max. ms ReleaseRelease time max. ms time Total length 55,0 45,0 45,0 55,0 A max. mm Hz Resonant frequency typ. Hz Resonant frequencytyp. Glass length 14,1 16,5 17,0 14,1 B max. mm max. Hz Operating frequency max. Hz Operating frequency Glass diameter 2,3 2,8 2,8 2,3 C max. mm 35 g VibrationVibration 35Hzg Hz Wire diameter 0,50 0,6 0,5 0,50 D max. mm 11 ms 11 ms g Shock Shock g Additional types on request typ. pF Capacitance typ. pF Capacitance °CA Operating temperature range range °C Operating temperature Form Type Type Test coilTest coil
D
SUBMINIATURE 2317 2211
2314
D
S.T.G. Type OKI Type
x+
x+
x+
y
The materials used for used Reedfor Switch are generally ALNICOALNIC (an a The materials Reedmagnets Switch magnets are generally cobalt alloy), a alloy), ceramic (barium (barium ferrite orferrite another metal oxide) rare earth cobalt a ceramic or another metaloroxide) or r to their specific magneticmagnetic characteristics, the typesthe of types magnets differ in sd to their specific characteristics, of magnets 7 to of magnetsmagnets are bar magnets with a length/diameter ratio of 3/1 5/1; m are bar magnets with a length/diameter ratio 3/1oxide to 5/1 generallygenerally disc or moulded magnets. Also important to note istothe differenc disc or moulded magnets. Also important note is the d coefficient: coefficient: ALNICO:ALNICO: 0.02 %/K, oxide: %/K 0.2 %/K 0.02 %/K,0.2 oxide: 24.10.12 14:48
REED SWITCHES UL / CSA / ETL listed
Parameters Contact form Contact material Switching capacity max. Switching voltage max. Switching current max. Carrying current max. Dielectric strength min. Contact resistance max. Insulation resistance min. Pull-in sensitivity Drop-out sensitivity min. Switching time without bounce max. Bounce time max. Release time max. Resonant frequency typ. Operating frequency max. Vibration 20 g Shock 11 ms Capacitance typ. Operating temperature range Test coil Features
S.T.G. Type OKI Type
W/VA V AC/DC A A VDC mΩ Ω AW AW ms ms ms Hz Hz Hz g pF ° C Type
3723 A Rh 40 230 2,0 3,0 400 80 1011 30…70 15 2,0 0,5 0,10 4200 300 35g/2000 50 0,5 1700
High power,
NORMALLY OPEN MINIATURE 9210 0229 3715 3717 ORD2210V ORD229 A A A A Rh Rh Rh Rh 100 50 40 40 300/350 300 230 400 1,0 0,5 2,0 2,0 2,5 2,5 3,0 3,0 1000 500 500 1000 100 100 100 80 1010 1010 1011 1011 30…70 30…70 20…60 20…60 15 15 7 6 2,0 2,0 0,6 0,6 0,5 0,5 0,5 0,5 0,10 0,10 0,05 0,05 4200 4200 2500 2500 300 300 500 500 35g/2000 35g/2000 10-1000 10-1000 50 50 30 30 0,5 0,5 0,5 0,5 -40...+150 -40...+125 1700 1700 0221 0221
High power
High power
close
A max. B max. C max. D max.
mm mm mm mm
55,0 19,0 2,6 0,70
55,0 19,0 2,6 0,70
55,0 19,0 2,6 0,70
A A Rh Rh 60 60 400 230 3,0 3,0 4,0 4,0 850 400 80 80 1011 1011 30…70 30…70 15 15 2,5 2,5 0,5 0,5 0,10 0,10 2400 2400 200 200 35g/1000 35g/1000 50 50 0,5 0,5 -40...+150 1800 1800
Vacuum,
High
High power,
high power
breakdown
close
voltage
differential
56,0 21,0 2,75 0,60
55,0 24,5 3,8 0,80
differential
Dimensions Total length Glass length Glass diameter Wire diameter
COMPACT 3817 3823
56,0 21,0 2,75 0,60
High power
55,0 24,5 3,8 0,80
Additional types on request
Form A
Life Expectancy: The life expectancy of a Reed Switch is about 105...106 switching cycles with maximum power. With a low load the life expectancy can reach 5x108 operations. The mechanical life expectancy can reach at least 109 operations. Through the switching of inductive, capacitive and lamp loads, the life expectancy is considerably reduced due to exceeding the specified maximum current.
In General: For all Reed Switches the standard pull-in sensitivity is given in the table. Other pull-in sensitivities are available on request.
Normally Closed and Bistable Reed Switches: All Reed Switches are available in a normally closed or bistable version. Pull-In Sensitivity Tolerance: The given pull-in sensitivity of the Reed Switch has a test equipment tolerance of ± 2 AT.
8
Guenther_EN_2012.indd 8
S.T.G. Germany GmbH 24.10.12 14:48
REED SWITCHES ETL listed
Parameters Type Contact form Contact material Switching capacity max. W/VA Switching voltage max. V AC/DC max. Switching current A max. Carrying current A min. Dielectric strength VDC max. Contact resistance mΩ min. Insulation resistance Ω Pull-in sensitivity AW min. Drop-out sensitivity AW Switching time without bounce max. ms Bounce time max. ms Release time max. ms Resonant frequency typ. Hz Operating frequency max. Hz Vibration 35 g Hz Shock 11 ms g Capacitance typ. pF ° C Operating temperature range Type Test coil Features
1517 A Rh 30 1000 1,0 2,0 3000 80 1011 75…130 25 3,5 0,5 0,20 900 100 500 50 0,8 1500
High break
1515 A Rh 40 800 1,0 3,0 1500 80 1011 75…130 25 1,5 0,5 0,20 900 100 500 50 0,8
1513 A Rh 120 1000 3,0 5,0 3000 80 1011 75…130 30 3,5 0,5 0,20 900 100 500 50 0,8
1500
1500
High power
down
High
NORMALLY OPEN STANDARD 1525 1520 A A Rh Rh 80 60/80 250 250 1,3 1,3 2,0 2,0 800 800 80 80 1011 1011 75…130 75…130 25 25 3,5 3,5 0,5 0,5 0,20 0,20 900 900 100 100 500 500 50 50 0,8 0,8 -40...+150 1500 1500 General
purpose
power,
1565 B Rh 80 250 1,3 2,0 800 80 1011
1595 Bistable Rh 80 250 1,3 2,0 800 80 1011
3,5 0,5 0,20 900 100 500 50 0,8
3,5 0,5 0,20 900 100 500 50 0,8
High
Normally
Bistable
power,
closed
1523 A Rh 120 250 3,0 5,0 800 80 1011 75…130 30 3,5 0,5 0,20 900 100 500 50 0,8 1500
Lamp load
general
lamp load
purpose
Dimensions Total length Glass length Glass diameter Wire diameter
A max. B max. C max. D max.
mm mm mm mm
79 52,0 5,4 2,5 x 0,5
79 52,0 5,4 2,5 x 0,5
79 52,0 5,4 2,5 x 0,5
79 52,0 5,4 2,5 x 0,5
79 52,0 5,4 2,5x0,5
79 52,0 5,4 2,5x0,5
79 52,0 5,4 2,5 x 0,5
79 52,0 5,4 2,5 x 0,5
Additional types on request
Form A
Test coil type 0551 0211 0221 1035 1500 1700 1800 6500
Length in mm 26 10 15 13 48,2 20,5 23 28
Outer-ø in mm 16 11 11 14 14,2 14 15 16
Inner-ø in mm 3,5 2,3 2,9 2,6 5,7 2,65 3,8 5,8
S.T.G. Germany GmbH Guenther_EN_2012.indd 9
Cu-wire-ø in mm 0,08 0,063 0,071 0,063 0,09 0,08 0,08 0,07
Number of turns 5.000 5.000 5.000 10.000 10.000 10.000 10.000 10.000
Nom. resistance Ω 550 600 450 1.650 1.000 1.000 1.000 1.490
9
24.10.12 14:48
or R2
max.
max. current inrush
p 0,002 am 20 A OperatingExfrequency Vibration 0,001 0,1 10 A
2
pl e
ms
80 60
ms
0,5
Lamp 40
Hz
6000
300 V Hz max.
200
20
200 V Hz 35 g
20g/1000
100 V g 0,08 Shock 11 ms 30 50 Vresistor across the 10 Lamp load with parallel 5orAcurrent limiting switch Capacitance typ. 25 V pF 1,58 0,06
Operating 2 A range Cutting andtemperature Bending 0,04
10 V
6 -40...+125
C
°
As Test the Reed magnetic circuit of4a Reed coil Switch blades are part of the Type 0551 1A Switch, shortening the leads results in increased pull-in and general drop-out Miniature Features 0,5 A values. RS
0,02
Pull-in and drop-out sensitivity V R 40 0,01
Load
C
1
RS 150
1,0
2,0R2
R1
0,5
200 Lamp
200
10
1,0
150 9
15…40
200
150
1,0
1,0
2,0
150
200 Lamp 150
200
10
10
109
V
9
15…40*
250
20g/1000
9
15…40
150
15…40*
0,8
0,8
0551
Miniature general
3325
Miniature high
purpose
with
power
20
Pull-in and drop-out sensitivity
50
1035
cropped
AT increase in %
56,5
0
50
-40...+150
cropped rop
1000
1000
0,8
0,8
50
Example
D
N.C. contact 10
A max. mm 56,5 Example and lamp loads are prone to high Unlike inductive loads, capacitive Glass length B max. mm 14,0 inrush currents which can lead to faulty operation and even contact 20 Glass diameter C max. mm 2,54 welding. t -ou mmcable capacitance) When switching charged capacitors (including a Wire diameter D max. 3,0 p Dro sudden unloading can occur, the intensity of which is determined by 10 types onofrequest the Additional capacity and length the connecting leads to the switch. This Pull-in inrush peak can be reduced by a series of resistors. The value of these resistors is dependent on the particular application but should 2 to ensure 4 6 the inrush 8 10 12 be as high0as possible that current is within the Cut-off length in mm allowable limits.
250
1,5
40
with
Dimensions
250
2000
-40...+125 30
30 Capacitive Loads Total length
250
2000
30
purpose 2
I
0,5 RS
100
Cutting and Bending 1,5 0,6 0,6 0,6 0,6 As the Reed Switch blades are part of the magnetic circuit of a Reed 0,5 0,02 0,02 0,02 0,02 Switch, shortening the leads results in increased pull-in and drop-out 6000 values.
1,5
R2
100
4 8 5 Lamp load with parallel or current8limiting resistor 5across the switch 1,0 2,0 2,0 2,0 2,0
1,0100
ms
V
typ.
4
RS
AT increase in %
Lamp
3
00 max.
1 Resonant frequency le
0
ce) a ed by This of hould n the
Resistance in Ω
Current in A
0,006 Release time V 0,2 0,004
max. 400
30 R150
RS
AW
500
0,02
0
high ntact
min.
0 20 100
0
0,6 56 Load voltage in V
0,01 Bounce time 0,008
00
00 0 0
0,04
8 Drop-out sensitivity 10
0,4without20 Switching time bounce
000 00 00
00
With lamp load applications it is important to note that cold lamp CHANGE OVER filaments have a resistance 10 times smaller than already glowing filaments. This means that when being turned-on, the lamp filament SUBMINIATURE experiences a current flow 10 times greater than when already 0651 3325 3425 3336 3436 glowing. This high inrush current can be reduced to an acceptable ORT551-1 level through the use of a series of current-limiting resistors. Another possibility is the parellel switching the switch.CThis C C C of a resistor across C allows just enough current to flow to the filament to keep it warm, yet Rh Rh Rh Rh Rh not enough to make it glow. 3 5 5 20 20
30 filaments 0,8 have a resistance 10 times smaller than already glowing Switching current max. A 0,2 0,2 0,6 filaments. This means that when being turned-on, the lamp filament 1000 0,4 Carrying current max.greaterAthan when already 0,5800 0,5 experiences a2 current flow 10 times glowing. Thisstrength high inrush currentmin. can be reduced to an acceptable 600 Dielectric VDC 150 150 V 0,2 level through the use of a series of current-limiting resistors. Another 400 Contact resistance max. mΩ 100 100 possibility 0,1 is the 1 parellel switching of a resistor across the switch. This 0,08just enough Ω Insulation resistance min. 109 109 allows 0,8 current to flow to the filament to keep it warm, yet 0,06 notPull-in enough to make it glow. 200 sensitivity AW 10…30 10…30* Ex am
000
The following nomograph can be used for determining contact arc suppression for inductive R loads. 10000 S.T.G. Type 0551 Example 1: I = 0,1 A I 8000 10 V = 230 V Parameters OKI Type ORT551 6000 C = 0,001 µF 8 R = 340 Ω Contact form C 4000 Example 2: 6 Contact material If the current inrush is critical use Rh the below nomograph to determine Switching 4capacitythe minimum max. 3 resistance. W/VA 2000 I = 0,5 A C lamp load applications it is important With to note that cold lamp Switching voltage max. 30 Rmin = 400 VΩAC/DC 1
Load voltage
000
UL and CSA listed
Contact Protection
Capacitor in µF
0000 000 000
REED SWITCHES REED SWITCHES
t -ou
50
1035 3336 with cropped N.C. contact
N.C. contact
Pull-in
2 4 Cut-off length in mm
55
6
8
55
10
12
55
55
14,0 14,0 14,0 14,0 14,0 When cutting or bending Reed Switches, it is important that the glass 2,54 2,3 2,3the cutting or bending 2,3 2,3 body not be damaged. Therefore, point should be no closer0,35 thanx30,75 mm to the glass body. 0,35 x 0,75 3,0 0,35 x 0,75 0,35 x 0,75 * pre-forming Cutting
Form C
When cutting or bending Reed Switches, it is important that the glass body not be damaged. Therefore, the cutting or bending point should Cable be no closer than 3 mm to the glass body. R1
RS
C
V
R2
Load
Cutting
Bending
TheCutting above diagram illustrates a resistor/capacitor network for and Bending protecting a Reed Switch against and/or As the Reed Switch blades arehigh partinrush of the currents. magneticRcircuit of aRReed 1 2 are Switch, used depending upon conditions. shortening the circuit leads results in increased pull-in and drop-out Bending values.
COMUS
When cutting or bending Reed Switches, it is important that the glass body not be damaged. Therefore, the cutting or bending point should be no closer than 3 mm to the glass body.
GÜNTHER
4 10
52724_BRR_Guenther_GB_04.pmd
Guenther_EN_2012.indd 10
1
S.T.G. Germany GmbH
04.11.2002, 17:04
24.10.12 14:48
REED SWITCHES ETL listed
Parameters Contact form Contact material Switching capacity Switching voltage Switching current Carrying current Dielectric strength Contact resistance Insulation resistance Pull-in sensitivity Drop-out sensitivity Switching time without bounce Bounce time Release time Resonant frequency Operating frequency Vibration Shock Capacitance Operating temperature range Test coil
10000 8000 6000 4000 2000 1000 800 600
1925 C Rh max. 60 W/VA 140 max. V AC/DC 1,0 max. A 2,0 max. A 250 min. VDC 100 max. mΩ 109 min. Ω 50…100 AW 20 min. AW 4,0 max. ms 0,5 max. ms 0,15 max. ms typ. Hz 100 max. Hz 2000 35 g Hz 50 11 ms g 1,0 typ. pF ° C Type 1500 Type
COMPACT 1915 1917 C C Rh Rh 60 60 250 400 1,0 1,0 2,0 2,0 500 1000 100 100 109 109 50…100 50…100 20 20 4,0 4,0 0,5 0,5 0,15 0,15 100 100 2000 2000 50 50 1,0 1,0 1500
CHANGE OVER 1965 B Rh 60 140 1,0 2,0 250 100 109
1995 Bistable Rh 60 140 1,0 2,0 250 100 109
4,0 0,5 0,15 100 2000 50 1,0
4,0 0,5 0,15 100 2000 50 1,0
-40...+150 1500
STANDARD 1625 1665 1620 C B C Rh Rh Rh 60 60 60 230 230 230 1,0 1,0 1,0 2,0 2,0 2,0 400 400 400 100 100 100 109 109 109 80…120 80…120 20 20 4,0 4,0 4,0 0,5 0,5 0,5 0,10 0,10 0,10 100 100 100 500 500 500 50 50 50 1,0 1,0 1,0 1500
1695 Bistable Rh 60 230 1,0 2,0 400 100 109
4,0 0,5 0,10 100 500 50 1,0
1500
Features Bistable High power High power Normally Long life General Normally Bistable General With lamp load applications it is important to note that cold lamp closed purpose closed purpose filaments have a resistance 10 times smaller than already glowing filaments. This means that when being turned-on, the lamp filament experiences a current flow 10 times greater than when already glowing. This high inrush current can be reduced to an acceptable level through the use of a series of current-limiting resistors. Another possibility is the parellel switching of a resistor across the switch. This allowsDimensions just enough current to flow to the filament to keep it warm, yet not enough to make it glow. A max. mm Total length 70 70 81 70 81 70 81 81 70 Glass length B max. mm 36,0 36,0 52,0 36,0 52,0 36,0 52,0 52,0 36,0 RS Glass diameter C max. mm 5,6 5,6 5,6 5,6 5,6 5,6 5,6 5,6 5,6 Wire diameter 2,5 x 0,5 2,5 x 0,5 2,5 x 0,5 2,5 x 0,5 2,5 x 0,5 2,5 x 0,5 2,5 x 0,5 2,5 x 0,5 2,5 x 0,5 RS R1 D max. mm R2
Additional types on request V
V
Lamp
400
Lamp
Form C 200 100 80 60 40
Lamp load with parallel or current limiting resistor across the switch
Cutting and Bending
As the Reed Switch blades are part of the magnetic circuit of a Reed Switch, shortening the leads results in increased pull-in and drop-out values.
20
40
10 8 6
one to high en contact
Example AT increase in %
1
Approvals: Under ETL No. 3105897(conforms to UL Std. 508 / certified to CAN/CSA Std. C22.2 No. 14) listed reed switches: 1513, 1515, 1517, 1520, 1523, 1525, 1565, 1595, 1620, 1623, 1625, 1665, 1695, 1915, 1917, 1925, 1965. 1995, 2312, 2314, 2315, 2317, 2322, 2325, 2522, 2525, 2715, 2717, 2722, 2725, 3325, 3336, 3425, 3436, 3715, 3717, 3723, 3817, 3823.
30
4 2
Pull-in and drop-out sensitivity
20 p Dro
10
0
t -ou
Under UL-No.: E70063 and CSA-No.: LR86615 approved Reed Switches:
Pull-in
2 4 Cut-off length in mm
6
0211, 0213, 0221, 0228, 0219, 2211, 2212, 0229, 9210, 0234, 0233, 0551, 0324, 2221. 8
10
12
When cutting or bending Reed Switches, it is important that the glass body not be damaged. Therefore, the cutting or bending point should be no closer than 3 mm to the glass body.
acitance) a ermined by witch. This value of Guenther_EN_2012.indd but should
S.T.G. Germany GmbH
11
Cutting
11
24.10.12 14:48
HIGH VOLTAGE REED RELAYS Introduction GÜNTHER® High Voltage Reed Relay technology is based upon our extensive experience in the design and manufacture of Reed Switches and Reed Relays. GÜNTHER® High Voltage Reed Relays have outstanding performance characteristics in insulation resistance and stand-off voltage. The high dielectric stand-off voltage between the open contacts as well as the high switching voltage are achieved by using high vacuum Reed Switches. A proven assembly and potting technique assures the following relay characteristics: ● Stand-off voltage across open contacts from 3 KV up to 14 KV max. ● Stand-off voltage between coil and contact from 10 KV up to 25 KV max. ● Switching voltage from 1.5 KV up to 10 KV max. GÜNTHER® High Voltage Reed Relays are offered in a variety of contact configurations: ● 1 N.O., 2 N.O. or 4 N.O. contacts (normally open contacts) ● 1 N.C. (normally closed contact) ● 1 N.C. / 1 N.O. (1 normally closed contact/ 1 normally open contact) GÜNTHER® High Voltage Reed Relays offer mounting flexibility enabling the customer to match different application requirements: ● Coil and Reed Switch connecting pins in the base plate for PCB mounting. ● Coil connecting pins in the base plate for PCB mounting and Reed Switch connections with cable. ● Coil connecting pins in the base plate for PCB mounting and Reed Switch connecting pins on top of the relay. GÜNTHER® High Voltage Reed Relays have additional features: ● Immunity against harsh environmental conditions (eg. high humidity) by using hermetically sealed switching contacts potted in a strong plastic case. ● High shock and vibration resistance. ● Low contact capacitance and high switching frequency in comparison with electro-mechanical, open relay contacts. ● Washable and resistant to standard automatic cleaning methods. GÜNTHER® High Voltage Reed Relays find application in many areas of the electrotechnical and electronic industry: ● Electronic medical equipment ● Cable tester arrays and cable test equipment ● Copy machines ● Laser optical systems and infra-red equipment ● Test equipment
12
Guenther_EN_2012.indd 12
S.T.G. Germany GmbH 24.10.12 14:48
HIGH VOLTAGE REED RELAYS Standard Types - Selection Chart
1270
Number of contacts: Contact form: Coil and Reed Switch terminals: See type 1270 Contact form:
1 contact 1 normally open
Number of contacts: Contact form: Coil terminals: Reed Switch terminals: See type 1280 Contact form:
1 contact 1 normally open Soldering pins on bottom Soldering pins on top
Number of contacts: Contact form: Coil terminals: Reed Switch terminals: See type 1290 Contact form:
1 contact 1 normally open Soldering pins on bottom High voltage cable on top
1272
Number of contacts: Contact form: Coil terminals: Reed Switch terminals:
2 contacts 2 normally open Soldering pins on bottom Switch 1: soldering pins on bottom Switch 2: soldering pins on top
1274
Number of contacts: Contact form: Coil and Reed Switch terminals:
4 contacts 4 normally open
4270 1280 4280 1290 4290
1294
See type 1274 Reed Switch terminals:
5272
Number of contacts: Contact form: Coil and Reed Switch terminals:
5292
See type 5272 Reed Switch terminals:
S.T.G. Germany GmbH Guenther_EN_2012.indd 13
Soldering pins on bottom 1 normally closed
1 normally closed
1 normally closed
Soldering pins on bottom
High voltage cable at sides
2 contacts 1 normally open / 1 normally closed Soldering pins on bottom
High voltage cable at sides
13
24.10.12 14:49
HIGH VOLTAGE REED RELAYS HIGH VOLTAGE REED RELAYS CONTACT FORM Type CONTACT FORM
Data Contact Parameters max. SwitchingContact voltage Parameters Switching voltage min. Dielectric strength Dielectric strength max. Switching capacity Switching capacity max. Switching current Switching current max. Carrying current Carrying current Contact resistance Contact resistance max.
..6
Dielectric strength
coil/contact
VDC VDC VDC VDC VDC VDC VDC VDC Ω Ω
5
4
1
8
35
VDC
Drop-outWeight time
Pin configuration Dimensions
5 4 1 8 35
12
..6
approx.
g
20
10
2
4
2
18
18
200
200
-
1 x 109
..6
..6
36
720
5 24 4 20 1 4 8 36 35 720
..6
12 5 10 4 2 1 18 8 200 35
..6
3392
3391
1280 1280 3316 3390 3391 ..6 ..6 1290 1290 1290 ..6
20.000
1
4
36
720
..6
..6
3392
1290 ..6
5
12 10
1
2 18 200
20 55
4
8
35
20.000 -
-35...+90
1 x 109
-20...+70 3,5
-35…+ 90
18
3,5
1,5
-20…+ 70
55
1,5 2
3
1
12 24 10 20 2 4 18 36 200 720
4
24
20 4
36
720
20.000
1 x 109
1,5 2
3
20
-
1,5 -20…+70 3,5 18 55
24
20.000
-35...+90 1 x 109 -20...+70 3,5 -35…+90
ms g
page
24
12
10
ms page
max.
approx.
Weight
..6
20.000
Dielectric strength contact/contact VDC VDC coil/contact Dielectric strength Ω Insulation resistance coil/contact contact/contact VDC Dielectric strength ° Storage temperature C Ω coil/contact Insulation resistance ° Operating temperature C °C Storage temperature Pull-in time incl. bounce ms °C Operating temperature Drop-out time ms Pull-in time incl. bounce Dimensions
..6
3392 3316 3390 1 NORMALLY OPEN 1270 1280 1280 3316 3390 3391 3392 ..6 ..6 ..6 1280 1280 1280 1280
7.500 5.000 10.000 VACpeak / VDC 10.000 5.000 7.500 1.500 1.500 max. VACVDC 1.500 5.000 7.000 7.500 10.000 1.500 5.000 7.500 10.000 1.500 5.00014.000 7.500 10.000 peak 10.000 14.000 7.000 10.000 3.000 3.000 min. VDC 3.000 7.000 10.000 14.000 3.000 7.000 10.000 14.000 3.000 7.000 10.000 14.000 50 50 50 W 50 30 50 50 30 max. W 30 50 50 50 30 50 50 50 30 50 50 50 3 3 3 A 3 1 3 3 1 max. A 1 3 3 3 1 3 3 3 1 3 3 3 5 5 5 A 5 2 5 5 2 max. A 2 5 5 5 2 5 5 5 2 5 5 5 250 250 250 mΩ 250 250 80 250 max. mΩ 80 80 250 250 250 80 250 250 250 80 250 250 250
Nominal coil voltage Nominal coil voltage Pull-in voltage max. max. Pull-in voltage Drop-out voltage min. min Drop-out voltage Operating voltage max. max. Operating voltage Coil resistance +/-15 % +/-15 % Coil resistance
Relay Parameters
1270 3392 ..6 1270
1270 1270 3316 3390 3391 ..6 ..6 1270 1270 1270
Coil Parameters Coil Parameters
Relay Parameters
3391
3390
3316
Type
Data
1 NORMALLY OPEN 1)
1 NORMALLY OPEN
4
-
1 x 109
-35...+90 -20...+70 3,5 1,5 18
65
20
2
553
4
1
2 2 Pin configuration 4 3 3 4 Switches with contact code 90-92 are tungsten-plated and should be used 1 only for switching power above approx.110 mW.
General Parameters
Insulation Resistance
1) Also available with high voltage cable (relay type 1290) All characteristics for pull-in voltage, drop-out The insulation resistance is measured with a Tera Ohmmeter at 500V Switches with contact code 90-92 are tungsten-plated and should be used only for switching power above approx. 10 mW. voltage and coil resistance at 200C +/-3°C ambient DC. The ambient climate is 200C +/-3°C and 50 % relative humidity. temperature. For other temperatures see diagram Insulation Resistance General Parameters "temperature range". Switching Voltage, Switching Current Rating The insulation resistance is measured with a and TeraPower Ohmmeter at 500V All characteristics for pull-in voltage, drop-out voltage and coil 0 The values for switching switching current and power DC.listed The ambient climate is 20voltage, C +/-3°C and 50 % relative humidity. resistance at 200C +/-3°C ambient temperature. For other Contact Resistance rating are absolute limits. If any of these values is exceeded, a reduction temperatures see diagram "temperature range". Voltage, Power Rating Initial value at nominal voltage measured by the ofSwitching life expectancy willSwitching result (see Current followingand power diagram). Contact Kelvin Resistance The listed values for switching voltage, switching current and power test method at 20V/100mA. Initial value at nominal voltage measured by the Kelvin test method rating are absolute limits. If any of these values is exceeded, a reduction at 20V/100mA. of life expectancy will result (see following power diagram).
Soldering
During soldering make sure no mechanical stress Soldering is applied to terminals the thermoplastic During soldering make shure nobecause mechanical stress is applied to material might be molding damaged. terminalsmoulding because the thermoplastic material might be damaged. Order Example: Order Example: 33 92 1270 05 6 33 92 1270 05 6 Product group Product group Contact code Version code Version StandardContact type Nominal coil voltage Standard type Nominal coil voltage 05 = 5V 05 = 5V 12 = 12V 12 = 12V 24 = 24V 24 = 24V
COMUS
Switching voltage [V] Prohibited area
Switching current [A]
GÜNTHER
17
RR_Guenther_GB_17.pmd
14
1
Guenther_EN_2012.indd 14
S.T.G. Germany GmbH
28.10.2002, 11:53
24.10.12 14:49
HIGH VOLTAGE REED RELAYS CONTACT FORM
2 NORMALLY OPEN
Type
3316
Dielectric strength
Switching capacity
max. VACpeak
Switching current
Carrying current
Contact resistance
Nominal coil voltage
max.
Operating voltage
max.
Drop-out voltage
min.
Coil resistance
Relay Parameters Dielectric strength Dielectric strength
+/-15 %
5.000
7.500 10.000 1.500
5.000
7.500 10.000 1.500
5.000
7.500 10.000
50
30
5
5
5
2
3
250
250
3
250
..6
..6
7.000 10.000 14.000 3.000
1
50
50
50
30
5
5
5
2
3
80
3
250
3
250
250
..6
50
50
5
5
5
3
3
250
24
5
12
VDC
0,5
1,2
2,4
0,5
1
1
0,5
1
Ω
15
85
275
12
175
12
VDC
7
29
10
7,5
20
14,5
27
42
4
7,5
10.000
Ω
1 x 109
1 x 109
1 x 109
C
-35...+90
20 2
27
42
10.000 8.000
24
14,5
10.000 10.000
175
8.000
-35...+90
-35...+90
C
-20... +70
-20... +70
-20... +70
ms
1,5
1,5
1,5
°
ms
3,5
page
3,5
18
g
18
130 2
5 3
3,5
18
55
1
6 4
7 5 3 1
B
250
10
VDC
VDC
Pull-in time incl. bounce
16
4
3
250
12
20
..6
50
5
10
1294
7.000 10.000 14.000
1
80
..6
24
4
°
approx.
50
..6
12
Operating temperature
Pin configuration
50
..6
5
VDC
coil/contact
Drop-out time
..6
VDC
Storage temperature
Weight
80
..6
7.000 10.000 14.000 3.000 3
2
mΩ
Insulation resistance coil/contact
Dimensions
30
A
contact/contact
3392
1.500
1
Pull-in voltage
3391
1294
A
Coil Parameters
3390
1294
..6
1274
3316
1294
max.
max.
3392
1274
3.000
max.
3391
1274
VDC W
3390
1274
..6
1272
3316
1272
min.
max.
3392
1272
..6
Switching voltage
3391
1272
Data Contact Parameters
3390
4 NORMALLY OPEN
140
C
8 6 4 2
7 5 3 1
B
C
8 6 4 2
Switches with contact code 90-92 are tungsten-plated and should be used only for switching power above approx. 10 mW.
Dielectric Strength
Tested in a radiation (e.g. light, x-ray) free environment by applying a DC voltage across the open contacts, between adjacent contacts and between coil and contact. The trigger current is 100 µA. The unused contacts should not be connected during the test.
Switching Time
Pull-in time including bounce time at nominal voltage and 20 Hz: 1,5 … 3,5 ms Release time (without diode) at nominal voltage and 20 Hz: 0,4 … 1,5 ms V Coil voltage
t
V
Contact Capacitance (Typical Values)
Die Kapazitätswerte gelten als typische Werte. Capacitance:
N.O.
Across open contacts
0,8 - 1,2 pF
Between open contacts and coil
1,4 - 2,2 pF
Between closed contacts and coil
2,3 - 3,5 pF
Reed Switch
t Operate delay
Bounce time
Release delay
S.T.G. Germany GmbH Guenther_EN_2012.indd 15
15
24.10.12 14:49
HIGH VOLTAGE REED RELAYS CONTACT FORM
1 NORMALLY CLOSED + 1 NORMALLY OPEN
Type
Switching voltage
3390
3391
3392
3316
3390
3391
3392
..6
..6
..6
..6
..6
..6
..6
..6
5272
Data Contact Parameters
3316
5272
5272
max.
VACpeak
1.500
5.000
Switching capacity
max.
W
30
50
Carrying current
max.
Dielectric strength
min.
Switching current
max.
Contact resistance
max.
Coil Parameters
Nominal coil voltage Pull-in voltage
max.
Operating voltage
max.
Drop-out voltage
min.
Coil resistance
Relay Parameters Dielectric strength
Dielectric strength
+/-15 %
coil/contact
contact/contact
Insulation resistance coil/contact
Storage temperature
VDC A
A
mΩ
2
5.000
50
50
30
50
10.000
3
3
14.000 3
5
250
3.000
5
250
250
1 2
10.000
14.000
3
3
3
50
250
12
VDC
0,5
1
2
0,5
1
Ω
27
345
27
VDC
7,5
20
14,5
27
135
4
7,5
20 2
27
135
10.000
Ω
1 x 109
1 x 109
8.000
C
24
14,5
10.000
345
8.000
-35...+90
-35...+90
C
-20... +70
-20... +70
ms
1,5
1,5
°
page
3,5
3,5
18
g
18
130 3 7
A+ C
250
10
VDC
VDC
5
250
5
10
50
5
24
4
10.000
7.000
5
80
5292
7.500
12
Dimensions
approx.
1.500
5
VDC
ms
Drop-out time
5292
10.000
5
80
5292
VDC
Pull-in time incl. bounce
Weight
1
5292
7.500
7.000
°
Operating temperature
Pin configuration
3.000
5272
140 BD
4
3
8
7
A+ C
BD
4 8
Switches with contact code 90-92 are tungsten-plated and should be used only for switching power above approx. 10 mW.
Life Expectancy
The life expectancy of a Reed Relay is at least 105...106 operations at nominal load. At minimum load the life expectancy can endure up to 5 x 108 operations. The mechanical life expectancy is 109 operations (minimum). Through the switching of higher loads, especially inductive or capacitive and lamp loads, life expectancy can be considerably reduced due to exceeding the permissible maximum current.
Shock and Vibration
During shock and vibration tests the relays must be energized with nominal voltage. The contact should not open or close longer than 10 µs. Vibration stability: 20 g/50 … 500 Hz Shock stability: 35 g/11 ms half sine wave.
Proper contact protection will reduce electromagnetic interference and rapid contact erosion. Suppressing diodes in connection with inductive loads may cause extreme contact wear.
16
Guenther_EN_2012.indd 16
S.T.G. Germany GmbH 24.10.12 14:49
HIGH VOLTAGE REED RELAYS CONTACT FORM
1 NORMALLY OPEN
Type
3316
3390
3391
3392
3316
4270
4270
4270
4270
4280
..6
..6
..6
..6
..6
Data CONTACT FORM Contact Parameters Type
3316
3390
3391
3392
3316
min.
Switching capacity
max.
Switching current Switching voltage Carrying Dielectriccurrent strength
3 3 1 3 1 max. A max. VACpeak 1.500 5.000 7.500 10.000 1.500 5 14.000 2 5 3.000 max. A min. VDC 3.0002 7.0005 10.000 250 250 80 250 80 max. mΩ max. W 30 50 50 50 30 max.
max.
max.
Pull-in voltage
max.
Drop-out voltage Nominal coil voltage Operating voltage Pull-in voltage
min.
Operating voltage
max.
Coil Parameters
max. max. +/-15% min.
Coil resistance Drop-out voltage
Coil resistance Relay Parameters +/-15 % Dielectric strength
coil/contact
Relay Parameters
A
1
A
3
2
5
mΩ VDC 80 VDC VDC
VDC
VDC
VDC
6,5 50
Ω VDC
Operating temperature Storage temperature
C°C
°
Operating Pull-in timetemperature incl. bounce max. Pull-in time incl. bounce Drop-out time Drop-out time Dimensions
approx. approx.
Cms
5
250 12
4
10
0,5
5
3
5 250
4 6,5 Ω 0,5 50
VDC VDC
50
50
30
W
contact/contact VDC Dielectric strength Dielectric strength coil/contact VDC coil/contact Insulation resistance Dielectric strength contact/contact VDCΩ Storage temperature Ω °C Insulation resistance coil/contact
Dimensions Weight Weight Pin Pin configuration configuration
..6
..6
3391
3392
3316
6 . . 7.000 6 . 10.000 .6 . 14.000 .6 . 3.000 .6 .7.000 .6 ..6 ..6 ..6 14.000 10.000 VDC. . 3.000
Contact Parameters
Contact resistance Nominal coil voltage
..6 3390
Data Dielectric strength
Carrying current Coil Parameters
3391 3392 HIGH VOLTAGE REED RELAYS 4280 4280 4280
10.000 4290 7.500 4280 5.000 4280 7.500 4270 5.000 4270 1.500 4280 10.000 4280 1.5004270 VACpeak / VDC4270
max.
Switching current
)
3390
1 Normally Closed
Switching voltage
Contact resistance Switching capacity
1
1 12 14,5 10 1 400
14,5 400
3
3 3 3 5.000 7.500 10.000 1.500 5 5 14.000 5 10.000 7.000 3.000 250 250 250 50 50 50 30
1
5
3
2
250 24
80 5
20 2 24 27 20
2675
27
675
msms ms page
10
20
0,5 5 46,5
1 12 14,5 10
2 24 27 20
6,5 50
400
675 2
27
675
20.000
20.000 1 x 109 1-35…+ x 109 90
20.000 1 x 109 -35…+ 1 x 109 90
7.500 10.000
2
80
50
50
5
5
5
3
250
12
0,5
1
4
COMUS
24
20 2
14,5
50
27
400
675
20.000 -
1 x 109
3,5 1,5
3,5 1,5
3,5
-20...+ 70
1,5 20 18 55 3
1,5 18 65
22-
1+
When mounting relays side by side a gap of approximately half the relay-width is recommended to avoid mutual magnetic influence.
250
10
6,5
3,570 -20...+
4
3
250
5
2-
4
Switches contact code 90-92 are tungsten-plated andcontact shouldprotection be used only switching power above approx. 10 mW. Shock andwith Vibration Proper will for reduce electromagnetic During shock and vibration tests the relays must interference and rapid contact erosion. Suppressing Operating be energized Temperature with nominal voltage. The contact diodes in connection with inductive loads may cause The operating is the internal of the relay (ambient should not opentemperature or close longer than 10 µs.temperature extreme contact wear. temperature plus self Factor heating). stability: If relays 20 areg/50 operating higher ambient temperatures (ϑu) than + 20 °C, the pull-in voltage Vibration … 500atHz 1,4 and the maximum calculated Operating as follows: Temperature Shock stability: 35 coil g/11voltage ms halfmust sinebe wave. Pull-in voltage = Pull-in voltage at 20 °C x k1 The operating temperature is the internal temperature 1,2 Life Expectancy Maximum coil voltage voltage 20 °Cof x the k2 relay (ambient temperature plus self heating). The life expectancy of = a Max. Reedcoil Relay is at at least 1,0 at higher ambient temperatures 105...106 operations at nominal load. At minimum If relays are operating 0 When relays can sideendure by sideup a gap approximately half the relay-width is recommended (ϑu) than +20 C, the pull-in voltage and the maximum 8 load themounting life expectancy to 5 xof10 0,8 to avoid mutual magnetic influence. coil voltage must be calculated as follows: operations. 0 Pull-in voltage = Pull-in voltage at 20 C x k1 9 The mechanical life expectancy is 10 operations 0,6 Maximum coil voltage = Max. coil voltage at 200C x k2 (minimum).
3
-35...+ 90
21+
..6
50
-20…+90 70 -35...+
55
4290
7.000 10.000 14.000
3 3 3 4 4 1+ 1+ 1) Also available with high voltage cable (relay type 4290) Switches with contact code 90-92 are tungsten-plated and should be used only for switching power above approx. 10 mW.
Through the switching of higher loads, especially inductive or capacitive and lamp loads, life expectancy can be considerably reduced due to exceeding the permissible maximum current.
..6
-20…+ -35...+ 9070
55 2-
3
14,5
20.000
1,520 1855
page g g
5
4
1400
3392
5.000
..6
1
250 24
0,550
250
5
3
12250
3,570 -20...+
°
5
3
3391
4290
50
50
50
30
50
3390
4290
4
1+
k1 - value k2 - value
0,4 0,2
-40 -20 0 +20 +40 +60 +80 Temperature in °C
GÜNTHER
19
52274_BRR_Guenther_GB_19.pmd
1
28.10.2002, 11:55
S.T.G. Germany GmbH Guenther_EN_2012.indd 17
17
24.10.12 14:49
HIGH VOLTAGE REED RELAYS HIGH VOLTAGE REED RELAYS 60
4
2
4
4
21
0,5
4
Ø 0,8
3
Ø 0,8
1 15
60
33.. 1270 .. 6
21 4
3
21
21
0,5
68
2
68
33.. 4270 .. 6
33.. 1280 .. 6
15
1
33.. 4280 .. 6
21
2
15
68
1
21
55
4
0,5
48
10
Ø 0,8
25
18,5
27
21
55 70
27
B
1
17 15
41,5
6
C
3
Outer-Ø 4 / Wire-Ø 0,8
29,5
8
7
2
C
14 12
33.. 1294 .. 6
18,5
Ø 0,8
27
55
41,5
70
D B
13
4
21
Outer-Ø 4 / Wire-Ø 0,8 17
8
7
21 27
55
4
25
10
Ø 0,8
25
21
48
200
GÜNTHER 33.. 5292 ..6
21
0,5
GÜNTHER 33.. 5272 ..6
75
0,5
48
4
75
C A
B
Bottom view
33.. 1274 .. 6
10
18 16
13 11
4
Bottom view
3
200
GÜNTHER 33.. 1294 ..6
21
0,5
75
6,5
25
15
4
48
Ø 0,8
2
33.. 1272 .. 6
75
5
4
33.. 4290 .. 6
GÜNTHER 33.. 1274 ..6
4
68
21
33.. 1290 .. 6
10
Ø 0,8
3
1
21
Ø 0,8
21
4
0,5
4
4
6 0,5
3
60 5
21
200
Outer-Ø 4 / Wire-Ø 0,8
10
60
18 C A+
D B-
14
Bottom view
Bottom view
33.. 5292 .. 6
33.. 5272 .. 6 Dimensions in mm
18 20
Guenther_EN_2012.indd 18
COMUS
S.T.G. Germany GmbH
GÜNTHER
24.10.12 14:49
DIL-SIL-REED RELAYS
Version
DIL-High Profile
Contact Form
1 Normally Open 2 Normally Open 1 Change Over 3570 1210 ...
3572 1220 ...
3563 1231 ...
3573 1231 ...
Features
- Industry-standard housing
- Industry-standard housing
- Industry-standard housing
- Industry-standard housing
Type
1 Change Over
Coil Parameters VDC
5
12
24
5
12
24
5
12
24
5
12
24
Pull-in voltage
max.
VDC
3,8
9
18
3,8
9
18
3,8
9
18
3,5
8
16
Drop-out voltage
min.
VDC
0,8
1
2
0,8
1
2
1
2
4
1
2
4
Operating voltage
max.
VDC
20
30
40
10
20
40
10
18
35
10
18
35
Coil resistance
±10%
Switching voltage
max.
W/VA
Dielectric strength
max.
Switching capacity
max.
Switching current
max.
A
1,0
1,0
0,5
1,0
Carrying current
max.
mΩ
150
150
200
150
Contact resistance
min.
VDC
200
200
140
200
Dielectric strength
coil/contact
VDC
1000
1000
1000
500
Insulation resistance
coil/contact
Ω
1010
1010
1010
1010
Nominal coil voltage
500 1000 2150 140
Ω
Contact Parameters
500 2150 200
500 2150 200
500 2150
10
10
3
5
V
100 AC/DC
100 AC/DC
70 AC / 100 DC
100 AC/DC
A
0,5
0,5
0,25
0,5
Relay Parameters
Storage temperature
°
C
-40...+105
-40...+105
-40...+105
-40...+105
Operating temperature
°
C
-35...+80
-35...+80
-35...+80
-35...+80
ms
0,5
0,5
2,0
1,2
Pull-in time incl. bounce Drop-out time Dimensions Weight Pin configuration (top view)
ms
0,5
0,5
3,0
0,8
page
21
21
21
21
approx. g
2,3
2,3
2,3
2,3
1 2
114 213
14 1 13 2
1 2
1 14 2 13
114 14 213 13
14 1 13 2
1 2
1 14 2 13
1 14 14 2 13
114 2
1 2
1 14 2
114 2
14
1 14 2
1 2
6 7
69 78
96 87
6 7
69 78
6 78
6 87
6 7
6 78
69 78 8
69 78
6 7
69 78
69 78
9 8
96 87
6 7
General Parameters Life Expectancy The life expectancy of a Reed Relay is at least 105...106 operations at nominal load. At minimum load the life expectancy can be up to 5 x 108 operations. The mechanical life expectancy is 109 operations (minimum). Through the switching of higher loads, especially inductive or capacitive and lamp loads, life expectancy can be considerably reduced due to exceeding the permissible maximum current.
9 8
Order Example: 35 70 1210 05 1 Product group Contact code Standard type
Version 1 = without diode 3 = with diode Nominal coil voltage 05 = 5V 12 = 12V 24 = 24V
S.T.G. Germany GmbH Guenther_EN_2012.indd 19
19
24.10.12 14:49
DIL-SIL-REED RELAYS
Version
Contact Form
DIL-Low Profile
SIL
1 Normally Open
1 Normally Open
Type
Features Coil Parameters
Nominal coil voltage Pull-in voltage
max.
Operating voltage
max.
Drop-out voltage
min.
Coil resistance
±10%
Contact Parameters
VDC
max.
A
max.
Contact resistance
max.
Dielectric strength
min.
Relay Parameters Dielectric strength
coil/contact
Insulation resistance coil/contact
Storage temperature
Operating temperature
Pull-in time incl. bounce time max. Drop-out time with diode Dimensions Weight
1
2
9
20
500
Ω
Switching current Carrying current
0,8 15
W/VA
max.
24
VDC
max.
Switching voltage
12
3,8
Switching capacity
3570 1331 ... - Industry-standard
5
VDC
VDC
3570 1301 ... - Industry-standard
1000
100 AC/DC
A
Vibration resist. Shock resistance
0,8
1,5
500
1000
18
3,8
30
15
2000
1,0
9
30
200
VDC
1000
150
1000
10
1010
10
C C
-40...+105
-40...+105
0,5
0,5
-35...+80
°
ms
ms
-35...+80
0,5
page
0,5
21
21
1,8
1 2
14 13
14 13
1 3
1 3
6 7
6 7
9 8
9 8
5 7
5 7
20 g / 5...2000 Hz 10 g / 5...500 Hz 100 g / 11 ms
50 g / 11 ms
Sine half wave
Sine half wave
1,6
1 2
Change Over
Washability Resistant to Caltron, Freon, alcohol and distilled (pure) water. During the final rinsing phase only the purest substances should be used.
2000
1,0
200
Ω
2
40
0,5
150
°
18
10
mΩ
VDC
24
100 AC/DC
0,5
Vibration and Shock Resistance During the evaluation of vibration and shock resistance, the relays are driven with nominal voltage. The switches should not open longer than 10 µsec. Normally Open
12
10
V
approx. g
Pin configuration (top view)
5
Capacitance The capacitance parameters are regarded as typical and are calculated for versions without shielding: N.O.
Change Over
across open contact
0,8 pF
2,5 pF
between open contact and coil
1,5 pF
2,5 pF
between closed contact and coil
3,0 pF
2,5 pF
Capacitance, measured...
Solderability By using laser welding in manufacture, a number of our DIL-SILReed Relays are suitable for enhanced soldering requirements. Hole Diameter in PCB: Ø 0,65 mm
20
Guenther_EN_2012.indd 20
S.T.G. Germany GmbH 24.10.12 14:49
DIL-SIL-REED RELAYS DIL-High Profile
DIL-Low Profile
7,10 7,10 7,10
SIL
Dimensions in mm Pull-in and Drop-out Voltage, Coil Resistance The tolerances indicated are valid at 25 °C ± 3 °C. The temperature coefficient of the coil resistance is 0,4 % / °C. Switching Voltage, Current and Capacity The parameters as listed for switching voltage, current and capacity are maximum values. Exceeding any one of these values causes overload and reduces relay life expectancy.
Temperature Range The operating temperature of the relay is the equivalent of the internal temperature. If the relays are used in ambient temperatures (ϑa) higher than 20 °C, the maximum permissible operating voltage (UT) must be calculated according to the table indicated below, using the formula: UT = Umax x k1 (Umax = max. permissible operating voltage) ϑu (°C)
20
30
40
50
60
70
k1
1,00
0,96
0,92
0,78
0,74
0,70
Switching Time When using dry Reed Switches in relays, contact bounce may occur. Pull-in time (incl. bounce time) typ. 0,5...1,8 ms at nominal voltage and 20 Hz Drop-out time (with diode) typ. 0,5...1,5 ms at nominal voltage and 20 Hz Comment Relay versions with 15 V nominal coil voltage are available upon request. Contact Resistance The contact resistance indicated is valid for new relays at nominal coil voltage. The four-point method at 2 VDC / 100 mA or 10 mA is applied. Custom solutions for special applications, especially for switching signals smaller than 1 mV at 10 µA (low-level-applications) or applications requiring dynamic contact resistance measurement can be produced for special switching needs.
S.T.G. Germany GmbH Guenther_EN_2012.indd 21
21
24.10.12 14:49
REED RELAYS Customer Specific DIL-REED RELAYS Introduction
The customer specific Reed Relays are Dual-In-Line-Relays with standard housing height of 7,5 mm and a base area of 19 x 10 mm.These relays are potted with a permanent flexible plastic material subject to no mechanical force. The advantage of the customer specific DIL-Reed Relays is that a wide variation of special pin configurations, contact arrangements and other applications can be realized. S.T.G. is thus able to produce the relay to meet special customer requirements. Due to the small housing these relays can replace standard housing relays mounted on a PCB.
Version
Customer Specific Reed Relays in DIL-Housing
Contact Form Type
Features
1 Normally Open
2 Change Over
3875 1342 ...1)
3865 1251 ...1)
- High insulation resistance
- Industry-standard - Low input power
Coil Parameters
Nominal coil voltage Pull-in voltage
max.
Operating voltage
max.
Drop-out voltage
min.
Coil resistance
±10%
Contact Parameters Switching capacity
max.
Switching current
max.
Contact resistance
max.
Switching voltage
Carrying current
Dielectric strength
Relay Parameters Dielectric strength
Ω W/VA
1
320
2
20
1000
1,0
A
mΩ
VDC VDC Ω C
°
C
°
ms
ms
page
approx. g
24
5
18
3,8
40
7
4
3200
10
A
Pull-in time incl. bounce time max.
Pin configuration
12
9
max.
Storage temperature
Weight
VDC
VDC
12
230
coil/contact
Dimensions
3,8
V AC/DC
Insulation resistance coil/contact
Drop-out time with diode
5
VDC
max.
min.
Operating temperature
VDC
0,5
1
100
12 9
2
16
500
2,0
1000
-35...+100
-35...+100
1,0
1,5
0,4 23
2,3
2000
1,0
4000
-20...+80
4
30
20
150
1012
18
100
150
400
24
200
1010
-20...+80 1,0 23
3,2
(top view)
1) Also available with diode
22
Guenther_EN_2012.indd 22
S.T.G. Germany GmbH 24.10.12 14:49
REED RELAYS Customer Specific DIL-REED RELAYS
Pull-in and Drop-out Voltage, Coil Resistance The tolerances indicated are valid at 25 °C ± 3 °C. The temperature coefficient of the coil resistance is 0,4 % / °C. Switching Voltage, Current and Capacity The parameters as listed for switching voltage, current and capacity are maximum values. Exceeding any one of these values causes overload and reduces relay life expectancy.
Temperature Range The operating temperature of the relay is the equivalent of the internal temperature. If the relays are used in ambient temperatures (ϑa) higher than 20 °C, the maximum permissible operating voltage (UT) must be calculated according to the table indicated below, using the formula: UT = Umax x k1 (Umax = max. permissible operating voltage) ϑu (°C)
20
30
40
50
60
70
k1
1,00
0,96
0,92
0,78
0,74
0,70
Order Example: 38 75 1342 05 1 Product group Contact code Standard type
Contact Resistance The contact resistance indicated is valid for new relays at nominal coil voltage. The four-point method at 2 VDC / 100 mA or 10 mA is applied. Custom solutions for special applications, especially for switching signals smaller than 1 mV at 10 µA (low-level-applications) or applications requiring dynamic contact resistance measurement can be produced for special switching needs.
Nominal coil voltage 05 = 5V 12 = 12V 24 = 24V During and immediately after the soldering process no mechanical stress should occur on the soldering pins. Customized special versions can be developed and manufactured pursuant to customer requirements.
S.T.G. Germany GmbH Guenther_EN_2012.indd 23
Version 1 = without diode 3 = with diode
23
24.10.12 14:49
Proximity sensors Type Parameters Contact Form Switching Capacity
4414
4414
4428
4428
4429
4429
4451
4451
4452
1525
1625
1525
1625
3823
0551
2725
0551
2325
121
121
111
111
111
111
311
311
311
A
C
A
C
A
C
A
C
A
W/VA
80
60
80
60
60
3
10
3
10
Switching Voltage
max.
VAC
250
230
250
230
230
30
230
30
100
Switching Current
max.
A
1,3
1,0
1,3
1,0
3,0
0,2
0,5
0,2
0,5
Carrying Current
max.
A
2,0
2,0
2,0
2,0
4,0
0,5
1,0
0,5
1,0
Dielectric Strength Contact Resistance Connecting Wire
VDC
800
400
800
400
400
150
400
150
200
max.
mΩ
80
100
80
100
80
100
100
100
150
2m
LIYY
2 x 0,14
3 x 0,14
2 x 0,14
3 x 0,14
2 x 0,14
3 x 0,14
2 x 0,14
3 x 0,14
2 x 0,14
4414
4414
4428
4428
4429
4429
4451
4451
4451
10 – 20
10 – 20
10 – 20
10 – 20
10 – 20
10 – 20
10 – 20
10 – 20
5 – 10
Recommended Magnet Operating Distance
mm C
Operating Temperature
-40 … +150
°
Housing Material
Polystyrol Polystyrol Polystyrol Polystyrol Polystyrol Polystyrol Polystyrol Polystyrol Polystyrol
4414
4428
4451
4452
4429
Magnets Type
4414
4428
4429
4451
4452
4400
4400
4400
4400
4400
110
110
110
310
310
000
000
000
000
000
0830
With Housing
o
Housing Material
0830
0830
o
o
0624 o
0515
0515
o
Dimensions in
mm
See below
4414M
4428M
4451M
4452M
24
Guenther_EN_2012.indd 24
0630
0815
0830
Polystyrol Polystyrol Polystyrol Polystyrol Polystyrol
Plain Magnet Material
0618
Alnico
o
o
o
o
o
5x15
6x18
6x30
8x15
8x30
4429M
S.T.G. Germany GmbH 24.10.12 14:49
Proximity sensors Parameters
Type
Contact Form Switching Capacity
4426
4426
4432
4433
4433
4415
4415
4431
4411
4412
2325
0551
2725
2725
0551
2325
0551
1525
2725
3823
121
121
321
321
321
321
321
021
021
021
A
C
A
A
C
A
C
A
A
A
W/VA
10
3
10
10
3
10
3
80
10
60
Switching Voltage
max.
VAC
100
30
230
230
30
100
30
250
230
230
Switching Current
max.
A
0,5
0,2
0,5
0,5
0,2
0,5
0,2
1,3
0,5
3,0
Carrying Current
max.
A
1,0
0,5
1,0
1,0
0,5
1,0
0,5
2,0
1,0
4,0
Dielectric Strength Contact Resistance Connecting Wire
VDC
200
150
400
400
150
200
150
800
400
400
max.
mΩ
150
100
100
100
100
150
100
80
100
80
2m
LIYY
2 x 0,14
3 x 0,14
2 x 0,14
2 x 0,14
3 x 0,14
2 x 0,14
3 x 0,14
6x18
6x18
8x30
8x30
8x30
8x30
8x30
8x30
11.1
11.2
5-20
5-20
10-20
10-20
10-20
10-20
10-20
10-20
5-20
5-20
Brass
Alu
Alu
Recommended Magnet Operating Distance Operating Temperature Housing Material
4426
mm C
3 x 0,5 3 x 0,75 3 x 0,75
- 40... + 150
°
Polystyrol Polystyrol Polystyrol Polystyrol Polystyrol Polystyrol Polystyrol
4432
4433
4415
4431
4411
4412
Ordering Information: Blue is our standard colour for the highly shock-resistant polystyrene housing. Customized colours - clear, white, and brown - can be specially ordered. Standard cable length: 1m
44 51 2725 3 1 1 Product Group Case Type Sensor Type Color: 0 = natural 1 = white 2 = brown 3 = blue 4 = clear
S.T.G. Germany GmbH Guenther_EN_2012.indd 25
Connection Method: 0 = without cable 1 = with cable 2 = with soldering pins Options: 0 = unencapsulated 1 = encapsulated 2 = potted
25
24.10.12 14:49
Sensor Inclination / ACCELERATION, dampened PRODUCT DESCRIPTION Precision tilt or pendulum switch / sensor Applicable as e.g. acceleration sensor Variable switching angle depending on installation Hg-free Suitable to be soldered
APPLICATION Different applications, when an exact switching angle is required. The inclination setting can be adjusted directly on the circuit board or application. The oil damping makes the sensor insensitive to vibrations.
ORDER NUMBER
TECHNICAL DATA Function
Contact arrangement Contact material Min. differential switching angle
Electrical data Max. switching voltage Max. switching current Max. carrying current Max. switching capacity Max. contact resistance Min. insulation resistance
[V] [mA] [mA] [W/VA] [mOhm] [Ohm]
1 FA / NO Rh [°] 3
5601.2003.201 (standard type)
100 400 1000 10 300 109
Sensor with connecting cords We assist you with difficult applications!
Ambient conditions Operating temperature range [°C]
-40...+125
Other features Weight (approx.)
5
[g]
ACCESSORIES & SPECIALS
DIMENSIONS
FUNCTION 22,4
13
Tilt Switch: At a specific angle, the reed switch is activated. By changing the position of the sensor on the object, the switching angle can be changed. Acceleration sensor: Acceleration will activate the pendulum. The switching activating point corresponds to a specific deflection ß and thus to a specific acceleration. The acceleration can be calculated according to the following formula:
27
a = tanß * g If the switching angle at a specific acceleration is needed, the following formula is applicable:
ß m*a ß m*g
9,5
RELATION ACCELERATION / ANGLE
ß = arctan a * g ß = Switching angle a = Acceleration g = Gravity acceleration (9,81 m/s2)
PLEASE NOTE: The inclination of the object influences the acceleration! The sensor is filled with silicon oil!
Original size
26
Guenther_EN_2012.indd 26
S.T.G. Germany GmbH 24.10.12 14:49
Sensor Inclination / ACCELERATION PRODUCT DESCRIPTION Precision tilt or pendulum sensor Applicable as e.g. acceleration sensor Variable switching angle depending on installation Hg-free Suitable to be soldered
APPLICATION Different applications, when an exact switching angle is required. The inclination setting can be adjusted directly on the circuit board or application.
ORDER NUMBER
TECHNICAL DATA Function
Contact arrangement Contact material Min. differerential switching angles
Electrical data Max. switching voltage Max. switching current Max. carrying current Max. switching capacity Max. contact resistance Min. insulation resistance
[V] [mA] [mA] [W/VA] [mOhm] [Ohm]
1 FA / NO Rh [°] 3
5601.2001.223 (standard type)
100 400 1000 10 300 109
Sensor with connecting cords. We assist you with difficult applications.
Ambient conditions Operating temperature range [°C]
-40...+125
Other features Weight (approx.)
2
[g]
ACCESSORIES & SPECIALS
DIMENSIONS
FUNCTION Tilt Switch: At a specific angle, the reed switch is activated. By changing the position of the sensor on the object, the switching angle can be changed.
22,5
Acceleration sensor: Acceleration will activate the pendulum. The switching activating point corresponds to a specific deflection ß and thus to a specific acceleration. The acceleration can be calculated according to the following formula: a = tanß * g If the switching angle at a specific acceleration is needed, the following formula is applicable:
ß
ß = arctan a * g m*a ß
8,9
17 22
m*g
RELATION ACCELERATION / ANGLE
ß = Switching angle a = Acceleration g = Gravity acceleration (9,81 m/s2)
PLEASE NOTE: The inclination of the object influences the acceleration! In case of vibrations, faults may occur!
Original size
S.T.G. Germany GmbH Guenther_EN_2012.indd 27
27
24.10.12 14:49
S.T.G. GERMANY GMBH Virnsberger Str. 51 D-90431 Nürnberg Germany Phone: +49 (0) 911 6552-0 Fax +49 (0) 911 6552-239
[email protected] www.stg-germany.de
S.C. S.T.G. Switch Technology Guenther S.R.L.
All specifications and details given are subject to change without notice
28
Guenther_EN_2012.indd 28
10/2012
Gheorghe Baritiu Str. 30 515400 Blaj / Alba Romania Phone: +40 (0) 258 711 600 Fax +40 (0) 258 711 161 www.stg-germany.de
S.T.G. Germany GmbH 24.10.12 14:49