Preview only show first 10 pages with watermark. For full document please download

Technical Guide

   EMBED


Share

Transcript

TECHNICAL GUIDE Milling TE1 - TE15 Turning TA1 - TA55 Solid End Mills TF1 - TF9 Parting & Grooving TB1 - TB28 Tooling System TG1 - TG11 Thread Making TC1 - TC19 MPT TH1 - TH3 Holemaking TD1 - TD53 Grades TI1 - TI35 Technical Basic Information TA2 Product Information TA12 Grades Selection TA39 TECHNICAL GUIDE Cast Iron Application TA40 Aluminum Application TA43 -Turning Chip Breaker Selection TA45 Insert Selection TA46 Trouble Shooting TA54 Technical Basic Information  Nomenclature of holder T-TURN End cutting edge angle Side relief angle Shank width Side rake angle Side cutting edge angle Entering angle Back rake angle End relief angle Overall height Cutting edge height Shank height L  Side rake angle R ap Rmax la f l Kr (+)Side rake angle (-)Side rake angle Technical Guide Positive insert TA D 2 Positive insert +1 degree --> 15% resistance decrease  Main effects - Cutting force - Direction of chip flow - Cutting heat - Tool-life  (+) Side rake angle - Easy machining - Weak cutting edge - For sticky materials Technical Basic Information  Side relief angle - Steels 5-7° - Non ferrous materials 8-12° - High hardness materials 4-5° T-TURN Small flank wear Big flank wear ɑ° ɑ° Small side relief angle  Main effects - Friction decrease - Between cutting edge and material  End Big side relief angle  (+) Side relief angle - Decreased flank wear - Weak cutting edge - For sticky materials cutting edge angle Small end cutting edge angle for roughing Big end cutting edge angle for finishing  Main impacts - Interrupted prevention between cutting area and tool  (-) End cutting edge - Strong cutting edge - Increased vibration angle Technical Guide ϴ D TA 3 Technical Basic Information  Entering angle f f T-TURN t t 45° t=f t=0.71f 45° entering angle 90° entering angle E.A: 45°(S type) - 117.5° (V type) Lead angle = 90° - Entering angle  Main impacts - Low impact load - Changed feed force and radial force - Changed thickness of chip  Three  (+) Entering angle - Low tool-life - Low radial force - For small part machining - Improved chip breaking - For finishing applications standard rake attitudes Steel Cast iron Alloy steel Stainless steel Negative angle  Negative rake Positive angle Technical Guide Sticky materials (AL, Copper) High temp alloys TA D 4  Positive rake For small part vibration prevention 0°  Neutral rake Technical Basic Information  Selecting  Eight insert shape basic insert shapes Strong cutting edge High cutting force Square T-TURN 100° Coner of Round 80° diamond Trigon 8 cutting edges Increasing strength End cutting edge angle Side relief angle Triangle Side rake angle 80° Coner of 80° diamond Weak cutting edge Low cutting force Side cutting edge angle Entering angle 35° Diamond 55° Diamond Back rake angle  The importance of insert thickness  Center line machining � General machining � Relief angle decrease: Not easy to machine because of workpiece friction � Rake angle increase: Easy to break because of high cutting force  Selecting � End relief angle Overall height � � Cutting edge height insert size Technical Guide R  Maximum depth of cut (ap)  Available cutting length (la) ap la la = ap/sin Kr kr : Entering angle l Kr D TA 5 Technical Basic Information  Selecting nose R Classification Finishing Medium Roughing Negative 0.8 0.8 1.2 Positive 0.4 0.8 0.8 3/4R 2/3R 1/2R Nose R Recommended feed  For  For  For finishing: chip control + surface finish medium: surface finish + productivity roughing: stability (strength of cutting edge) + productivity  Chip forming principle Technical Guide (1) Make curl by chip breaker (2) Impact against flank of insert (3) Increased curl radius (4) Parting on the yield point (5) Parted chip has a bigger radius TA D 6 (1) (2) (3) (4) T-TURN Technical Basic Information  Nomenclature  Double of chip breaker Groove sided  For finishing to semi medium (General machining)  Economical solution  Helical cutting edge  Easy for cutting  Sharp edge, positive rake  Various chip breaker  Both wear resistance and toughness required T-TURN Support surface Corner bridge Land (Cutting edge) Rake surface  Single sided  For roughing to semi medium applications  Strong cutting edge  High toughness required  Large chip control range  Low cutting force  Good for less heat  Stable cutting edge (good for interrupted cut machining) Technical Guide Radial rake angle D TA 7 Technical Basic Information  Cutting status according to materials  Steels T-TURN (Hard materials, long chip) - Chip control  Stainless steels (Gummy materials) - Easy to make Built-up-edge + Toughness  Cast iron (Brittle materials, short chip) - Wear resistance  Cutting  Cutting parameters parameters : Cutting speed, feed, depth of cut Cutting speed Depth of cut Technical Guide Feed TA D 8 50% Increased DOC(mm) Feed rate(mm/rev) Cutting speed(m/min) Tool life decreased 15% 60% 90% Technical Basic Information  Surface  Cutting finish End cutting edge angle speed (m/min) - Vc= πDN / 1000 angle  High T-TURN Shank width ide rake angle ØD (mm) Side cutting edge angle cutting speed - Improved surface finish N(rpm) Entering angle - Increased productivity Back rake angle - Low tool life - Long chip  Low cutting speed (20-40m/min) - Vibration, low tool-life End relief angle Overall height - Built-up-edge D: diameter of workpiece (mm) N: rpm (rev/min) Cutting edge height  Surface  Theory Shank height finish L of surface finish - Rmax=f2 / 8R * 1000( ㎛) R Rmax - Real surface finish after machining •apSteel 1.5-3times, Cast iron 3-5times  To la get better surface finish - Increase cutting speed f l - Low cutting Kr force(Big rake angle use) - Carbide grade(Uncoated grade use) - Small nose R use to control vibration Turning formulas Surface roughness of workpiece(mm): Rmax=f2 / 8r Revolutions per minute(rpm): N=(1000 x V)/(π x D) Rate of metal removal(cubic cm/min): Q=V x f x ap Feed rate(mm/min): F=f x N Horsepower required at spindle: Ws(kW)=(Q x Kc)/(60 x 102 x n) Hps(HP)=Ws x 0.75 Horsepower required at motor: Hpm=Hps / E • D=Diameter of workpiece(mm) • f=Feed rate(mm/rev) •L=Length(mm) •r=Corner radius(mm) •ap=Depth of cut(mm) • n=Efficiency of machine(typically 0.7-0.85) •E=Efficiency of spindle drive(typically 0.45) Technical Guide Cutting speed(m/min): V=π x D x N/1000 • Kc=Specific cutting force(N/mm2) D TA 9 Technical Basic Information  Surface  Effects finish of feed rate and nose radius T-TURN Feed rate Surface finish High feed rate  Selecting  Feed Low feed rate cutting conditions Low feed rate with large nose radius To control long chip � Increase feed (mm/rev) - f=L / N L f  Main factors for surface finish and productivity ØD  High feed N Technical Guide - Good for chip control TA D 10 - Increased flank wear, decreased tool life  Low feed - Burnishing - Increase tool life L: cutting length per minute (mm/min) N: rpm (rev/min) Technical Basic Information  Edge preparation for CBN & ceramic Single land Ceramic Double land CBN Ceramic Width T-TURN Width of 1st land Width of 2nd land Angle of 1st land Honing or No-honing Angle Angle of 2nd land R(Honing) R(Honing) CBN & ceramic insert _ Different performance according to edge preparation Tough land angle + Honing Sharp land angle + No-honing (kN) Machining power 140 120 100 80 60 40 Cutting condition ‣ Workpiece: Carburized steel ‣ V=120 f=0.2 ap=0.15 20 0 0.1x15 0.1x20 0.1x25 0.1x30 Edge preparation (Width x Angle) In the other words, when edge preparation (land angle is small) is sharp, it makes better tool life during continuous machining with small machining force but easy to occur chipping problem. - Tougher insert edge angle with honing is excellent for interrupted machining than sharp edge even though machining power is increased. -E  specially double land style is used for heavy interrupted machining and heavy industry component such as roll, shaft and so on. - It is required to select optimized edge preparation according to work-piece features and material as well as proper insert Technical Guide - This chart shows land angle on cutting edge affects to machining force significant and performance for tool life. grade in order to give the best performance. D TA 11 Technical Information for RHINORUSH  Small Technical Guide inserts with superior durability and the same thickness as ISO inserts TA D 12  Stronger clamping force because of hook lever system tool life due to insert’s smaller size  Stable tool life in interrupted or high feed machining  Suitable for mass production manufacture  Stable Technical Information for RHINORUSH  RHINORUSH clamping system  RHINORUSH hook lever lock system helps insert stable clamping on holder due to the two directional force ISO TURN One directional force Two directional force The hook lever system pushes the insert into the holder’s pocket creating two directional force that improves insert rigidity during machining compare to ISO straight lever.  Recommended clamping torque Use torque gauge or adjustable torque driver Recommended clamping torque 3.0Nm Screw designation Thread size Allen key size Remark LCL 08-NX LCS 3-NX M6 X 1.0 2.5mm External LCL 09-NX LCS 3 M6 X 1.0 2.5mm External 3.0Nm LCS 3B M5 X 0.8 2.0mm Internal 2.5Nm M8 X 1.0 3.0mm External 4.0Nm LCL 08B-NX LCL 09B-NX LCL 11-NX LCS 4 LCS 4S Internal Note: Caution is recommended when clamping RHINORUSH inserts on to the holder. Follow the recommended torque values posted above due to the smaller RHINORUSH components’ size. Technical Guide Lever designation D TA 13 Technical Information for RHINORUSH  Chip breaker selection according to workpiece material FG FM FT PC MT FG: Low cutting force for finishing FM: For semi-finishing to semi-medium FT: Excellent chip breaking on variable depth of cut PC: For semi finishing to medium MT: Tough rake angle for general use EA EM MM EA: Excellent chip control at low feeds rate on exotic materials EM: Sharp land design for low cutting force MM: For general roughing machining Technical Guide CNMA TA D 14 MG- CNMA: For cast iron without chip breaker MG-: Strong rake angle for medium roughing Technical Information for RHINORUSH  Chip breaker selection according to workpiece shape FG FM FT PC MT EA EM MM Technical Guide MGCNMA D TA 15 Technical Information for TURNRUSH  HB chip breaker  Double-sided semi-heavy turning insert  Low cutting force  An optimized chip breaker suitable for semi heavy machining  Stable  Unique contact surface with seat contact surface with large convex  Exclusive seat  3 dimensional geometry  Exchangeable with the ISO  Replacement standard holder seats for ISO lever turning holder  TaeguTec offers several replacement seats that are exchangeable with the ISO lever turning holder. However, it is recommended the HB insert be used with its exclusive holder to maximize tool life Technical Guide Designation TA D 16 Shape Seat for H-holder Seat for ISO LEVER holder CNMX 16 LSC 54-NX LSC 53-NX LSC 53-NXS SNMX 15 LSS 54-NX LSS 53-NX LSS 53-NXS * LSC 53-NX: Same size with IC of insert LSC 53-NXS: Smaller size than IC of insert Technical Information for TURNRUSH  Clamping structure and features  Quick change and rigid clamping force (Increased clamping force due to hooked lever design) Conventional lever type Poor clamping strength due to one directional force  Chip Hook lever type Function for double clamping (Downward clamping force increased) breaking range 10 8 6 HB 4 2 1 0.2 0.3 0.4 0.6 0.8 ‣ Insert: CNMX 160712 HB ‣ Cutting speed: 150 m/min ‣ Material: 0.45% Carbon steel Technical Guide depth of cut(mm) Chip control range Feed rate(mm/rev) D TA 17 Technical Information for TURNRUSH  Surface roughness & cutting force test results  Cutting condition: V=150(m/min), D.O.C(mm) X f(mm/rev)=8x0.5  Material: 0.45% Carbon steel  Workpiece length: 630mm, Cutting length: 100mm  Tested insert: Competitor double sided - CNMG 160612 � 5x0.5 � 5x1.0 Competitor single seded - CNMM 160612 TaeguTec - CNMX 160712 HB Machining part Ø65 mm 630 mm Chucking part  Surface roughness (Ra: µm) 9.65 9 Surface roughness(㎛) 10 8.8 Competitor (CNMG) Competitor (CNMM) TaeguTec HB chip breaker (CNMX HB) 8 5.25 5.15 6 4.65 4.9 4.6 4 2 0 8x0.5 5x0.5 5x1.0 D.O.C(mm) x f(mm/rev)  Cutting force (Load meter) 96 Cutting force(N) Technical Guide 100 18 90 79.2 80 Competitor (CNMG) TaeguTec HB chip breaker (CNMX HB) 40 20 8x0.5 87.6 Competitor (CNMM) 61.2 58.4 58.4 60 0 TA D 83.4 80.3 5x0.5 D.O.C(mm) x f(mm/rev) 5x1.0 Technical Information for TOPDUTY  Reinforced ISO turning lever holder for large size inserts  Features  IC (Inscribed Circle) and thickness of the shim size are reinforced S  him damage and vibration is minimized during heavy machining thanks to TOPDUTY a widened contact area that improves rigidity C  ustomers can maintain low stock levels of the C(S)N... 2507 inserts credit to the indexable shim mechanism Conventional holder  Modification details for the shim and the holder Conventional shim New shim Designation I.C Thickness Designation I.C CN... 1906 LSC 63 4.76 LSC 64D 19.05 6.35 CN... 2507 17.9 LSC 85 24.4 LSC 85D 25.4 7.94 CN... 2509 LSC 83 24.4 LSC 84D 25.4 6.35 SN... 1906 LSS 63 4.76 LSS 64D 19.05 6.35 SN... 2507 17.9 LSS 84 24.4 6.35 LSS 85D 25.4 7.94 SN... 2509 LSS 84 24.4 6.35 LSS 84D 25.4 6.35 7.94 4.76 Thickness Technical Guide Insert New holder D TA 19 Technical Information for TOPDUTY  Double sided H series chip breaker CNMD HT HD HY HZ TOPDUTY + SNMD HT HD HY HZ Technical Guide + TA D 20  Features  Utilizes both sides to improve economy & cost reduction O  ffers a variety of sizes and chip breakers to meet customers specific heavy rough machining requirements E  conomy is further improved by using one tool holder for rough to finish machining Technical Information for TOPDUTY Double-sided ...NMD Single-sided ...NMM Conventional style TOPDUTY Top face Rough machining  The  The Bottom face Not available Top face Rough machining Bottom face Finish machining top face of the double sided insert can be used, as it is with the single-sided insert bottom face can then be used when finish machining is required  Guideline for finish machining storage Bottom face Top face bottom face are worn-out of the Technical Guide  Commence operation on finish machining first with the bottom face of insert  Operate rough machining with the top face when required, after four corners D TA 21 Technical Information for TOPDUTY depth of cut (mm)  Chip breaking range 20 ‣ Insert: CNMD 250924 HD TOPDUTY ‣ Cutting speed: 100 m/min ‣ Material: 0.45% Carbon steel 18 HZ HY 14 HD 12 10 HT The top face finish machining conditions 8 6 4 2 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Details Depth of cut (mm) Feed rate (mm/rev) Cutting condition 3.0 (2.0~5.0) 0.6 (0.4~0.8) 1.6 feed rate (mm/rev)  Chip Chip breaker Technical Guide HT TA D 22 breaking features Appearance Features • Low cutting force for low horse power machines • Excellent chip control due to changeable land and a flexible chip breaker Priority of performance Cutting edge Cutting force toughness Chip-control   HD • For all kinds of shafts, connecting-rods and ship building components • Flexible chip breaker offers excellent chip evacuation   HY • For large depth of cut and high feed • Strong cutting edge credit to a wide land and large land angle   HZ • For large depth of cut and high feed • Extremely strong cutting edge credit to a wide land and large land angle • Suitable for high cutting conditions   Technical Information for TOPDUTY  Double sided insert with 32mm cutting edge  Features  The  The top face has a negative chip breaker type that is suitable for heavy machining bottom face is designed to minimize the cutting load and break chips effectively TOPDUTY when machining depths of cut less than 5mm  Strong clamping force due to hooked lever system The top face (rough machining) conditions Designation The Depth of cut (mm) SNMD 310924 HD 1.0 (0.60 - 1.5) 15.0 (7.0 - 25.0) SNMD 310924 HT 1.0 (0.50 - 1.4) 15.0 (6.0 - 22.0) bottom face (finish machining) conditions  Chip depth of cut (mm) Feed rate (mm/rev) Details Feed rate (mm/rev) Depth of cut (mm) Cutting condition 0.6 (0.4 - 0.8) 3.0 (2.0 - 5.0) breaking range (The top face rough machining range) 30 25 ‣ Insert: SNMD 310924 ‣ Cutting speed: 100 m/min ‣ Material: 0.45% Carbon steel HD 20 15 15 10 5 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 feed rate (mm/rev) Technical Guide HT 10 D TA 23 Technical Information for TOPDUTY  Application Before • Twin Head (Brazed) • Single hooked tool • Rough : SNMM 250724 X 2 insert • Rough : SNMD 310924 HT (Top) • Finish : SNMG 250724 • Finish : SNMD 310924 HT (Bottom) Technical Guide Machining part TA D 24 After Rough Finish Insert TOPDUTY Cutting condition RPM F (mm/rev) D (mm) Before SNMM 250724 15 0.8 13 After SNMD 310924 (Top) 20 1.2 20 Before SNMG 250724 17 0.8 3 After SNMD 310924 (Botton) 0.8 3 17 Technical Information for TOPDUTY  HX chip breaker  40mm helix cutting edge  Features  High 95° helix cutting edge TOPDUTY - Double lever clamping for maximum clamping stability - Unique geometry gives low cutting force - Enhanced productivity with 40mm cutting edge - Suitable for low-powered machines - Facing and external turning possible & available in R & L types  Versatile usage - 8 0 degree corner angle allows it to be used for the same purpose as CNMG/CNMM - 95 degree entrance angle permits facing and external machining Helix  Application  Cutting conditions: V=45(m/mim), f = 0.5(mm/rev) Test insert: LNMM 401224 R-HX Material: Ductile cast iron Current ISO insert: CNMM 25: 2 passes New TOPDUTY Insert: LNMM 401224 R-HX: 1 pass Continuous cut Ap = 20mm Technical Guide Interrupted cut Ap = 10-15mm  The cutting forces of the HX insert are 15% lower than  Cycle times are reduced by 50% (2 passes � 1 pass) ISO inserts D TA 25 Technical Information for TOPDUTY  HD, HY chip breaker  50mm cutting edge TOPDUTY  Features  50mm cutting edge enables cutting up to 45mm depth of cut  Rectilinear shaped cutting edge ideal for heavy roughing on high powered machines  The HD insert is suitable for continuous machining and the HY insert is for interrupted operations LNMX 501432 HY LNMX 501432 HD T  wo blind holes and lever clamping system provide simple but strong clamping forces without lowering the rigidity of the insert Technical Guide Competitor TA D 26 TaeguTec Technical Information for TOPRAIL TOPRAIL LNMX 30-TWR For roughing  For LNMX 30-TWM LNMX 19-TWM LNMX 19-TWF SSR-TX For finishing For medium rail wheel profiling  Features  Tangential inserts are suitable for radius and rough machining of wheel profiles  Economical and productive inserts are specified for individual cutting conditions  Post assembly under floor lathe machining is possible via cartridge holders designed for easy assembly/disassembly TRWR/L 50-55 TG Holder TRWR/L 175-CA-19 TRWR/L 177-CA-19 Cartridge Cartridge Under flow type TRWR/L 175-CA-30 Cartridge Technical Guide Portal type D TA 27 Technical Information for TOPFEED  New HF chip breaker doubles your feed rate  Features  Economical - Improved productivity with double-sided configuration TOPFEED - Employs double-sided structure with 6 cutting edges - Double-sided structure offers economical advantages when compared to competitors inserts - Remarkable feed rates achieve significant productivity improvements  Optimized chip breaker geometry - Structure designed for high feed machining - Reduced cutting forces due to positive cutting edge - Prolonged tool life due to innovative cutting edge geometry - Clamping stability due to 3 dimensional shim design that differentiates from the competition  Insert design has been configured for ultra high feed machining conditions - Maximum feed rate =3.0mm/rev , Maximum machining depth = 2.5mm f=0.6mm/rev f=1.5mm/rev Technical Guide Feed rate = ISO Insert X 2.5 times = same roughness TA D 28  Stable contact surface with seat due to uniquely designed larger convex - Unique clamping solution developed by TaeguTec - Unique clamping structure free from chip interruption - Maximum clamping stability due to a hooked lever Technical Information for TOPFEED depth of cut(mm)  Chip breaking range: External turning TOPFEED 2.5 HF 2.0 1.5 1.0 0.7 0.5 0.5 1.0 2.0 2.5 3.0 ‣ Insert: BNMX 150720 R-HF ‣ Cutting speed: 150 m/min ‣ Material: 0.45% Carbon steel feed rate(mm/rev) External turning Feed: 0.5 - 3.0 mm/rev Ap: 0.5 - 2.5 mm Technical Guide D TA 29 Technical Information for TOPFEED  Test result  Surface finish - Cutting condition: Vc=150m/min, - D(mm) X F(mm/rev) =1.5x1.5, 1.5x2.0, 1.5x2.5, 1.5x3.0 TOPFEED - Material: 0.45% carbon steel Ø150 mm 350 mm Chucking part  Surface finish (Ra: µm) D (mm) x F (mm/rev) 1.5 x 1.5 1.5 x 2.0 1.5 x 2.5 1.5 x 3.0 TaeguTec 22 27 33 41 Competitor 1 25 33 44 Breakage Competitor 2 29 41 55 Breakage • Under the same machining condition, TOPFEED achieved the best surface finish TaeguTec 60 Technical Guide Competitor 1 Competitor 2 40 20 0 1.5x1.5 TA D 30 1.5x2.0 1.5x2.5 1.5x3.0 Technical Information for TOPFEED  Vibration comparison test result TaeguTec Competitor 1 Competitor 2 TOPFEED Vibration  Chip breaking comparison test result D (mm) x F (mm/rev) TaeguTec Competitor 1 Competitor 2 Breakage Breakage 1.5 x 1.5 1.5 x 2.0 1.5 x 2.5 1.5 x 3.0 Technical Guide D TA 31 Technical Information for Miniature Part  SA chip  Ground breaker positive ISO inserts for high precision turning - High precision is guaranteed with the peripherally ground geometry - Low cutting forces due to the dynamically inclined sharp cutting edge with a wide groove geometry  Back TOPMINI clamping holder  Quick change holders for swiss type inserts - Quick insert changeover with simple lever clamp design - Both front and side clamping is available Right front side clamping  Boring Technical Guide  New TA D 32 bars and inserts for small component machining range of inserts and boring bars suitable for the turning of small workpieces  TOPMINI insert - Produced in two insert types - ground & pressed-to-size - Micro size insert (IC=3.97, 4.76mm)  TOPMINI boring bar - Bore machining as small as 6mm diameter possible - Special design near the joints ensures improved durability Technical Information for FX Chip Breaker  Features  Narrow chip breaker design for optimal chip control  Helix & high positive cutting edge to reduce cutting force  Wave cutting edge design suitable for chip control in pulley machining application  Excellent tool life for roughing and interrupted cutting conditions  Case T-TURN story 1 Competitor Workpiece TaeguTec Ball stud 0.20% Carbon steel Material Cutting speed (V) 235 m/min Feed rate (f) 0.22 mm/rev Depth of cut (ap) 0.8 ~ 1.2 mm External turning Operation Tool-life VNMG 160408 P15 Grade 200pcs/edge VNMG 160408 FX TT8115 260pcs/edge Competitor TaeguTec Chip shape  Case story 2 Workpiece Material Feed rate (f) Depth of cut (ap) Operation Tool-life Chip shape 0.20% Carbon steel 420 m/min 0.25 ~ 0.3 mm/rev 1.5 mm External turning VNMG 160408 P15 Grade 50pcs/edge VNMG 160408 FX TT8115 70pcs/edge Technical Guide Cutting speed (V) Pulley D TA 33 Technical Information for T-BURST  Features  Effective cooling down of the cutting edge  Excellent chip control  Increased tool life when machining titanium,  Can be used with RHINORUSH holder heat resistant and alloy steel T-BURST HIGH PRESSURE  Nice performance on difficult-to-cut materials such as titanium, inconel and other heat resistant alloys  Component designation Nozzle tube Housing mounting screw Housing plug screw Unit nozzle housing O-ring Frontal coolant hole Hole blocking screw 4°(CCW) Technical Guide 4°(CW) TA D 34 Frontal coolant channel on/off screw Technical Information for T-BURST  The housing unit can be rotated total 8°(4°: CW+4°: CCW) for adjustment T-BURST U N H -T B HIGH PRESSURE 4˚ 4˚  Insert Central coolant direction 8˚rotation adjustment indexing 1 & 2. Push the telescopic tube backward 1 2 3 4. Take out the insert 4 Technical Guide 3. Using the screwdriver, turn counterclockwise to loosen the lever screw D TA 35 Technical Information for T-BURST Case study 1 Material : Inconel 718 Cutting speed(V) : 60 m/min Feed rate(f) : 0.2 mm/rev HIGH PRESSURE Tool lifed by se increa 10 Depth of cut(ap) : 2.0 mm Operation : Ext, Wet TaeguTec : CNMG 120408 MP TT5080 Test coolant bar 69 bar Classic T-BURST (min.) 126% 5 T-BUrst 0 Classic T-BUrst Case study 2 Material : Ti-6Al-4V Cutting speed(V) : 100 m/min Feed rate(f) : 0.15 mm/rev Depth of cut(ap) : 1.0 mm Operation : Ext, Wet TaeguTec : CNMG 120408 MP TT5080 Test coolant bar 69 bar Classic (min.) Tool lifed by se increa 10 164% 5 T-BUrst 0 Classic T-BUrst Technical Guide Case study 3 TA D 36 Material : SUS304 Cutting speed(V) : 150 m/min Feed rate(f) : 0.35 mm/rev 30 Depth of cut(ap) : 3.0 mm 25 Operation : Ext, Wet 20 TaeguTec : CNMG 120408 MP TT5080 Test coolant bar 69 bar Tool lifed by se increa (min.) 212% 15 10 Classic T-BUrst 5 0 Classic T-BUrst Technical Information for COMBICLAMP  Features  Compatibility: Applicable to the existing T-Holders when clamp is changed  Versatility: 3 different insert types for one T-Holder  Durability: The new carbide clamp shows better wear resistance compared to existing cast iron machining applications  Stability: Due to the gap adjusting structure in the insert’s contact area, it proves much COMBICLAMP stronger with a stable joint force  Efficient inventory control: Less inventory required Conventional DLM 4 Multi functional clamp system DCL S-4H DCL S-4D DCL S-4F • Existing T-Holder is available only if changing each clamp type • 3 types of Insert can be mounted in the same tool holder Technical Guide Holder: ex) TCLNR 2525 M12 D TA 37 Technical Information for COMBICLAMP  New  The clamp for multifunction DCL type existing T-holder is only available if changing each type of clamp Insert & clamp combination COMBICLAMP DCL S-4H DCL S-4D DCL S-4F CN...A 1204 Insert with hole type CN...X 1207 Insert with TaeguTec dimple type CN...N 1204 Insert with flat type  New clamp for multifunction DCL S-4H Technical Guide Clamp TA D 38 DCL S-4D DCL S-4F � Clamp Components � CTC Plate � PIN DCL S-4H DCL 4H DCL 4-PL PIN 0683 DCL S-4D DCL 4D DCL 4-PL PIN 0683 DCL S-4F DCL 4F DCL 4-PL PIN 0683 Designation Insert CN...A 1204 DN...A 1504 DN...A 1506 SN...A 1204 CN...X 1207 CH DN...X 1507 CH SN...X 1207 CHX CN...N 1204 CN...N 1207 DN...N 1504 DN...N 1507 SN...N 1204 SN...N 1207 Shim TSC 44 TSD 44 TSD 43 TSS 44 TSC 42 TSD 42 TSS 42 TSC 44 TSC 42 TSD 44 TSD 42 TSS 44 TSS 42 Grades Selection  Easy to select insert color in CVD insert by workpiece material T-TURN Black TT7005,TT7015 Cast iron Magenta Stainless Super alloy steel TT9215,TT9225, TT9235 Gold CVD coated Steel TT8115,TT8125,TT8135 TT5100,TT7100 Technical Guide D TA 39 Machining of Cast Iron Turning Application T-TURN The best solution for cast iron machining Satisfaction guaranteed with TaeguTec’s T-CAST turning grades for cast iron machining Ceramic AW120, AB30, AS500, SC10, AS10 High productivity Cermet and PVD Coated CBN TB650, KB90A, TB730(KB90) CT3000, PV3010 Technical Guide Ultra high cutting speed and high surface finish, longer tool life TA D 40 Improved surface finish General machining CVD carbide coated TT7005, TT7015(TT7310) Machining of Cast Iron Turning Application  Grade  selection by workpiece material Gray cast iron (HB180 - 220) Workpiece condition Scale and severe interruption Scale and light interruption No scale, continuous cut Gray cast iron (HB180 - 220) Ductile cast iron (HB200 - 240)  Chip             AS10 PV3010 CT3000 TT7005 TT7015 T-TURN                               cutting parameters Grades TB670 KB90A TB730 AW120 AB30 AS500 SC10 AS10 PV3010 CT3000 TT7005 Cutting speed (m/min), Feed rate (mm/rev) 800-1200 800-200 400-1000 300-800 400-1000 300-1000 300-800 100-350 100-300 150-450 0.1-0.5 0.1-0.3 0.07-0.2 0.1-0.25 0.2-0.6 0.2-0.6 0.2-0.6 0.1-0.25 0.1-0.25 0.1-0.7 200-500 250-500 200-600 250-600 250-500 100-300 100-250 120-350 0.05-0.2 0.05-0.2 0.1-0.5 0.2-0.6 0.2-0.6 0.1-0.25 0.1-0.25 0.1-0.5 TT7015 100-300 0.1-0.7 100-250 0.1-0.5 breaker and grade selection by workpiece material Gray cast iron (HB180 - 220) Workpiece condition 4.0 - 6.0 Medium (Scale & light interruption) 1.0 - 2.5 Finishing (No scale & KT/TT7005 300, 0.4 KT/TT7005 270, 0.4 - NMN/KB90A 760, 0.3 - NMN/KB90A 720, 0.35 Chip breaker/Grade Recommended cutting conditions (V,f) KT/TT7015 240, 0.4 KT/TT7015 220, 0.4 - NMN/KB90A - NGA/AS500 MT/TT7005 760, 0.3 540, 0.35 360, 0.35 - NGA/AS10 RT/TT7005 540, 0.35 300, 0.4 - NMN/KB90A 800, 0.2 - NGA/AW120 800, 0.2 Depth of cut Roughing (Scale & severe interruption) 6.0 - 2.5 - 4.0 - 1.0 continuous cutting)  Ductile cast iron (HB200 - 240) Grades TB670 KB90A TB730 AW120 AB30 AS500 SC10  Recommended Materials  NGA/AB30 700, 0.2 NGA/AS500 600, 0.25 RT/TT7005 320, 0.4 MT/TT7005 400, 0.25 Ductile cast iron (HB200 - 240) Workpiece condition 4.0 - 6.0 Medium (Scale & light interruption) 1.0 - 2.5 6.0 - 2.5 - 4.0 - 1.0 KT/TT7015 225, 0.4 KT/TT7015 210, 0.4 - NMA/TB670 500, 0.2 - NGA/AS10 440, 0.3 - NGA/AB30 470, 0.2 MT/TT7015 260, 0.35 MT/TT7005 305, 0.3 RT/TT7015 235, 0.35 RT/TT7005 270, 0.35 - NMA/TB670 550, 0.2 - NGA/AB30 520, 0.2 MT/TT7005 320, 0.2 MT/PV3010 320, 0.2 Technical Guide Roughing (Scale & severe interruption) Finishing (No scale & continuous cutting) Chip breaker/Grade Recommended cutting conditions (V,f) Depth of cut MT/CT3000 290, 0.2 D TA 41 Machining of Cast Iron Turning Application  BLACKRUSH grades for cast iron machining Cutting speed(m/min)  Application range TT7005 TT7015 (TT7310) Feed(mm/rev)  TT7005  For high cutting speed in continuous cut on cast irons  TT7015  For general machining in continuous cut and interrupted cut on cast iron  KT Chip breaker  For machining of cast iron in roughing Technical Guide  Features  Roughing applications on cast iron  Stable broad supporting area  Reliable & uniform performance  Excellent tool life for roughing and interrupted cutting conditions TA D 42 Machining of Aluminum Alloy Turning Application RCGT T-TURN TCGT SCGT VCGT DCGT RCGT RCGT  FL chip CCGT breaker for aluminum alloy machining  Carbide(Uncoated) grade K10  Features  Wide range of applications for aluminum and other non-ferrous materials  Very high positive rake geometry to minimize cutting forces and built-up edges conditions with K10 grade Materials Aluminum alloys (Forged) Unhardened Aluminum alloys (Cast) Unhardened Copper alloys Bronze Hardened Hardened Hardness brinell (HB) Kc (N/mm2) Vc (m/min) f (mm/rev) 50 - 70 90 - 110 70 - 80 80 - 100 90 - 110 100 500 - 600 700 - 900 700 - 800 800 - 950 700 1700 2500 - 1000 1000 - 300 1000 - 300 600 - 200 600 - 250 300 - 150 0.1 - 0.6 0.1 - 0.5 0.1 - 0.5 0.1 - 0.4 0.1 - 0.5 0.1 - 0.6 Technical Guide  Machining D TA 43 Machining of Aluminum Alloy Turning Application  ML chip breaker for aluminum alloy machining ground insert  Carbide(Uncoated) grade K10 T-TURN  Features  Double sided negative ground insert  Sharp positive cutting edge provides low cutting forces  Improved surface quality and extended tool life in aluminum  Sharp cutting edge minimizes built-up-edge  CB PCD chip breaker insert Technical Guide  New TA D 44 machining applications geometricized PCD insert  Features  Serrated cutting edge ensures maximum chip control and low cutting resistance that performs remarkably well even in low depth of cut and low feed  Unique cutting edge geometry guarantees excellent chipping resistance Insert Geometry by Workpiece Shape    Cutting edge strength Workpiece shapes Sharp Chip breaker recommendation in medium to rough machining T-TURN Strong ML·MP·PC·MT·MC·MG-·RT MP PC MT MT PC MP MC MC MT PC MG- RT MC MG- MT Technical Guide Severe interrupted cutting ML Strong geometry required D TA 45 Insert Selection by Workpiece Materials  Recommended cutting parameters Insert style N : Negative inserts Application F : Finishing P : Positive inserts M : Medium R : Roughing T-TURN Depth of cut (mm) Workpiece, stability and machine condition -Best: no scale, no interruption, good rigidity -Normal: a little scale, a little interruption, good rigidity -Poor: heavy scale, severe interruptions, poor rigidity First and second choice grade, chip breaker, cutting speed & feed rate in mm/rev Workpiece material 0.15% Carbon steel (HB ≒ 150) F - 1.0 Best Best 1.0 - 2.5 Normal Poor M Best N 2.5 - 4.0 Normal Poor Normal 4.0 - 7.0 Poor R Normal 7.0 Poor F - 1.0 Best Technical Guide Best TA D 46 P M 1.0 - 3.5 Normal Poor 0.45% Carbon steel (HB180 - 200) 0.55% Carbon steel (HB200 - 220) 1 PV3010 FC 475 0.12 PV3010 FG 355 0.15 PV3010 FG 330 0.15 2 CT3000 FC 430 0.12 TT8115 FG 340 0.15 TT8115 FG 315 0.15 1 TT5100 ML 330 0.20 TT8115 MP 330 0.30 TT8115 MP 305 0.30 2 TT8125 ML 420 0.20 TT8125 MP 300 0.30 TT8125 MP 280 0.30 1 TT5100 MP 315 0.24 TT8115 PC 310 0.30 TT8115 PC 290 0.30 2 TT8125 MP 400 0.24 TT8125 PC 280 0.30 TT8125 PC 260 0.30 1 TT8020 MT 235 0.24 TT8135 RT 190 0.32 TT8135 RT 180 0.32 1 TT5100 PC 300 0.28 TT8115 PC 310 0.35 TT8115 MP 290 0.35 2 TT8125 PC 385 0.28 TT8125 PC 280 0.35 TT8125 PC 260 0.35 1 TT5100 MT 285 0.28 TT8125 PC 280 0.35 TT8125 MT 260 0.35 2 TT8125 MT 370 0.28 TT8125 MT 265 0.40 TT8125 MG- 245 0.40 1 TT8020 MT 215 0.24 TT8135 RT 180 0.36 TT8135 RT 180 0.36 2 2 1 TT5100 RT 230 0.45 TT8125 RT 260 0.56 TT8125 RT 240 0.56 2 TT8125 RT 320 0.45 TT8115 RT 290 0.56 TT8135 RT 270 0.56 1 TT8020 RT 180 0.36 TT8135 RT 180 0.45 TT8135 RT 160 0.45 TT5100 RH 210 0.57 TT8125 RH 245 0.71 TT8125 RH 225 0.71 TT8020 RH 165 0.46 TT8135 RH 165 0.57 TT8135 RH 150 0.57 2 1 2 1 2 1 PV3010 FG 475 0.12 PV3010 FG 355 0.15 PV3010 FG 330 0.15 2 CT3000 FG 420 0.12 CT3000 FG 315 0.15 CT3000 FG 295 0.15 1 TT5100 MT 285 0.17 TT8115 MT 310 0.20 TT8115 MT 285 0.20 2 TT8125 MT 370 0.17 TT8125 MT 280 0.20 TT8125 MT 255 0.20 1 TT5100 MT 275 0.17 TT8125 MT 280 0.20 TT8125 MT 255 0.20 2 TT8125 MT 350 0.17 TT5100 MT 215 0.20 TT5100 MT 195 0.20 1 TT8020 MT 220 0.17 TT8135 MT 190 0.20 TT8135 MT 180 0.20 2 Insert Selection by Workpiece Materials  Recommended cutting parameters Insert style N : Negative inserts Application F : Finishing P : Positive inserts M : Medium R : Roughing T-TURN Depth of cut (mm) Workpiece, stability and machine condition -Best: no scale, no interruption, good rigidity -Normal: a little scale, a little interruption, good rigidity -Poor: heavy scale, severe interruptions, poor rigidity First and second choice grade, chip breaker, cutting speed & feed rate in mm/rev Low carbon (0.13 - 0.18%) Alloy steel (HB150 - 180) F - 1.0 Best Best 1.0 - 2.5 Normal Poor M Best N 2.5 - 4.0 Normal Poor Normal 4.0 - 7.0 Poor R Normal 7.0 Poor F - 1.0 Best Best M 1.0 - 3.5 Normal Poor Cr-Mo alloy steel (HB200 - 220) Ni-Cr-Mo alloy steel (HB200 - 220) 1 PV3010 FC 420 0.12 PV3010 FG 330 0.15 PV3010 FG 320 0.15 2 CT3000 FC 380 0.12 TT8115 FG 315 0.15 TT8115 FG 305 0.15 1 TT5100 ML 295 0.20 TT8115 MP 305 0.30 TT8115 MP 295 0.30 2 TT8125 ML 375 0.20 TT8125 MP 280 0.30 TT8125 MP 270 0.30 1 TT5100 PC 285 0.24 TT8115 PC 290 0.30 TT8115 PC 280 0.30 2 TT8125 PC 365 0.24 TT8125 MC 260 0.30 TT8125 PC 250 0.30 1 TT8020 MT 205 0.24 TT8135 RT 180 0.32 TT8135 RT 170 0.32 1 TT5100 PC 265 0.28 TT8115 PC 290 0.35 TT8115 PC 280 0.35 2 TT8125 PC 340 0.28 TT8125 PC 260 0.35 TT8125 PC 250 0.35 1 TT5100 MT 255 0.28 TT8125 MT 260 0.35 TT8125 MT 250 0.35 2 TT8125 MT 315 0.28 TT8125 MG- 245 0.40 TT8125 MG- 240 0.40 1 TT8020 MT 190 0.24 TT8135 RT 180 0.36 TT8135 RT 170 0.36 2 2 1 TT5100 RT 205 0.45 TT8125 RT 240 0.56 TT8125 RT 235 0.56 2 TT8125 RT 250 0.45 TT8115 RT 270 0.56 TT8115 RT 260 0.56 1 TT8020 RT 160 0.36 TT8135 RT 160 0.45 TT8135 RT 160 0.45 TT5100 RH 185 0.57 TT8125 RH 225 0.71 TT8125 RH 220 0.71 RT 225 0.64 TT8125 RT 220 0.64 RH 140 0.57 TT8135 RH 150 0.57 2 1 2 1 TT8020 RH 150 0.46 TT7100 2 1 PV3010 FG 420 0.12 PV3010 FG 330 0.15 PV3010 FG 320 0.15 2 CT3000 FG 380 0.12 CT3000 FG 295 0.15 CT3000 FG 285 0.15 1 TT5100 MT 265 0.17 TT8115 MT 285 0.20 TT8115 MT 275 0.20 2 TT8125 MT 345 0.17 TT8125 MT 255 0.20 TT8125 MT 250 0.20 1 TT5100 MT 255 0.17 TT8125 MT 255 0.20 TT8125 MT 250 0.20 2 TT8125 MT 330 0.17 TT5100 MT 195 0.20 TT5100 MT 190 0.20 1 TT8020 MT 205 0.17 TT8135 MT 180 0.20 TT8135 MT 170 0.20 2 Technical Guide P Workpiece material D TA 47 Insert Selection by Workpiece Materials  Recommended cutting parameters Insert style N : Negative inserts Application F : Finishing P : Positive inserts M : Medium R : Roughing T-TURN Depth of cut (mm) Workpiece, stability and machine condition -Best: no scale, no interruption, good rigidity -Normal: a little scale, a little interruption, good rigidity -Poor: heavy scale, severe interruptions, poor rigidity First and second choice grade, chip breaker, cutting speed & feed rate in mm/rev Workpiece material Bearing steel (HB200 - 220) F - 1.0 Best Best 1.0 - 2.5 Normal Poor M Best N 2.5 - 4.0 Normal Poor Normal 4.0 - 7.0 Poor R Normal 7.0 Poor F - 1.0 Best Technical Guide Best TA D 48 P M 1.0 - 3.5 Normal Poor Carbon tool steel (HB200 - 220) Alloy tool steel (HB200 - 220) 1 PV3010 FG 330 0.15 PV3010 FG 330 0.15 PV3010 FG 320 0.15 2 TT8115 FG 315 0.15 TT8115 FG 315 0.15 TT8115 FG 305 0.15 1 TT8115 MP 305 0.30 TT8115 MP 305 0.30 TT8115 MP 295 0.30 2 TT8125 MP 280 0.30 TT8125 MP 280 0.30 TT8125 MP 250 0.30 1 TT8115 PC 290 0.30 TT8115 PC 290 0.30 TT8115 PC 280 0.30 2 TT8125 PC 260 0.30 TT8125 PC 260 0.30 TT8125 PC 250 0.30 1 TT8135 RT 180 0.32 TT8135 RT 180 0.32 TT8135 RT 170 0.32 1 TT8115 PC 290 0.35 TT8115 MT 290 0.35 TT8115 PC 280 0.35 2 TT8125 PC 260 0.35 TT8125 MT 260 0.35 TT8125 PC 250 0.35 1 TT8125 MT 260 0.35 TT8125 MT 260 0.35 TT8125 MT 250 0.35 2 TT8125 MG- 245 0.40 TT8125 MG- 245 0.40 TT8125 MG- 240 0.40 1 TT8135 RT 180 0.36 TT8135 RT 180 0.36 TT8135 RT 170 0.36 2 2 1 TT8125 RT 240 0.56 TT8125 RT 240 0.56 TT8125 RT 235 0.56 2 TT8115 RT 270 0.56 TT8115 RT 270 0.56 TT8115 RT 260 0.56 1 TT8135 RT 160 0.45 TT8135 RT 160 0.45 TT8135 RT 140 0.45 TT8125 RH 225 0.71 TT8125 RH 225 0.71 TT8115 RH 220 0.71 TT8135 RH 150 0.57 TT8135 RH 150 0.57 TT8135 RH 140 0.57 2 1 2 1 2 1 PV3010 FG 330 0.15 PV3010 FG 330 0.15 PV3010 FG 320 0.15 2 CT3000 FG 295 0.15 CT3000 FG 295 0.15 CT3000 FG 285 0.15 1 TT8115 MT 285 0.20 TT8115 MT 285 0.20 TT8115 MT 275 0.20 2 TT8125 MT 255 0.20 TT8125 MT 255 0.20 TT8125 MT 250 0.20 1 TT8125 MT 255 0.20 TT8125 MT 255 0.20 TT8125 MT 250 0.20 2 TT5100 MT 195 0.20 TT5100 MT 195 0.20 TT5100 MT 190 0.20 1 TT8135 MT 180 0.20 TT8135 MT 180 0.20 TT8135 MT 170 0.20 2 Insert Selection by Workpiece Materials  Recommended cutting parameters Insert style N : Negative inserts Application F : Finishing P : Positive inserts M : Medium R : Roughing Depth of cut (mm) T-TURN Workpiece, stability and machine condition -Best: no scale, no interruption, good rigidity -Normal: a little scale, a little interruption, good rigidity -Poor: heavy scale, severe interruptions, poor rigidity First and second choice grade, chip breaker, cutting speed & feed rate in mm/rev Workpiece material High speed steel (HB220 - 260) F - 1.0 Best Best 1.0 - 2.5 Normal Poor M Best N 2.5 - 4.0 Normal Poor Normal 4.0 - 7.0 Poor R Normal 7.0 Poor F - 1.0 Best Best M 1.0 - 3.5 Normal Poor Hard material (40≦HRC) 1 PV3010 FG 230 0.10 TT8115 FG 240 0.14 AB2010 120 0.10 2 CT3000 FG 210 0.10 TT8125 FG 210 0.14 TB610 120 0.10 1 TT5080 ML 180 0.15 TT8115 MP 230 0.28 AB2010 120 0.15 2 TT5100 ML 160 0.15 TT8125 MP 210 0.28 TB670 120 0.15 1 TT5080 MP 170 0.20 TT8115 PC 215 0.28 AB20 100 0.15 2 TT5100 MP 150 0.20 TT8125 PC 195 0.28 TB730 100 0.15 1 TT5100 MT 135 0.25 TT8135 RT 130 0.29 2 AB30 80 0.10 KB90A 80 0.10 1 TT5080 MP 170 0.20 TT8115 PC 215 0.32 AB20 100 0.15 2 TT5100 MP 145 0.20 TT8125 PC 195 0.32 KB90A 100 0.15 1 TT5080 MT 160 0.25 TT8125 MT 175 0.32 AB20 100 0.15 2 TT5100 MT 135 0.25 TT8125 MG- 185 0.37 KB90A 100 0.15 1 TT8135 RT 140 0.25 TT8135 RT 130 0.33 2 1 TT8125 RT 180 0.52 2 TT8115 RT 205 0.52 1 TT8135 RT 125 0.41 TT8125 RH 170 0.65 TT8135 RH 115 0.52 AB30 80 0.10 KB90A 80 0.10 2 1 2 1 2 1 PV3010 FG 230 0.10 PV3010 FG 250 0.14 TB670 150 0.10 2 CT3000 FG 210 0.10 CT3000 FG 225 0.14 AB20 120 0.10 1 TT5080 MT 165 0.15 TT8115 MT 215 0.18 TB670 150 0.12 2 TT5100 MT 145 0.15 TT8125 MT 195 0.18 AB20 120 0.12 1 TT5080 MT 160 0.15 TT8125 MT 215 0.18 AB20 100 0.12 2 TT5100 MT 140 0.15 TT5100 MT 195 0.18 TB670 100 0.12 1 TT8135 MT 135 0.15 TT8135 MT 160 0.18 2 AB30 80 0.08 KB90A 80 0.08 Technical Guide P Cold working die steel (HB220 - 260) D TA 49 Insert Selection by Workpiece Materials  Recommended cutting parameters Insert style N : Negative inserts Application F : Finishing P : Positive inserts M : Medium R : Roughing Depth of cut (mm) T-TURN Workpiece, stability and machine condition -Best: no scale, no interruption, good rigidity -Normal: a little scale, a little interruption, good rigidity -Poor: heavy scale, severe interruptions, poor rigidity First and second choice grade, chip breaker, cutting speed & feed rate in mm/rev Workpiece material Martensitic/Ferritic Stainless steel (HB180 - 200) F - 1.0 Best Best 1.0 - 2.5 Normal Poor M Best N 2.5 - 4.0 Normal Poor Normal 4.0 - 7.0 Poor R Normal 7.0 Poor F - 1.0 Best Technical Guide Best TA D 50 P M 1.0 - 3.5 Normal Poor Austenitic stainless steel (HB180 - 200) 1 PV3010 SF 330 0.12 PV3010 SF 265 2 TT9215 EA 260 0.12 TT9215 EA 210 0.12 0.12 1 TT9215 EM 230 0.20 TT9215 EM 200 0.20 2 1 TT9225 EM 210 0.24 TT9225 EM 185 0.24 2 TT9235 MP 180 0.24 TT9235 MP 145 0.24 1 TT9235 MT 170 0.24 TT9235 MT 135 0.24 TT9225 EM 200 0.24 TT9225 EM 160 0.24 2 1 2 1 TT9225 MP 190 0.28 TT9225 MP 150 0.28 2 TT9235 MT 165 0.28 TT9235 MT 135 0.28 1 TT9235 MT 165 0.24 TT9235 MT 125 0.24 TT9225 ET 170 0.45 TT9225 ET 130 0.45 TT9235 ET 150 0.36 TT9235 ET 110 0.36 TT9225 RX 160 0.64 TT9225 RX 120 0.64 TT9235 RX 135 0.55 TT9235 RX 100 0.55 2 1 2 1 2 1 2 1 2 1 PV3010 FG 330 0.12 PV3010 FG 265 0.12 2 TT9215 FG 270 0.12 TT9215 FG 220 0.12 1 TT9225 PC 195 0.17 TT9225 PC 160 0.17 2 1 TT9225 PC 185 0.17 TT9225 PC 150 0.17 2 TT9235 MT 160 0.17 TT9235 MT 130 0.17 1 TT9235 MT 150 0.17 TT9235 MT 120 0.17 2 Insert Selection by Workpiece Materials  Recommended cutting parameters Insert style N : Negative inserts Application F : Finishing P : Positive inserts M : Medium R : Roughing Depth of cut (mm) T-TURN Workpiece, stability and machine condition -Best: no scale, no interruption, good rigidity -Normal: a little scale, a little interruption, good rigidity -Poor: heavy scale, severe interruptions, poor rigidity First and second choice grade, chip breaker, cutting speed & feed rate in mm/rev Workpiece material Ni based super alloy F - 1.0 Best Best 1.0 - 2.5 Normal Poor M Best N 2.5 - 4.0 Normal Poor Normal 4.0 - 7.0 Poor R Normal 7.0 Poor F - 1.0 Best Best M 1.0 - 3.5 Normal Poor TC430 2 TT5080 EA 250 0.15 60 0.15 TT5080 EA 100 0.15 TT5080 EM 90 0.20 1 TC430 250 0.15 2 TT5080 EM 60 0.20 1 TT5080 MP 50 0.20 TT5080 MP 80 0.20 TT8020 MT 35 0.20 TT8020 MT 50 0.20 TT5080 EM 50 0.20 TT5080 EM 80 0.20 TT5080 MP 45 0.20 TT5080 MP 70 0.20 TT8020 MT 30 0.20 TT8020 MT 45 0.20 TT5080 ET 40 0.20 TT5080 ET 60 0.20 TT8020 ET 25 0.20 TT8020 ET 40 0.20 TT5080 FG 60 0.10 TT5080 FG 100 0.10 TT5080 PC 50 0.15 TT5080 PC 80 0.15 TT5080 PC 45 0.15 TT5080 PC 75 0.15 TT8020 MT 30 0.15 TT8020 MT 50 0.15 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 Technical Guide P 1 Titanium alloy Ti-6AI-4V D TA 51 Insert Selection by Workpiece Materials  Recommended cutting parameters Insert style N : Negative inserts Application F : Finishing P : Positive inserts M : Medium R : Roughing Depth of cut (mm) T-TURN Workpiece, stability and machine condition -Best: no scale, no interruption, good rigidity -Normal: a little scale, a little interruption, good rigidity -Poor: heavy scale, severe interruptions, poor rigidity First and second choice grade, chip breaker, cutting speed & feed rate in mm/rev Workpiece material Gray cast iron (HB180 - 220) F - 1.0 Best Best 1.0 - 2.5 Normal Poor M Best N 2.5 - 4.0 Normal Poor Normal 4.0 - 7.0 Poor R Normal 7.0 Poor F - 1.0 Best Technical Guide Best TA D 52 P M 1.0 - 3.5 Normal Poor 1 AS500 2 TT7005 1 AS500 2 TT7005 1 AS10 2 TT7005 Ductile cast iron (HB200 - 240) 600 0.25 AS500 MT 400 0.25 TT7005 440 0.20 MT 320 0.20 570 0.35 AS500 MT 380 0.35 TT7005 420 0.30 MT 305 0.30 540 0.35 AS10 MT 360 0.35 400 0.30 TT7005 MT 290 0.30 TT7015 RT 250 0.35 400 0.30 MT 275 0.30 1 TT7005 RT 320 0.40 2 TT7015 RT 270 0.40 540 0.35 AS10 MT 360 0.35 TT7005 510 0.35 AS10 380 0.30 RT 320 0.40 TT7015 MT 260 0.35 TT7015 RT 235 0.35 1 AS10 2 TT7005 1 AS10 2 TT7005 1 TT7005 RT 300 0.40 2 TT7015 RT 255 0.40 1 TT7005 KT 300 0.60 TT7015 KT 240 0.52 TT7015 KT 240 0.60 TT7015 KT 225 0.52 TT7005 KT 270 0.80 TT7015 KT 210 0.70 TT7015 KT 220 0.80 TT7015 KT 200 0.70 MT TT7005 MT 320 0.15 TT7005 MT 305 0.20 2 1 2 1 2 1 2 1 TT7005 2 TB730 1 TT7005 MT 400 0.18 700 0.15 380 0.25 2 1 TT7005 MT 360 0.25 TT7005 MT 290 0.20 2 TT7015 MT 305 0.25 TT7015 MT 250 0.20 1 TT7015 MT 290 0.25 TT7015 MT 235 0.20 2 Insert Selection by Workpiece Materials  Recommended cutting parameters Insert style N : Negative inserts Application F : Finishing P : Positive inserts M : Medium R : Roughing T-TURN Depth of cut (mm) Workpiece, stability and machine condition -Best: no scale, no interruption, good rigidity -Normal: a little scale, a little interruption, good rigidity -Poor: heavy scale, severe interruptions, poor rigidity First and second choice grade, chip breaker, cutting speed & feed rate in mm/rev Workpiece material High Si aluminum alloy (12.2%≧Si) Low Si aluminum alloy (12.2%‹Si) F - 1.0 Copper alloy 1 KP300 - 1300 0.10 KP500 - 600 0.10 KP300 - 1100 0.10 2 K10 ML 500 0.15 K10 ML 150 0.15 TT5100 ML 500 0.15 Best 1 KP300 - 1300 0.15 KP500 - 600 0.15 KP300 - 1100 0.15 2 K10 ML 500 0.35 K10 ML 150 0.30 TT5100 ML 400 0.25 1 KP300 - 1300 0.15 KP500 - 600 0.15 KP300 - 1100 0.15 2 K10 ML 500 0.35 K10 ML 150 0.30 TT5100 ML 400 0.25 1 KP300 - 1000 0.15 KP500 - 600 0.15 KP300 - 900 0.15 2 K10 ML 400 0.35 K10 ML 120 0.30 TT5100 MP 320 0.25 1 KP300 - 1300 0.15 KP500 - 600 0.15 KP300 - 1100 0.15 2 K10 ML 500 0.35 K10 ML 150 0.30 TT5100 MP 400 0.30 1 KP300 - 1300 0.15 KP500 - 600 0.15 KP300 - 1100 0.15 2 K10 ML 500 0.35 K10 ML 150 0.30 TT5100 MP 400 0.30 1 KP300 - 1000 0.15 KP500 - 600 0.15 KP300 - 900 0.15 2 K10 ML 400 0.35 K10 ML 120 0.30 TT5100 MT 320 0.30 1 KP300 - 1300 0.10 KP500 - 600 0.10 KP300 - 1100 0.10 2 K10 FL 500 0.15 K10 FL 150 0.13 TT5100 FG 400 0.15 Best 1.0 - 2.5 Normal N Poor M Best 2.5 - 4.0 Normal Poor F - 1.0 Best 1 KP300 - 1300 0.15 KP500 - 600 0.15 KP300 - 1100 0.15 2 K10 FL 500 0.25 K10 FL 150 0.22 TT5100 FG 400 0.20 1 KP300 - 1300 0.15 KP500 - 600 0.15 KP300 - 1100 0.15 2 K10 FL 500 0.25 K10 FL 150 0.22 TT5100 FG 400 0.20 1 KP300 - 1000 0.15 KP500 - 500 0.15 KP300 - 900 0.15 2 K10 FL 400 0.25 K10 FL 120 0.25 TT5100 MT 320 0.20 Best P 1.0 - 3.5 Normal Poor Technical Guide M D TA 53 Trouble Shooting Cause •E  xcessive cutting speed or feed rate (alloy steel and over 0.3% carbon steel) T-TURN Crater wear • Workpiece material contains high hardness chemical elements (tool steel, die steel) • Excessive cutting speed (alloy steel and over 0.3% carbon steel) Flank wear •W  orkpiece material contains high hardness chemical elements (tool steel, die steel) • Increase cutting speed if abnormal flank wear is caused by a very slow cutting speed Deformation Chipping • Excessive cutting speed or feed rate • Excessive feed rate • Interrupted cutting • Machining scaled part Notching • From machining work hardened materials • Slow cutting speed Built-up-edge Technical Guide • Sticky materials TA D 54 Mechanical fracture • Excessive feed rates when interrupted cutting Thermal cracking • Repeated thermal shock (interrupted cutting) Trouble Shooting Solution • Reduce cutting speed or feed rate or use more wear resistant grade • Use coolant • Use more positive rake geometry T-TURN • Reduce cutting speed or feed rate or use more wear resistant grade • Use coolant • Reduce cutting speed or feed rate or use more wear resistant grade • Use coolant • Use more positive rake geometry • Reduce cutting speed or feed rate or use more wear resistant grade • Use coolant • Reduce cutting speed or feed rate or use more wear resistant grade • Use coolant • Use stronger insert geometry Change grade Harder • Reduce feed rate • Use tougher grade • Use stronger insert geometry • Remove coolant completely or apply coolant correctly PV3010 > CT3000 TT7005 > TT7015 > TT7310 > TT8115 > TT9215 > TT5080 > TT8125 > TT5100 > TT9225 > TT9080 > TT9020 > TT8135 > TT7100 > TT9235 > TT8020 Change chip breaker • Use tougher grade • Use stronger insert geometry • Increase lead angle • Use tougher grade • Use more positive rake geometry • Increase lead angle • Increase cutting speed • Use more positive rake geometry • Use more positive rake geometry • Use tougher grade Chip control Tight Open FC FM FT SF FX FA FG MC PC VF ML MP MT MG- ET WS EA MM WT HD HT RT RH HY KT HB RX HZ *B.U.E: Built-Up-Edge • Use tougher grade • Use stronger insert geometry • Reduce feed rate • Remove coolant completely or apply coolant correctly Technical Guide • Use tougher grade • Use stronger insert geometry • Reduce feed rate • Remove coolant completely or apply coolant correctly • I ncrease cutting speed Less B.U.E* Less heat SF FX FA FG ML EM MP ET PC MT WT MC MG- RT RH HD FC VF MM HB RX HT FM FT WS HY EA HZ D TA 55 TECHNICAL GUIDE -Parting & Grooving T-CLAMP Basic Information TB2 T-CLAMP Parting & Grooving TB4 T-CLAMP Turning & Grooving TB10 T-CLAMP Face Turning & Face Grooving TB21 T-CLAMP Trouble Shooting TB23 TOPMICRO TB24 TOPCUT TB26 QuaDRusH TB28 Basic Information  This guide presents basic information that will enable you to obtain full benefit from T-CLAMP ULTRA PLUS system T-CLAMP ULTRA PLUS  T-CLAMP ULTRA PLUS enables - Deep grooving - Parting and grooving - Shallow grooving - Turning and grooving - Precision grooving and recessing - Face grooving and face turning - Undercutting and recessing multi-functional operations in one system: Parting  Inserts - Accuracy with good repeatability - Molded chip breaker - Top and bottom prism hold the insert firmly and accurately in the correct position - TDJ/C is a unique double-ended insert for grooving and parting - TSJ/C is a unique single-ended insert for deep grooving and parting - TDT double-ended insert for side turning and grooving - TDA double-ended insert for aluminum wheel machining Turning & Grooving Technical Guide  Blades - Simple, accurate and rapid indexing - Top and bottom seated insert alignment - No additional spare parts - Uses standard tool blocks TB D 2  Integral tool shanks - Simple, accurate and rapid indexing - Top and bottom seated insert alignment - Stable support against side forces - No additional spare parts - Standard shank dimensions Face grooving & Turning Basic Information  Advantages of T-CLAMP ULTRA PLUS system  -CLAMP ULTRA PLUS is available as either double-ended or single ended insert for maximum economy T Multifunction use - Right-hand and left-hand turning, grooving and parting with a single tool T-CLAMP T-CLAMP ULTRA PLUS replaces a multitude of ISO tools - Reduces number of tools per operation - Reduces inventory Short cycle time - Short setup with less downtime - Reduces need for turret indexing Improved cycle time - The excellent surface finish obtained from rough turning may eliminate finish turning ULTRA PLUS  T-CLAMP ULTRA PLUS system vs standard ISO system T-CLAMP ULTRA PLUS system Precision Facing Grooving & Parting Grooving: Right and left hand turning  Standard ISO system Grooving & Parting Right hand turning Left hand turning Facing Toolholder screw clamping force Recommended torque (N·m) SH M5X0.8 5.5 SH M6X1 8.0 SH M8X1.25 12.0 Technical Guide ➧ Screw D TB 3 Technical Guide - Parting & Grooving  Selecting inserts  To match the correct insert to the cutting condition, the following variables must be considered: - Width of cut (width of insert) - Chip breaker style - Lead angle - Corner radii - Carbide grade  Width T-CLAMP ULTRA PLUS of cut (WOC) and depth of cut (DOC) - To select the proper width and depth of cut, the application must be considered The ratio DOC = 8 x WOC can be used when cutting steel For example, the maximum DOC for a 3mm wide insert is 24mm for parting a 48mm diameter bar - Neutral inserts with a 0 lead angle provide the maximum DOC  Lead angle - Use inserts with a lead angle to minimize pips or burrs - Inserts are available with either R or L hand, with the point of angle toward the finished surface - Increasing the lead angle reduces the pips or burrs, but will also produce a poor surface finish and short tool life Neutral inserts are recommended when a pip/burr is acceptable RH insert shown  Insert support Technical Guide - Integral shank toolholders offer the best rigidity - A self clamp holder is only recommended for radial machining - A screw clamp holder is recommended for axial and radial machining TB D 4 Technical Guide - Parting & Grooving  Blade or holder size  To minimize vibration and deflection choose: - Blade or toolholder with the smallest possible overhang (Tmax) - Toolholder with the maximum shank size (H) - Blade height that is larger than Tmax - Blade or toolholder with the maximum blade width (largest possible insert seat size)  T-CLAMP ULTRA PLUS 90° Mounting  The insert must be mounted 90° to the workpiece to obtain perpendicular surfaces and minimize vibration.  Selecting preference priority - The center height of the insert should be maintained within ±0.1mm - The parting operation should be as close to the chuck as possible (0.08mm + 0.025 WOC)max  Selecting preference priority - Use insert with 0° lead angle - Use the largest blade size possible - The smallest appropriate width of cut Technical Guide Center Height D TB 5 Technical Guide - Parting & Grooving  Machining - Consistency of speed and feed improve performance  pply coolant abundantly (excluding Ceramic AB30) A Secure insert into clean pockets Cutting forces on soft workpiece materials may be insufficient to push insert well into pocket. Tap insert into place using a plastic hammer. - On a conventional lathe, lock the carriage to prevent axial motion during parting-off T-CLAMP  Usage - Replace worn inserts immediately The price of a new insert is much less than the risk of damage from continuing with a worn edge - Replace blade or damaged pockets - Never try to repair damaged pockets  Chip breaker  The chip breaker’s function is to narrow the chip it occurs near the cutting edge at high temperature.  Producing chips that are narrower than the groove gives the following advantages: -  liminates friction with groove walls E Prevents chip overload Permits higher feeds Produces unscratched surfaces, eliminating additional facing  Curling chips into compact spirals or breaking chips simplifies disposal  Curling is affected by the chip breaker type and the machining conditions  Select an appropriate chip breaker for the specific application  Extraction of insert Insert clamping Technical Guide Extractor (EDG-23B, EDG-33B) for blades TB D 6 ULTRA PLUS Technical Guide - Parting & Grooving Selection of chip breakers C J T-CLAMP ULTRA PLUS For hard materials and tough applications For general applications on steel, alloy steel and stainless steel Medium-to-high feeds For soft materials, parting of tubes, small diameters and thin-walled parts Low forces and smaller burrs Improved straightness Low-to-medium feeds 0.45 0.43 0.40 0.40 0.35 0.35 0.30 0.30 0.25 0.25 0.20 Feed (mm/rev) Recommended feed range as a function of insert width Material; SAE4140 (HB240) Recommendations are for neutral inserts - for R/L inserts reduce feeds by 20 - 40% Feed (mm/rev)  0.45 0.40 0.35 0.30 0.25 0.22 0.18 0.20 0.18 0.15 0.15 0.10 0.10 0.06 0.06 0.02 0.20 0.16 0.10 0.12 0.02 2 3 4 5 6 8 1.4 2 3 4 5 6 Width (mm) Width (mm) “J” “C” High Alloy steel Austenitic stainless High - Temp alloys Nonferrous materials Cast iron C C C C Brass C J J J Titanium J Aluminum Feed Low Technical Guide Workpiece materials D TB 7 Technical Guide - Parting & Grooving  Practical trouble shooting  To reduce burr - On a CNC machine, reduce feed by 50% when approaching center stub diameters WOC - Check center height of cutting edge - Use insert with lead angle - If 0° lead angle must be used for whatever reason, apply narrow WOC - Apply a supporting part-catcher (or adjust concentricity) - For hollow bars, it is better to machine chamfers using ID boring tool prior to parting operation. (See picture) Stub dia. T-CLAMP ULTRA PLUS 1 2  To improve surface finish - Increase cutting speed - Use neutral inserts - Select chip breaker that provides optimum chip control - Use coated carbide - Improve coolant application - Eliminate chatter Technical Guide  To improve flatness - Check inserts and replace any that show wear - Use neutral inserts - Use largest blade possible, i.e., TGB 32- instead of TGB 26- Increase blade thickness and insert width - Minimize blade overhang - Check alignment and perpendicularity of tool to machine axis - Optimize workpiece chucking - Lock the carriage on manually operated lathes - Apply coolant abundantly (excluding Ceramic AB30) - Reduce feed TB D 8  To improve chip control - Replace worn inserts - Choose a more appropriate chip breaker - Use a neutral insert - Check alignment and perpendicularity of tool to machine axis - Apply coolant abundantly - Increase feed - At initial groove depth, interrupt feed momentarily to let the chip enter slot Technical Guide - Parting & Grooving  To improve chip control - Part-off as close to chuck as possible - Minimize blade overhang - Improve chucking and monitor tool setup - Change the RPM - Increase the feed - Lock the carriage on manually operated lathes T-CLAMP ULTRA PLUS  To prevent chipping of cutting edge - Use appropriate carbide grade and geometry - Use insert with larger corner radii - Reduce feed at end of cut - Eliminate chatter - Increase speed - Use strong grade - Increase tool and setup rigidity - Eliminate built-up edges  To prevent or reduce built-up edge - Use appropriate carbide grade and geometry - Increase speed - Reduce feed - Increase coolant flow/concentration  Parting on eccentric tubes - Inserts with 4 degree lead angle are usually recommended for tubes; however, the combination of an eccentric bore and a robust machine may increase feed-snap on breakthrough and damage the cutting edge. Changing to an 8 degree lead angle insert will regulate the breakthrough. Technical Guide D TB 9 Technical Guide - Turning & Grooving  Chip breaker style: “T” chip breaker - The “T” chip breaker is available for turning and grooving of steel, alloy steel and stainless steel - Inserts  with “T” style chip breaker contain a central chipbreaking island for multi-direction chip control T-CLAMP “T” Type ULTRA PLUS T - Inserts are available with various corner radii for turning applications and profiling inserts are ground with a full radius Depth of Cut (mm) Workpiece: SAE 1045 (C45) Cutting Speed: Vc=100 - 180 m/min 6.0 TDT 10.00E-0.80 5.0 TDT 8.00E-0.80 4.0 3.0 TDT 6.00E-0.80 2.0 TDT 5.00E-0.80 1.0 TDT 4.00E-0.80 0.5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 TDT 3.00E-0.40 Technical Guide Feed (mm/rev) TB D 10 Reduce cutting speed 20 - 30% for internal & face machining Technical Guide - Turning & Grooving  Toolholder or blade size  To minimize risk of vibration and deflection always - Toolholder or blade with the smallest possible overhang - Toolholder with maximum shank dimension  90° choose: T-CLAMP ULTRA PLUS Mounting  To minimize risk of vibration and deflection: It is very important that the insert is mounted at 90° to the center line of the workpiece in order to obtain a perpendicular surface and reduce the risk of vibration  Machining definitions  Turning - V  c - Cutting speed (m/min) - a  pmax - Maximum depth of cut (mm) - f2  - Feed in lateral direction (mm/rev) Technical Guide  Grooving - V  c - Cutting speed (m/min) - T - Maximum depth (mm) - f1 - Feed in radial direction (mm/rev) D TB 11 Technical Guide - Turning & Grooving  Selecting inserts  Insert width - Insert width strongly affects strength - F  or most efficient machining select the widest possible insert T-CLAMP - C  hipbreaking range depends on insert width - A narrow width improves chipbreaking at lower feed rates - W  ide inserts and strong blades require high forces and feed rates to achieve a frontal clearance angle ULTRA PLUS  Corner radii - Lateral turning - C  hoose large corner radii for long tool life Large radii - Small side forces - C  hoose small corner radii to reduce cutting load and lower feed with narrow inserts Technical Guide Small radii - Strong side forces TB D 12  Turning feed - F  eed depends on chipbreaking range of the insert - Maximum  feed depends on insert width and is relative to the maximum load - High feed with small corner radii may reduce tool life - M  aximum feed should not exceed the corner radii - F  or better chip formation when grooving, feed can be interrupted at small intervals Maximum feed: fmax = W ✕0.075 Technical Guide - Turning & Grooving  Depth of cut - Minimum depth of cut equals the corner radii - Maximum depth of cut depends on maximum possible load - Depth of cut depends on chipbreaking range T-CLAMP Large depth of cut causes large deflection and large frontal clearance With a small depth of cut the deflection and frontal clearance may be too small ULTRA PLUS Maximum depth of cut: apmax = W ✕ 0.8  Principle of turning with T-CLAMP ULTRA PLUS tools The clearance angle α° is a function of the side cutting forces and is not constant as is the case with ISO inserts. Clearance angle between the insert and workpiece  The deflection is - Feed: f - Depth of cut: ap - Overhang: T - Cutting speed: Vc - Workpiece material influenced by: Technical Guide ✽ When these factors are properly applied, the insert (α°) creates a “Wiper” action providing excellent surface quality and tolerance D TB 13 Technical Guide - Turning & Grooving  Finishing operation: Diameter compensation - A compensation factor for the finish diameter must be used in the final machining operation. After grooving to the desired diameter, the machining direction changes to longitudinal turning. At this point deflection occurs. If machining continues without tool compensation, corner A will penetrate the workpiecs as a result T-CLAMP of the deflection phenomenon (See picture). This will result in two different diameters ØD1 from the grooving operation and ØD2 from the turning operation. The difference between ØD1 and ØD2 is the change in diameter, designated at Delta . Tool compensation factor is calculated as shown: ØD1 - ØD2 = 2 2 ULTRA PLUS Bad - Using the compensation factor will eliminate the difference in part diameter. Follow this simple procedure during machining 1. Groove to the final diameter 2. Pull the tool back, a distance equal to the value of /2 3. C  ontinue the finish turning operation - The diagrams show experimental results for specific machining conditions. These are sample values that will vary with different workpiece materials and different holder types : Technical Guide  Recommendation Measure the value for your finishing operation in a short test using your selected finishing conditions Do not run your test using the final diameter Insert: TDT 3.00E-0.40 Toolholder: TTER 2525-3 Feed (mm/rev) TB D 14 Insert: TDT 4.00E-0.40 Toolholder: TTER 2525-4 Feed (mm/rev) Insert: TDT 6.00E-0.80 Toolholder: TTER 2525-6 Feed (mm/rev) Technical Guide - Turning & Grooving  Multifunction operations T-CLAMP ULTRA PLUS Not recommended The multifunctional tools can operate in a sequence of grooving and turning modes. Moving from turning to grooving requires consideration of each basic principle. This will eliminate the possibility of insert breakage. In this situation, customers must release the side deflection necessary in turning but not recommended in grooving.  Machining a radius or chamfer Not recommended The machining of a corner with a radius or a chamfer larger than the radius of the insert always requires the combination of movement in two directions. Problems such as insert breakage result when this combined operation is used while the insert is plunged into the workpiece with material on all sides. Insert breakage is caused by forces acting simultaneously in two different directions as shown in F1 and F2.  Recommended procedure to optimize machining and eliminate insert breakage Previous move Actual move 2 3 4 Technical Guide 1 D TB 15 Technical Guide - Turning & Grooving  Machining between walls One of the most important advantages of the T-CLAMP ULTRA PLUS system is the ability to machine between walls. To achieve the best result - follow the recommended sequence: T-CLAMP ULTRA PLUS Leave steps near the wall. Do not arrive at the same Z value!!! Roughing 1 Roughing 2 Finishing 3 Finishing 5 Finishing 6 Z value=0.2 - 0.3mm Finishing 4  Eliminating a ‘Hanging Ring’ When turning at the end of a bar or toward a recess between two walls, a 'Hanging Ring' may be formed. To eliminate the ‘Hanging Ring’: Technical Guide Roughing TB D 16 (Incorrect) Roughing (Correct) Finishing (Correct) Technical Guide - Turning & Grooving  Optimizing internal machining 1. The first pass uses one corner for roughing 2. The other corner is used on the return path for semi-finishing or finishing 3. Tool position looks out of sequence with the amount of material that is removed 4. Rapid position back to initial groove and then continue with face turning toward the center T-CLAMP ULTRA PLUS L max ≤ 3D Toolholder Overhang  Improving Efficient use of Insert corners internal turning in a blind hole Internal turning in a blind hole brings about the problem of chip evacuation. When the tool reaches the rear side wall, chips may be caught between the wall and the insert, causing breakage. Two solutions that can eliminate this problem: Second solution 1. S  tart by grooving at the rear wall 2. C  ontinue by turning from the inside toward the outside 1. Start by grooving at the rear wall 2. P  ull the tool back to the outside Turn the final diameter from outside toward the groove Technical Guide First solution D TB 17 Technical Guide - Turning & Grooving  Surface quality  Eliminating grinding operations Turning with T-CLAMP ULTRA PLUS Tools gives a surface quality superior to anything possible when using standard ISO tools. In fact, turning with T-CLAMP ULTRA PLUS Tools can produce a surface quality T-CLAMP comparable to grinding. ULTRA PLUS Surface roughness(µm) T-CLAMP ULTRA PLUS vs ISO turning inserts 8 6 4 2 0 0.1 0.2 0.3 0.4  Calculation of required machine power Turning P= Kc · ap · f · Vc η · 45 · 103 Grooving / Parting [HP] Turning Technical Guide Kc · ap · f · Vc P = η · 61 · 103 TB D 18 Feed (mm/rev) P= Kc · W · f · Vc η · 45 · 103 Face grooving [HP] Grooving / Parting [kw] P= Kc · W · f · Vc η · 61 · 103 P= Kc · W · f · Vc η · 45 · 103 [HP] Face grooving [kw] P= Where Kc appears - Specific cutting forces (N/mm2) could be used. η - Efficiency (η ≈ 0.8) Kc · W · f · Vc η · 61 · 103 [kw] Technical Guide - Turning & Grooving  TDXU cutting condition table  Grooving Feed (mm/rev) T-CLAMP 0.6 ULTRA PLUS 0.5 0.5 0.4 0.4 0.3 0.3 0.27 0.22 0.2 0.2 0.1 0.05 0.03 0.12 0.1 0.07 0.06 Width (mm) 2 3 4 5 6 8  Turning D.O.C (mm) 6.0 5.0 4.0 TDXU 2E TDXU 5E TDXU 3E TDXU 6E TDXU 4E TDXU 8E 3.0 2.0 1.0 Feed (mm/rev) 0.1 0.2  TDT/TDXT 0.3 0.4 0.5 cutting condition table Feed (mm/rev) 0.6 Grooving 0.5 0.5 0.5 Turning 0.4 0.35 0.3 0.2 Technical Guide 0.4 0.25 0.2 0.18 0.15 0.2 0.2 0.2 0.2 0.2 0.15 0.1 0.1 0.05 0.05 3 0.05 4 0.05 0.05 5 6 8 Width (mm) D TB 19 Technical Guide - Turning & Grooving  TDIM,TDIP cutting conditions  Grooving T-CLAMP Feed (mm/rev) ULTRA PLUS 0.20 0.15 0.12 0.10 0.10 0.10 0.02 0.02 1 2 0.05 0.03 3 Insert width (mm)  Turning Depth of cut (mm) 1.5 1.2 1.0 0.7 0.5 Insert width=2mm Insert width=3mm 0.2 Feed (mm/rev) Technical Guide 0.05 TB D 20 0.1 0.15 Technical Guide - Face Turning & Face Grooving  Tool selection  Follow these three recommendations for selecting the correct cutting tool: T-CLAMP ULTRA PLUS Choose the widest possible insert and tool, according to the cutting width and geometry to be machined  Tool Choose the shortest toolholder overhang, according to the maximum depth required Choose the tool range with the largest diameter depending on the initial grooving diameter required in the application adjustment  Prior to machining, check and adjust the following tool positions Check the cutting-edge height at center line, take a light cut toward the center, and check for a burr Check parallelism of cutting edge and the machined surface. Correct position can guarantee good surface quality when face turning in both directions Technical Guide D TB 21 Technical Guide - Face Turning & Face Grooving  Optimizing the machining procedure  For roughing Basic steps for roughing operations when face turning with T-CLAMP ULTRA PLUS tools: T-CLAMP ULTRA PLUS 2 1 Grooving into initial diameter range Turning away from center 3 Rapid position back to initial groove and continue with face turning toward center When face grooving, reduce the speed by 40% in relation to that used in face turning  For finishing Basic steps for finishing operations when face turning with T-CLAMP ULTRA PLUS tools: 1 After initial groove move away from center 2 Finish major diameter and radius 3 Rapid position back to initial groove and continue with face turning toward center Technical Guide When face grooving, reduce the speed by 40% in relation to that used in face turning TB D 22 4 Finish minor diameter Trouble Shooting  Insert failure and tool life Problem 1. Rapid flank wear short tool life 2. Cratering short tool life 3. Cutting edge/ Insert fracture 4. Plastic deformation 5. Chip control Spaghetti-like chips coil under holder and interfere with operation Possible cause Solution Excessively high cutting speed. Carbide with too low wear resistance  Decrease cutting speed Use a carbide with higher hardness or a coated carbide High cutting temperature on insert rake face at high feed and speed  Decrease feed and speed  Use coated grade High load on insert. Insert width too narrow. Grade too brittle. Use wider insert for maximum support Decrease feed and speed Choose a tougher grade High heat pressure decreasing carbide hardness. Use a bigger corner radius and decrease feed and speed Choose carbide with higher hardness Small depth of cut. Feed too slow. Insert width too large. Insert radius too large. Check chipbreaking range Increase depth of cut Increase feed rate Use narrower insert with a smaller radius Small depth of cut, i.e. less than corner radius. Increase depth of cut to minimum radius size Small front clearance angle between insert and workpiece leads to rubbing action. Increase feed to get suitable clearance Before starting, check that the front cutting edge is parallel to workpiece T-CLAMP ULTRA PLUS 6. Poor surface finish 7. Vibration and poor surface quality Technical Guide D TB 23 Technical Guide  Features - Internal machining from Ømin 0.6mm - Best solution for internal turning, profiling, grooving and face machining especially on small diameters - TiAlN coating for extended tool life - Shank diameters - Ø4mm & Ø7mm - Internal coolant through the body directly to the cutting edge TOPMiCRO - Promotes better chip evacuation and longer tool life  Machining program: Includes a large variety of tools for various applications Turning & Chamfering Turning & Profiling Technical Guide 24 MINP Type Min. Bore Dia. : Ø2.8~5.0mm MINC Type Turning & 45º Chamfering Min. Bore Dia. : Ø5.0~6.8mm Grooving Min. Bore Dia. : Ø2.0~6.8mm Deep face grooving TB D MINT Type Min. Bore Dia. : Ø0.6~7.0mm MING Type MINF Type Min. Bore Dia. : Ø15mm MINF Type Face grooving Min. Bore Dia. : Ø6.0~8.0mm Face grooving Min. Bore Dia. : Ø6.0mm Profiling MINA Type MINR Type Min. Bore Dia. : Ø5.0~6.8mm MINN Type Threading Min. Bore Dia. : Ø4.0~7.0mm Back turning Min. Bore Dia. : Ø3.0~7.0mm MINB Type Technical Guide  Sleeves - Angular clamping design avoids interference with the other sleeves at the tool post during tool change - The unique design facilitates simplified tool change on Swiss type and other multi-spindle lathes - Reduced machine downtime, tool inventory and overall costs TOPMiCRO Conventional 45° TOPMiCRO  TOPMICRO sleeves have a stopper inside - Prevents any tool movement during machining - Enables tool change without resetting tool offsets the hole: Clamping screw Stopper Ø7mm Sleeve Ø4mm Clamping flat TOPMiCRO Technical Guide (Ø4mm or Ø7mm) for D TB 25 Technical Guide  Insert features - Excellent surface finish and repeatability credit to high precision ground inserts - Ultra fine, ground cutting edge prevents micro-chipping and promotes longer tool life - Chip breaker designed for low cutting force and smooth chip evacuation  Main grade: TT9010 features - For roughing to finishing applications in small parts machining - High mechanical shock resistance - Ultra fine grain size substrate with TiN PVD coating  Toolholder features - Designed for setting on small automatic lathe machines - Precision ground toolholders ensure accurate mounting to the lathe promoting stable machining - Insert indexing from both sides of holder Technical Guide - Dovetail shape of insert & pocket means a stable clamping system TB D 26 TOPCUT Technical Guide - High clearance angle on both insert and holder ensures no interference with other holders when mounted on radial tool post 45º TOPCUT Competitor No interference TOPCUT 40° Minimum machining diameter: Ø8  Applications 백터닝Back turning Turning 일반 외경 터닝 역방향 터닝 나사 가공 Technical Guide 절단 홈 가공 Parting &및 Grooving Reverse turning Threading D TB 27 Technical Guide  Features - 4 cutting edges for better economy - Positive J type chip breaker for excellent chip control and high quality surface finish grooving - 3 contact points away from the cutting edges Fig.2 : Accurate positioning of insert when indexing : Even if edges are broken any remaining edge can be used Fig.3 - Pocket protects unused edges from chips during the machining process Fig.4 Fig.1 Fig.2 Fig.1 Fig.4 Fig.3 - Unique torx key & screw for insert clamping : Insert indexing from both sides of the holder : A major advantage over swiss type lathes - Side lock torx screws : Ensures rigid clamping in holder - 2 different setting screws are applied : L-hand holder : R-hand screw : R-hand holder : L-hand screw L-hand R-hand - Gold Rush grade TT9080 is the latest coating technology with multi-nano-layer for improved surface quality and tool life Technical Guide  Guideline for insert positioning Correct Wrong TB D 28 TECHNICAL GUIDE T-THREAD TC2 TS-THREAD TC8 -Thread Making T-TAP TC13 Basic Infomation  Threading inserts - types and profiles  Partial profile - Suitable for a wide range of pitches with a common angle (60°or 55°) - Inserts with small root-corner radius suitable for the smallest pitch range - Additional operations to complete the outer/internal diameter is necessary - Not recommended for mass production - Eliminates the need for different inserts  Full profile - Performs complete thread profile - Root corner radius is suitable only for the relevant pitch - Recommended for mass production - Suitable for one profile only  Multi-tooth - Full profile but 2 or 3 cutting teeth on each corner - Higher productivity due to fewer passes - Recommended for mass production and larger batches - Optimal distribution of cutting load  Insert geometries  Geometry M - First choice for most operations and materials - Sintered chip breaker for excellent chip control with short broken chips Technical Guide  Geometry B - Molded chip breaker with sharp cutting edges lower cutting force - Solution for stainless steels, high temperature alloys, mild steel - Improved chip breaking and better chip evacuation - Better surface quality  Regular type (no suffix) - Sharp cutting edge for machining of ductile materials - Low cutting forces and reduced built-up edge - wide range of profiles and size Geometry M (eg. 16ERM) TC D 2 Geometry B (eg. 16ERB) Regular type (eg. 16ER) Basic Infomation  Thread turning methods Right-hand thread Left-hand thread External thread Change anvil to negative(1) Right-hand thread Change anvil to negative(1) Left-hand thread Internal thread Change anvil to negative(1) • (1) See page TC4  Mini (2) (3) - tool features øD ≥ M8; 5/16˝- UN; 1/16˝- NPT 4H-8H / 1B-3B ➞ A 0.00 (1) Smallest possible thread (2) All tolerances (3) Minimum run-out (4) High surface quality Technical Guide (1) Change anvil to negative(1) D TC 3 Technical Guide  Thread helix angle and anvil selection Helix angle λ evaluation 6 4.0 8 10 12 16 24 48 0 3.0 2.5 2.0 1.5 1.0 0.5 0 4° 2° 1° β 1×P 3.14 · D 20×P λ°= D tg λ = 10 (1)  Anvil 3° Pitch-TPI Pitch (mm) Pitch TPI mm 5 5.0 20 30 40 50 Diameter-D (mm) 60 75 Diameter β -Effective inclination angle P - Pitch (mm) D - Effective diameter of thread (mm) λ - Angle of inclination selection according to thread helix angle λ Standard Thread helix angle λ > 4° Inclination angle β 4.5° I(d) 3°- 4° 2°- 3° 1°- 2° 0°- 1° 3.5° 2.5° 1.5° 0.5° Toolholder Negative anvils -0.5° -1.5° Anvil designation 16 (3/8) EX RH OR IN LH AE 16 +4.5 AE 16 +3.5 AE 16 +2.5 AE 16 EX LH OR IN RH AI 16 +4.5 AI 16 +3.5 AI 16 +2.5 AI 16 AE 16 +0.5 AE 16 AI 16 +0.5 AI 16 -0.5 AE 16 -0.5 AI 16 -1.5 -1.5 22 (1/2) EX RH OR IN LH AE 22 +4.5 AE 22 +3.5 AE 22 +2.5 AE 22 EX LH OR IN RH AI 22 +4.5 AI 22 +3.5 AI 22 +2.5 AI 22 AE 22 +0.5 AE 22 AI 22 +0.5 AI 22 -0.5 AE 22 -0.5 AI 22 -1.5 -1.5 27 (5/8) EX RH OR IN LH AE 27 +4.5 AE 27 +3.5 AE 27 +2.5 AE 27 EX LH OR IN RH AI 27 +4.5 AI 27 +3.5 AI 27 +2.5 AI 27 Al 27 +0.5 AE 27 Al 27 +0.5 AI 27 -0.5 AE 27 -0.5 AI 27 -1.5 -1.5 22U (1/2U) EX RH OR IN LH AE 22U +4.5 AE 22U +3.5 AE 22U +2.5 AE 22U AE 22U +0.5 AE 22U -0.5 AE 22U -1.5 EX LH OR IN RH Al 22U +4.5 AI 22U +3.5 AI 22U +2.5 AI 22U Al 22U +0.5 AI 22U -0.5 AI 22U -1.5 27U (5/8U) EX RH OR IN LH AE 27U +4.5 AE 27U +3.5 AE 27U +2.5 AE 27U AE 27U +0.5 AE 27U -0.5 AE 27U -1.5 EX LH OR IN RH Al 27U +4.5 AI 27U +3.5 AI 27U +2.5 AI 27U Al 27U +0.5 AI 27U -0.5 AI 27U -1.5 Technical Guide Anvils for positive inclination angle β applicable when turning RH thread with RH holder or LH thread with LH holders. Anvils for negative inclination β used when turning RH thread with LH holder or LH thread with RH holder. (1) TC D 4 H1 remains constant for every anvil combination. Technical Guide  Anvil selection according to thread helix angle λ ACME STUB ACME TRAPEZE (DIN 103) ROUND (DIN 405) Pitch TPI MM 2.5 10 3 8 3.5 7 5.5 6 5 5 6 4 3.5 3 2.5 2 1.5 8 10 12 16 Pitch TPI MM 2.5 10 Special Holder Required 9 9 AE or Al+4.5° AE or Al+3.5° Standard Anvil (Supplied with toolholder) AE or Al+0.5° 10 20 30 40 50 3 8 3.5 7 5.5 6 5 5 6 4 3.5 3 2.5 2 1.5 Special Holder Required AE or Al+4.5° AE or Al+3.5° AE or Al+2.5° 5 PARTIAL PROFILES 60° PARTIAL PROFILES 55° ISO, UN,WHITworth, NPT, BSPT 60 70 80 8 10 12 16 AE or Al+2.5° Standard Anvil (Supplied with toolholder) 5 10 20 30 40 50 mm Diameter AE Anvils : EX-RH and IN-LH toolholders Al Anvils : IN-RH and EX-LH toolholders 60 70 80 mm Diameter AE Anvils : EX-RH and IN-LH toolholders Al Anvils : IN-RH and EX-LH toolholders Tool holder AMERICAN BUTTRESS SAGENGEWINDE (DIN-513) Pitch TPI MM 2.5 10 Special Holder Required 9 8 3.5 7 5.5 6 5 5 6 4 3.5 3 2.5 2 1.5 8 10 12 16 AE or Al+2.5° Standard Anvil (Supplied with toolholder) Technical Guide 3 Change to Negative Anvil AE or Al-1.5° 5 10 20 30 40 50 AE Anvils : EX-RH and IN-LH toolholders Al Anvils : IN-RH and EX-LH toolholders 60 70 80 mm Diameter Replacing the standard anvil with a negative angle anvil will eliminate side rubbing D TC 5 Technical Guide  Flank clearance and effective inclination angle Inclination angle β of the cutting edges correspond to a specific thread helix angle λ and insures equal clearance angle on both sides of insert. Correct Incorrect αL < αR αL = αR α - Flank clearance angle λ - Helix angle β - Effective inclination angle is achieved by selecting the suitable anvil  Infeed methods for threading operations Flank infeed Radial infeed Alternating flank infeed Flank equal Equal depth of cut for each pass Flank diminishing Diminished depth of cut for each pass Technical Guide D1/2 TC D 6 D2/2 H/2 D2/2 Dn/2 D3/2 △D/2 U/2 D1 D2 D3 Dn 2 = 2 = 2 = 2 D1/2 D3/2 Dn/2 Dn+1/2 △D/2 U/2 D1 D 2 D 3 Dn Dn+1 2 > 2 > 2 > 2 > 2 H - Depth of thread profile (on Ø) D - Depth of pass (on Ø) U - Depth of finishing pass (on Ø) Trouble Shooting Problem Premature wear Caused by Solution • Cutting speed too high • Infeed depth too small Reduce RPM Increase depth of cut Modify flank infeed Use coated grade Apply coolant Reselect anvil Check turned dia. Check center height • Highly abrasive material • Inadequate coolant supply • Wrong inclination anvil • Wrong turned dia. prior to threading • Insert is above center line • Cutting speed too high • Depth of cut too large • Wrong grade Chipped edge • Poor chip control • Inadequate coolant supply • Center height incorrect • Excessive heat in cutting zone • Wrong grade Plastic deformation • Inadequate coolant supply • Cutting edge too cold Built-up edge • Wrong grade • Inadequate coolant supply • Cutting edge too cold • Depth of cut too large Broken nose during 1st pass Poor surface finish • Wrong cutting speed • Excessive heat in cutting zone • Poor chip control • Inadequate coolant supply • Wrong inclination anvil • Tool overhang too long • Center height incorrect • Excessive heat in cutting zone • Wrong grade • Inadequate coolant supply • Wrong turned dia. prior to threading Reduce RPM Reduce depth of cut Check turned dia. Use coated grade Use harder grade Apply more coolant Increase RPM Increase depth of cut Use coated grade Apply coolant Increase RPM Reduce depth of cut Increase number of infeed passes Use tougher grade Check turned dia. Adjust center height Modify flank infeed Reselect anvil Reduce tool overhang Increase RPM Reduce RPM Reduce depth of cut Modify flank infeed Apply coolant Reselect anvil Reduce tool overhang Check center height Reduce RPM Change depth of cut Check turned dia. Use coated grade Check turned dia. Use M-type insert Apply coolant Check turned dia. Technical Guide Poor chip control • Wrong grade • Wrong turned dia. prior to threading • Corner height incorrect • Infeed depth too shallow • Wrong inclination anvil • Tool overhang too long Reduce RPM Reduce depth of cut Use coated grade Use tougher grade Modify flank infeed Apply coolant Adjust center height D TC 7 Basic Infomation  TS-THREAD solid carbide tool  Features - More flutes in relation to cutting diameter, spiral flutes reduce cutting forces - Sharp ground helical cutting edges - Low cutting forces - Short machining time - Thread diameter accuracy adjustment - Thread milling next to bottom of blind hole - Bottom thread relief not required - Excellent and controlled thread surface finish - No problem with broken taps - One tool is suitable for various thread milling profile - Easy and efficient machining for thread milling on CNC milling centers - Threading of asymmetric parts - Large variety of tool diameters  Diameter range - Metric: 0.72-25 mm  TS-THREAD TMTSR tool with indexable inserts Technical Guide  Features - Dovetail pocket design absorbs and carries high cutting forces and high rigidity - Large variety of thread forms and standards - Most inserts are double-sided with two cutting edges - Enables production of precision threads on CNC milling machines and machining centers, using helical interpolation programs - For internal or external threads that are not located on the rotation axis of the part - For precision threading - Prevents chip jamming, which commonly occurs when tapping - Cost advantage over tapping for large diameters - Eliminates regrinding - A single insert can be used for many diameters with the same pitch, for right or left thread - Tapered threads do not require taper reaming - Eliminates the removal of broken taps in holes TC D 8  Diameter range - Endmills Metric: 9.5-50 mm - Shell mills Metric: 63-100 mm  Insert sizes - 12, 14, 21, 30, 40mm Basic Infomation  TS-THREAD TMTSRH tool with long helical indexable inserts is the ultimate solution for very fast and efficient thread milling  Features - The helical inserts engage with the workpiece smoothly and exert lower cutting forces and reduce vibration, when compared with straight, negative axial tools - Enables machining at very high feeds and produces a high quality surface finish - Simple and very convenient screw clamping mechanism makes insert indexing accurate and user-friendly - By using these tools, thread production time can be very short  Diameter range - Metric: 23-63 mm  Insert sizes - 27mm for tool diameter 23mm - 32mm for tool diameter 32mm - 37mm for tool diameter 45mm - 38mm for tool diameter 63mm Technical Guide D TC 9 Technical Guide  Thread milling CNC program for internal thread Right-hand thread (climb milling) from bottom up. Program is based on tool center. This method of programming needs no tool radius compensation value, other than an offset for wear. A = Radius of tool path A= Do-D Do = Major thread diameter 2 D = Cutting diameter  General program G90 G00 G54 G43 H1X0 Y0 Z10 S... G00 Z-(to thread depth) G01 G91 G41 D1 X(A/2) Y-(A/2) Z0 F... G03 X(A/2) Y(A/2) R(A/2) Z(1/8 pitch) G03 X0 Y0 I-(A) J0 Z(pitch) G03 X-(A/2) Y(A/2) R(A/2) Z(1/8 pitch) G01 G40 X-(A/2) Y-(A/2) Z0 G90 X0 Y0 Z0  Internal thread Example: M 48x2.0 IN-RH (Thread depth 25mm) Too holder: TMTSR0029 J30 (Cutting dia. 29mm) Insert: TMT30 I2.0 ISO A=(Do-D)/2=(48-29)/2=9.5 A/2=4.75 (Tool compensation of radius=0) G90 G0 G54 G43 G17 H1X0 Y0 Z10 S1320 G0 Z-25 G01 G91 G41 D1X 4.75 Y-4.75 Z0 F41 G03 X4.75 Y4.75 R4.75 Z0.25 G03 X0 Y0 I-9.5 J0 Z2.0 G03 X-4.75 Y4.75 R4.75 Z0.25 G01 G40 X-4.75 Y-4.75 Z0 G90 G0 X0 Y0 Z0 M30 % Technical Guide Internal thread TC D 10 Thread milling operation is applicable for thread cutting in non-symmetrical parts utilizing the advantage of helical interpolation programs on modern machining centers. External thread Technical Guide  TMTECS small diameter, short solid carbide thread mills - The TMTECS solid carbide thread mills are used for the production of small internal threads. These thread mills feature a short 3-tooth cutting zone with 3 flutes and a released neck between the cutting zone and the shank. - This unique tool design offers very precise profiles and a high performance TT9030 submicron carbide grade with PVD titanium aluminum nitride coating. The very short profile exerts a low force which minimizes tool bending. This facilitates parallel and high thread precision for the entire length. - Compared to taps, the TS-THREAD is more accurate, thread machining is substantially faster and there is no danger of a broken tap being stuck in the hole.  Thread mill vs. Tap Features Thread surface quality Thread geometry Thread tolerance Machining time Machining load Range of thread diameters Right/Left-hand threading Geometric shape Solid carbide thread mills High Very accurate 4H, 5H, 6H with std. cutter Shorter or same as tap Very low Wide range of diameters Same cutter Full profile Taps Medium Medium 6H with standard tap, 4H with special tap Short High Specific tap for each thread size Specific tap for right- and left-hand Partial profile Technical Guide  Features - Minimum thread size: M1.4x0.3 (1.1mm bore diameter) up to M20x2.50 - 2xD and 3xD threading lengths - High cutting speeds - Short cycle time - Low cutting forces due to the short contact profile resulting in accurate and parallel thread - Prevents oval threads near thin walls - No more dealing with broken taps - Reliable threading in blind holes - Excellent performance on hardened steel, high temperature alloys and titanium D TC 11 Technical Guide  Thread  TMTECS milling - recommended procedure small diameter, short solid carbide thread mills Technical Guide Starting point TC D 12 Center location Tangential arc engagement Thread milling Tangential arc exit End point Basic Infomation  Features  Straight flute with spiral point - Premium HSS-E through hole tap - Straight flute with spiral point - Chamfer form B (4-5 threads chamfer) - Capable up to 3xD thread depth - Optimized cutting geometry for universal use in a wide range of materials - ISO 2-6H tolerance - Industrial standard M2-M10: DIN371 M12-M20: DIN376 MF8-MF16: DIN374 Application color ring: Green for universal use Grades: Uncoated, Steam tempered, TiN coated Shank tolerance h9 Straight flute: Lubricant can flow freely Chamfer form B : 4-5 threads chamfer  Right hand spiral flute, 40˚ - Premium HSS-E blind hole tap - Right hand 40˚ spiral flute - Chamfer form C (2-3 threads chamfer) - Capable up to 3xD thread depth - Optimized cutting geometry for universal use in a wide range of materials - ISO 2-6H tolerance - Industrial standard M2-M10: DIN371 M12-M20: DIN376 MF8-MF16: DIN374 Spiral point: Pushes chips forward in tightly rolled shape Shank tolerance h9 Application color ring: Green for universal use Grades: Uncoated, Steam tempered, TiN coated Chamfer form C : 2-3 threads chamfer Technical Guide 40˚ right hand spiral flute: Draws chips from blind hole in coil shape D TC 13 Technical Guide  T-TAP grade Grades Code Color No Bright metal Uncoated • Economical choice • Recommended for steel up to max. 800N/mm2 and non ferrous materials 05 Dark black • Ferric oxide layer at the cutting edges protect the surface and prevent built-up edge • Recommended for mild steels, low carbon steels and stainless steels 10 Gold yellow • PVD titanium nitride layer • High hardness, chemical stability and heat resistance • Longer tool life credit to balanced characteristics • Universal application on a wide range of materials Steam tempered TiN coated Application (ISO) Characteristics & applications P M K N S Uncoated Steam tempered TiN coated : Recommended : Suitable  Chamfer The tap chamfer is the tapering of the threads to distribute cutting action over several teeth. It generally reduces cutting forces, increases tool life and allows higher cutting speed. When the tap enters the hole and begins to cut, each tooth in the chamfer gradually enlarges the thread in the part. Only the “first full thread” behind the chamfer produces the finished size of the thread. The teeth beyond the first full thread serve to guide and support the tap as it creates the desired complete threaded depth of the tapped hole. Chamfer lengths are selected based upon the type of hole to be tapped.  Long thread - Through hole chamfer: - Blind hole with sufficient room at the bottom Technical Guide  Short thread chamfer: - Thread to the bottom of blind hole TC D 14 Form A Form B Form C Form D Form E Form F 5-6 Threads 4-5 Threads 2-3 Threads 3.5-5 Threads 1.5-2 Threads 1-1.5 Threads Technical Guide  TaeguTec  Quick standard tap chucking system change & torque safety type provided with tension and compression Tap holder  Tension Tap adapter & compression with radial floating function GTI tap attachment ER type tap collet GTI ER collet chuck Collet (ER) ER collet chuck GTIN ER collet  Rigid tap holders ER collet chuck ER type tap collet Collet (ER) TSK collet chuck THC collet Technical Guide TSK collet D TC 15 Technical Guide  Taps - Technical vocabulary  Letters of dimensions A d1 d4 l2 d2 l a l3 l1 B C kf l4 d3 d2 l2 l l1 A = External center B = Reduced external center C = Internal center D = Major diameter of tap d = Shank diameter of tap D d2 = Chamfer diameter d3 = Neck diameter l1 = Total length TL = Thread length l2 = Effective length γf l3 = Chamfer length S = Square size a = Square length Kf = Chamfer angle E γp D γfA H γf Technical Guide E TC D 16 J F = Straight flutes E = Spiral point G = Right hand spiral H = Left hand spiral J = Roll tap γ = Chip angle, side γfA= Angle of spiral point γp = Chip angle ha = Chamfer relief hA P P H Technical Guide 8 Js 2 a  Tap 2 2 Extracted from DIN EN 22 857 2 H  Female thread profile  Profile TD1 2 TD2 2 of tap D1 P H 4 P d2min Js d2max 2 D2 H D Nominal size 8 a D1 H 4 d2min d2max D2 D Nominal size E1 = Theoretical aize D = Nominal diameter D1 = Nominal core diameter D2 = Flank diameter H = Triangular height P = Pitch TD1 = Tolerance of core hole diameter TD2 = Tolerance of flank diameter TD2 = Tolerance class 5 of female thread Tolerance of flank diameter acc. to class 5 a = Thread angle Female Thread Tolerance class of tap Female Thread Tap Tolerance class Tol. position G 8G 8H 7G 0.7t M10 8G mm 0.032 0.1t 8H 7G 7H - 6H ISO2 4G 5G 6H Class 2 0.5t El=Null D2 4H ISO1 4H 5H El D2 6G ISO3 - - 7G - - - - - - - 6G 7H 8H - 7G 8G Technical Guide Class 1 Area of tolerance of thread to be cut According 6G 5G 4G Class 3 t=TD2 (Dual.5) d=D Nominal size DIN ISO 7G 7H 6H 5H 4H d2 d-D = Nominal diameter dmin = Minimum outside diameter d2 = D2 = Minimum outside diameter d2max = Maximum flank diameter d2min = Minimum flank diameter Em = Minimum flank diameter Es = Maximum flank diameter Js = Minimum outside diameter P = Pitch t-TD2 = Tolerance class 5 of female thread unit of tolerance Td2 = Tolerance of the flank diameter Tol. position H 6G 5G 4G 6H 5H 4H Class 3 Class 1 7G Class 2 0.5t 0.1t D2 d=D Nominal size TD2 2 TD1 2 El=Null d2 a Es Em 2 2 El 2 TD2 2 H t=TD2 (Dual.5) a Es Em 2 2 tolerances (Thread portion El of taps) TD 0.7t M10 0.032mm El D2 D TC 17 Technical Guide  Squares DIN 10 - 6.97 Tab. 1  Inner squares  Outer squares A A A A 45˚ 45˚ e e a a a a Technical Guide Chart 1 TC D 18 Square Inner square Outer square a e a l max. min. min. max. min. js 16(1) 5 Description of a square with nom. 2.1 2.260 2.120 2.89 2.100 2.010 dimension a = 10mm 2.4 2.560 2.420 3.27 2.400 2.310 5 Square DIN 10-10 2.7 2.860 2.720 3.67 2.700 2.610 6 3.0 3.160 3.020 4.08 3.000 2.910 6 Dimensions in millimeters 3.4 3.610 3.430 4.60 3.400 3.280 6 3.8 4.010 3.830 5.15 3.800 3.680 7 4.3 4.510 4.330 5.86 4.300 4.180 7 4.9 5.110 4.930 6.61 4.900 4.780 8 5.5 5.710 5.530 7.41 5.500 5.380 8 6.2 6.460 6.240 8.35 6.200 6.050 9 7 7.260 7.040 9.54 7.000 6.850 10 8 8.260 8.040 10.77 8.000 7.850 11 9 9.260 9.040 12.10 9.000 8.850 12 10 10.260 10.040 13.43 10.000 9.850 13 11 11.320 11.050 14.77 11.000 10.820 14 12 12.320 12.050 16.10 12.000 11.820 15 13 13.320 13.050 17.43 13.000 12.820 16 14.5 14.820 14.550 19.44 14.500 14.320 17 16 16.320 16.050 21.44 16.000 15.820 19 18 18.320 18.050 24.11 18.000 17.820 21 20 20.395 20.065 26.78 20.000 19.790 23 22 22.395 22.065 29.44 22.000 21.790 25 24 24.395 24.065 32.12 24.000 23.790 27 26 26.395 26.065 34.79 26.000 25.790 29 29 29.395 29.065 38.79 29.000 28.790 32 32 32.470 32.080 42.80 32.000 31.750 35 35 35.470 35.080 46.80 35.000 34.750 38 39 39.470 39.080 52.20 39.000 38.750 42 44 44.470 44.080 58.81 44.000 43.750 47 49 49.470 49.080 65.48 49.000 48.750 52 55 55.560 55.100 73.48 55.000 54.700 58 61 61.560 61.100 81.50 61.000 60.700 64 (1) does not apply to tools 68 68.560 68.100 90.83 68.000 67.700 71 activated by hand 76 76.560 76.100 101.51 76.000 75.700 79 Nom. Dim. a II Cylindrical shaft Diameters Preferred diameter d d from to 2.47 2.83 2.5; 2.8 2.83 3.20 3.20 3.60 3.5 3.60 4.01 4 4.01 4.53 4.5 4.53 5.08 5 5.08 5.79 5.5 5.79 6.53 6 6.53 7.33 7 7.33 8.27 8 8.27 9.46 9 9.46 10.67 10 10.67 12.00 11; 12 12.00 13.33 13.33 14.67 14 14.67 16.00 16 16.00 17.33 17.33 19.33 18 19.33 21.33 20 21.33 24.00 22 24.00 26.67 25 26.67 29.33 28 29.33 32.00 32 32.00 34.67 34.67 38.67 36 38.67 42.67 40 42.67 46.67 45 46.67 52.06 50 52.06 58.67 56 58.67 65.33 63 65.33 73.33 70 73.33 81.33 80 81.33 90.66 90 90.66 101.33 100 Trouble Shooting Guide Problems Causes Solutions - Wrong tool type - Select the correct tool for both hole and - Cutting edge not suited for the material material types for the hole type and material - Optimize lubrication - Work with coated tool - Diameter of core hole too small, tool cuts with the core - Select correct core hole diameter as per the TaeguTec chart - Accumulated chipping - Blind hole: Select correct tap (spiral tap) - Through hole: Select correct tap (spiral point) - Wrong angle or false positioning of the core hole - Change tool chucking, use chuck with centerline pendulum - Tolerance tap to gauge not correctly matched - Select tool with correct tool tolerance - Tolerance tap to gauge not correctly matched - Select tool with correct tool tolerance - Incorrect tool type - Select the correct tool for both hole and material types - Pressure of chuck too high or too low - Select correct pressure - Incorrect pressure - Use chucking with length compensation - Work with routing cartridge - Select correct tool type Distortion of pitch (Go-side of gauge cannot be inserted all the way) - Tap does not cut with correct pitch - Select correct tool - Select correct chuck pressure Thread with preamplitude - Incorrect pressure - Chucking with length compensation - Work with routing cartridge - Select correct tool type - Wrong tool type - Choose correct tool - Chip congestion - See "problems of thread too big" - Core hole diameter too small - Select correct core hole diameter as per the TaeguTec chart - Galling on tap flanks - Use coated taps - Optimize lubrication - Cutting speed is too low - Change to higher cutting speed - Cutting speed too high or too low - Select cutting speed from TaeguTec chart - Lubrication insufficient, wrong consistency - Provide correct lubrication - High abrasion due to a lack of coating or incorrect coating - Pay attention to TaeguTec recommendations Thread too big Thread too narrow Thread is cut axially Rough tool surface Tool life not as expected Technical Guide - Galling on tap flanks D TC 19 TOPDRILL TD3 T-DRILL TD4 T-DEEP(HFD) TD10 DRILLRUSH TD15 DRILLRUSH for Pre-Thread Hole TD18 TECHNICAL GUIDE Chamfering Tool TD19 H-DRILL TD27 -Holemaking TOPCAP TD33 T-DEEP TD39 T-REAM TD47 Nomenclature and Cutting Data  Indexable Indexable Drill drill nomenclature Flange dia. Inner insert Shank dia. Dia. Outer insert Shank length Effective cutting depth Total length  Optimal chip shape Optimal chips from outer insert Optimal chips from inner insert Too loose Too short  Calculating cutting conditions Technical Guide  When calculating cutting speed from number of revolutions Vc = π Dn/1000 (m/min) 2 F = fn (mm/min) nn - Vc : Cutting speed (m/min) - D : Drill diameter (mm) - π : 3.14 - n : Revolution per minute (rev/min) FF nn  When calculating number of revolutions from cutting speed n = 1000Vc/π D (rev/min) TD  Calculation of table feed DD f f - F : Table feed (mm/min) - f : feed (mm/rev) - n : Revolution per minute(rev/min) Technical Guide  Features - 4 cornered economical insert design - The same insert is applicable for both internal and external pocket - Improved machinability due to ideally configured cutting edge - Applicable to most materials including low carbon and mild steel - Helix flute geometry by twisted coolant channels enabling excellent chip evacuation and high precision hole operation - Enhanced insert’s durability with new grade (TT9080)  Coolant TOPDRILL volume Coolant flow rate (l/min) 50 45 5xD 40 4xD 35 3xD 2xD 30 25 20 15 14 15 20 25 30 35 40 45 50 Drill diameter (mm)  Maximum Drill diameter  Hole Insert SOMT 050204 DP SOMT 060204 DP SOMT 070306 DP SOMT 08T306 DP SOMT 0 9T308 DP Radial shift Max' hole (Ø) Drill diameter 0.5 0.4 0.3 0.5 0.4 0.3 0.5 0.4 0.3 0.5 0.5 0.4 0.3 0.5 0.5 0.5 0.5 0.3 15.0 15.8 16.6 18.0 18.8 19.6 21.0 21.8 22.6 24.0 25.0 25.8 26.6 28.0 29.0 30.0 31.0 31.6 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Insert SOMT 11T308 DP SOMT 130408 DP SOMT 150510 DP Radial shift Max' hole (Ø) 0.5 0.5 0.5 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 33.0 34.0 35.0 36.0 36.8 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 tolerance (Based on stable conditions) Depth of drilling Hole tolerance(mm) Depth of drilling Hole tolerance(mm) 2xD 3xD 0/+0.15 0/+0.2 4xD 5xD 0/+0.25 0/+0.3 Technical Guide 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 radial adjustment (Stationary drilling) TD 3 Technical Guide  Coolant  It supply is important to ensure that the recommended coolant pressure is applied - Low pressure can cause vibration and reduced tool life - The recommended minimum pressure is 4kg/cm2 for 2xD and 3xD T-Drill and for the 4xD T-Drill the minimum recommended pressure is 5kg/cm2 power consumption & coolant f = 0.25 (mm/rev) Power (Kw) 20 f = 0.20 (mm/rev) 15 10 f = 0.10 (mm/rev) 5 12.5 15 20 30 40 50 60 70 Coolant flow rate (ℓ/min)  Net T-DRILL 50 45 40 35 30 25 20 15 5xD 4xD 3xD 2xD 12.5 15 80 20 Drill diameter (mm) Net power consumption  Trouble 25 30 35 shooting Long chip Solution Soft materials Low carbon steel, Mild steel, Stainless steel speed: feed: Alloy steel, Carbon steel speed: Increase coolant pressure Technical Guide Short or tight chip 4 45 Coolant Problems with chip evacuation TD 40 Drill diameter (mm) speed: feed: feed: 50 Technical Guide  Set-up On first hole – please retract the drill after drilling to a depth of 3mm - 6mm and check it has produced a small core within 0.2mm - 0.7mm If a core is not created: - It can cause insert breakage and vibration when drilling - Please reverse the drill body 180 degrees in tool post and try again T-DRILL If core size is a higher than recommended values: - Please adjust offsets to bring core to correct size - Failure to do so can cause overload and vibration during drilling Ød (Core Dia: 0.2mm - 0.7mm) Core size Central Insert Initial set up of T-Drill  Safety precaution On a stationary drilling application, there is a risk of accidents caused by the disc being thrown from the part. Technical Guide Precaution: TD 5 Technical Guide  Hole tolerance and maximum hole size with radial adjustment Drill diameter Insert Radial shift Technical Guide 13 +0.5 14 SPMG 050204 +0.5 15 +0.5 16 +0.5 17 +0.5 18 +0.5 SPMG 060204 19 +0.5 20 +0.5 21 +0.25 22 +0.5 23 +0.5 24 +0.5 SPMG 07T308 25 +0.5 26 +0.25 27 +0.25 28 +0.5 29 +0.5 30 +0.5 SPMG 090408 31 +0.25 32 +0.25 33 +0.25 34 +0.5 35 +0.5 36 +0.5 37 +0.5 SPMG 110408 38 +0.5 39 +0.5 40 +0.25 41 +0.25 42 +0.5 43 +0.5 44 +0.5 45 +0.5 SPMG 140512 46 +0.5 47 +0.5 48 +0.25 49 +0.25 50 +0.25  Choose the shortest possible drill for best performance and productivity results TD 6  Hole tolerance (Based on stable conditions) Depth of drilling Hole tolerance (mm) 2xD 0/+0.2 3xD 0/+0.25 4xD 0/+0.3 5xD 0/+0.35 Max’ hole(Ø) 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 21.5 23.0 24.0 25.0 26.0 26.5 27.5 29.0 30.0 31.0 31.5 32.5 33.5 35.0 36.0 37.0 38.0 39.0 40.0 40.5 41.5 43.0 44.0 45.0 46.0 47.0 48.0 48.5 49.5 50.5 T-DRILL Technical Guide  Information for setting plates Setting plate Thickness (mm) Diameter adjustment For TDR 07CA For TDR 09CA For TDR 11CA For TDR 12CA 0.5 1.0 1.5 2.0 2.5 3.0 1.0 2.0 3.0 4.0 5.0 6.0 TDP-0701 TDP-0702 - TDP-0901 TDP-0902 TDP-0903 TDP-0904 TDP-0905 - TDP-1101 TDP-1102 TDP-1103 TDP-1104 TDP-1105 TDP-1106 TDP-1101 TDP-1102 TDP-1103 TDP-1104 TDP-1105 TDP-1106 T-DRILL For stable drilling, TaeguTec can supply fixed sized peripheral cartridges without a setting plate or alternately a solid drill body without the cartridge is also available on request. Drill body Cartridge clamping screw Cartridge for central inserts Washer Cartridge for peripheral inserts Setting plate screw Setting plate  Under Description Insert Diameter range Inner Outer TDR 09CA-P1-T62 SPMG 09 SPMG 11 57 - 62 TDR 09CA-P2-T66 SPMG 09 SPMG 11 63 - 66 TDR 11CA-P1-T73 SPMG 11 SPMG 12 67 - 73 TDR 12CA-P2-T80 SPMG 12 SPMG 14 74 - 80 Technical Guide the unstable condition, TaeguTec recommend to use the specific peripheral cartridge for max' diameter drilling TD 7 Technical Guide  Milling application On a milling machine the sleeve can change the drill’s nominal diameter by shifting the drill’s axis out of the tool spindle. 90˚ T-DRILL D+0.4mm D D-0.2mm MILLING D-0.2 To enlarge the diameter, turn the sleeve clockwise & to reduce the diameter, turn sleeve counterclockwise as shown. Drill diameter: 30mm EnLaRge REDUCE CCW CW D+0.4 Hole dia. 29.8mm  Lathe Hole dia. 30mm Hole dia. 30.4mm application On a lathe, the eccentric sleeve can shift the drill’s axis to coincide with the spindle axis. 0.0 Technical Guide 90˚ TD 8 The eccentric sleeve enables the user to align the drill’s axis with the spindle axis to within 0.2mm range (turn the sleeve counter clock wise to raise it). +0.2 Tool's axis 0.2 ..22 ++00 00 Lathe Turret axis Nominal D Tool and turret axis coincide Nominal D +0.2 Tailor-made Order Form  Specific Indexable Drill dimensions Drill type L1 TOPDRILL S T-DRILL ØD1 Technical data Through Blind ØD1 L1 α1 S Machine type MCT Lathe Spindle - Vertical Hole tolerance Horizontal Machine name Kw Power L1 Coolant supply L2 Internal External Coolant pressure bar ØD1 ØD2 Coolant type Through Blind ØD1 ØD2 L1 L2 α1 Workpiece Part Material Hole tolerance Hardness Shank type L1 L2 S ØD1 ØD2 Cylindrical shank (ISO 9766) Through Blind ØD1 ØD2 L1 L2 α1 α2 Weldon shank S Hole tolerance Whistle notch shank Comment Technical Guide TD 9 Technical Guide  Features Large coolant hole facilitates excellent coolant supply The curved flute design for good chip exhaust Optimal design to reduce chip jamming L/D  Drilling - Easy to use – Direct mount T-DEEP - Cost Reducing Inserts - Unique design eliminates chip jamming - The curved flute design acts as a chip exhaust - New solution over 5xD depth depends on diameter 15 14 13 12 11 10 9 8 7 6 5 30.00-30.99 31.00-32.99 33.00-35.99 36.00-38.99 39.00-42.99 43.00-46.99 47.00-52.99 53.00-60.99 61.00-69.00 Drill dia.  Insert & guide pad Technical Guide Tool dia. (mm) TD 10 Insert Guide PAD Outer Inner Center 30.00-33.00 NPMT 06504 R2 NPMT 06504 R2 NPMT 06504 L2 PAD-GO07CD 33.01-36.00 NPMT 06504 R2 NPMT 06504 R2 NPMT 0804 L2 PAD-GO07CD 36.01-39.00 NPMT 0804 R2 NPMT 06504 R2 NPMT 0804 L2 PAD-GO07CD 39.01-42.00 NPMT 0804 R2 NPMT 0804 R2 NPMT 0804 L2 PAD-GO08CD 42.01-45.00 NPMT 0804 R2 NPMT 0804 R2 NPMT 09504 L2 PAD-GO08CD 45.01-48.00 NPMT 09504 R2 NPMT 0804 R2 NPMT 09504 L2 PAD-GO10CD 48.01-51.00 NPMT 09504 R2 NPMT 09504 R2 NPMT 09504 L2 PAD-GO10CD 51.01-57.00 NPMT 09504 R2 NPMT 09504 R2 NPMT 12504 L2 PAD-GO10CD 57.01-63.00 NPMT 12504 R2 NPMT 09504 R2 NPMT 12504 L2 PAD-GO12CD 63.01-69.00 NPMT 12504 R2 NPMT 12504 R2 NPMT 12504 L2 PAD-GO12CD Technical Guide  Pilot hole size Tool dia. (mm) Pilot hole tolerance Pilot hole depth (mm) 30.00-39.00 H8 Min. 10.0 39.01-45.00 H8 Min. 12.5 45.01-57.00 H8 Min. 15.0 57.01-69.00 H8 Min. 17.5  Coolant T-DEEP volume 60 Coolant flow rate (l/min) 55 50 45 40 35 30 25 20 15 25 30 35 40 45 50 55 60 65 70 Drill diameter (mm) Technical Guide TD 11 Trouble Shooting  Trouble Result Indexable Drill shooting tips Image Cause Solution  Incorrect cutting conditions  Reset as per recommended cutting condition  Incorrect insert application  Re-index by insert geometry & grade as per recommended insert tables  Lack of cutting fluid  Check for sufficient cutting fluid supply  Check for sufficient density of cutting fluid supply  Change to internal coolant supply when external coolant supply is finished  Check direction of external coolant supply Abnormal insert wear  Insufficient insert application  Change inserts Chipping  Built-up-edge  Increase cutting speed or change insert geometry  Irregular surface  Decrease feed when drilling on the workpiece  Weak machine set-up  Select a sufficient powered machine  Unstable fixture  Change to a stronger clamping fixture  Lack of cutting fluid  Check for sufficient cutting fluid supply  Check for sufficient density of cutting fluid supply  Change to internal coolant supply when external coolant supply is finished  Check direction of external coolant supply  Insufficient cutting condition  Re-index to recommended cutting conditions  Chipping of insert  Change inserts  Vibration during machining  Check off-set  Use after rotating drill to 180°  Using insert with exceeded tool life  Change insert before abrasion loss of insert is 0.3mm  Surface too rough  Flatten entrance before drilling  Using long overhang drill  Select a shorter overhang  Layered workpiece  Strong fixture  Using damaged insert  Change tool  Improper machine set -up  Check machine and fixture  Core created during machining  Re-index to recommended cutting conditions  Short overhang Technical Guide Vibration TD 12 Core Check lathe set-up  Core created with workpiece  clamped into the lathe  Short overhang Trouble Shooting  Trouble Result Indexable Drill shooting tips Image Cause  Tapered holes (expanding/decreased hole size) Incorrect hole diameter Poor surface roughness Machine stoppage Solution  Reset speed and feed as per recommend cutting conditions  Increase cutting fluid  Check lathe set-up  Adjust off-set in the lathe  Reset speed and feed as per recommended cutting conditions  Increase cutting fluid  Short overhang  Overlapped workpiece (layered plate)  Strong clamping of workpiece  Decrease feed  Lack of cutting fluid  Check for sufficient cutting fluid supply  Check for sufficient density of cutting fluid supply  Change external coolant supply for internal coolant supply  Incorrect insert geometry & grade  Re-index by insert shape & grade as per recommended inserts table  Weak machine set-up  Check machine set-up  Incorrect cutting conditions  Reset by speed and feed as per recommended cutting conditions  Decrease feed  Lack of machine torque  Decrease the feed  Insert fused to the workpiece  Check clamping of the insert screw  Check cutting fluid supply  Check cutting condition  Bad chip control  Check cutting fluid supply  Change external coolant supply to internal coolant supply  Increase cutting fluid supply  Decrease feed  Increase cutting speed  Incorrect insert geometry  Re-index by insert geometry & grade as per recommended inserts table  Use of damaged insert  Change insert STOP Chip jamming Technical Guide  Tapered holes (Different entrance & exit hole size) TD 13 Nomenclature and Cutting Data  Drill & designation Back taper Lead H-DRILL Point angle Dia. Effective cutting depth Shank dia. Helix angle Flute length Shank length Total length Margin Chisel Oil hole Web thickness Thinning Main edge Second relief angle Recess First relief angle  Cutting Edge height features according to drill geometry conditions Helix angle Hardened materials Small (Inconel, Titanium, etc.) Flute length Determined by the cutting depth, however, the length must be as short as possible due to tool life issues Helix angle Large Soft materials (Al, Copper, etc.) In general 140° Point angle For soft and easier cutting materials Small Point angle Large Hardened and high efficiency cutting materials The role of the drill guide will cause friction during drilling operation Margin Technical Guide  Calculating 14 Margin width Large Good guide Load Jiggle  cutting conditions  When calculating cutting speed from number of revolutions  Calculation of table feed n Vc = π Dn/1000(m/min) F n F = fn (mm/min) - Vc : Cutting speed (m/min) - D : Drill diameter (mm) - π : 3.14 - n : Revolution per minute (rev/min) - F : Table feed (mm/min) - f : feed (mm/rev) - n : Revolution per minute(rev/min)  When calculating number of revolutions from cutting speed n = 1000Vc/π D (rev/min) TD Small Bad guide D f Technical Guide  Set-up  Drilling t head mounting procedure  Clean the pocket and put oil  Mount the drill head  Insert key into the slot head  Tighten the head by rotating the Power Restriction  Indication of head wear t Power Restriction Power restriction (1) Px.1.25(2) P on the pocket key clockwise Wear Limit Wear Limit Power Restriction Wear Limit Power Restriction Wear Limit Wear limit 0.2-0.3 P(1) Px.1.25(2) (1) (2) (1) New (1) drilling head (2) Worn-out drilling head nge Surface Finish Declines Surface finish declines Diameter Diameter changeChange .15mm nge Surface Finish Declines Diameter Change Ø > D nominal + 0.15mm al .15mm 0.03mm al (2) Ra D nominal Ø > D nominal + 0.15mm Ra Ø < DD nominal - 0.03mm nominal  Rotational P(1) Px.1.25(2) (1) (2) (2) (1) (1) (2) (2)  Stationary New drilling head Ra Ra noise Vibration drastically increases runout Vibration Noise Drastically Increases Vibration Noise Max’ 0.02mm Drastically Increases Vibration Noise Drastically Increases Vibration Noise Drastically Increases New drilling head Worn-out drilling head Surface Finish DeclinesWorn-out drilling head Surface Finish Declines runout runout Power Restri Technical Guide  Maximum Px.1.25(2) (1) Ø < D nominal - 0.03mm 0.03mm P(1) Power Restri Max’ 0.02mm TD 15 Technical Guide  Coolant recommendations (Lathe) Internal coolant External coolant (up to 2xD) Dry cutting  Coolant recommendations (Machining center) Internal coolant Dry cutting External coolant (Up to 2xD)  Recommended coolant pressure and flow rate (bar) 15 8xD /8xD 12xD / 12xD 12 Technical Guide 12 TD 16 Coolant flow rate (liter/min) Coolant pressure (bar) 15 5xD 5xD 10 10 3xD 3xD 8 1.5xD 1.5xD 8 5 5 3 3 7 7 12 12 16 16 20 20 Drill diameter Drill diameter D (mm) D (mm) 25 25 30 30 20 20 10 10 5 5 7 (liter/min) flow rate 7 12 12 16 16 20 20 Drill diameter Drill diameter D (mm) D (mm) 25 25 Technical Guide  Drilling limitation Inclined surface  Recommended Interrupted cutting Cross hole procedure for long drills like 8xD, 12xD Pre-hole drilling with 0.5xD~1.5xD deep for centering  Slow rotation and feed during entrance to the pre-hole   0.5xD ~ 1.5xD    2~5mm from bottom of hole  Activate the cooling system for 2~3 seconds   Continue drilling at recommended cutting conditions 8xD 12xD Technical Guide  1. Prior to using long drills like 8xD, 12xD, it is recommended to drill pilot holes from 0.5xD~1.5xD using a short drill (DRILLRUSH 1.5xD holder is recommended) 2. Approach the pre-hole at reduced speed and feed until 2~5mm from bottom 3. Apply coolant for 2~3 seconds and increase up to recommended speed and feed rate 4. Start drilling at the recommended feed rate TD 17 Technical Guide  Features  Drill body - Cost effective solution that replaces the high cost of special solid carbide step drills - A twisted through coolant channel for smooth chip evacuation & high penetration rates - Two symmetrically designed standard chamfering inserts firmly seated for optimal performance via balanced cutting - Eliminates the need for solid carbide drill regrinding  Insert - Widely capable AOMT insert is designed for both chamfering and counter boring - Indexable inserts include two cutting edges for optimum chip control - Capable of machining a wide range of workpiece materials - Inserts specifically designed for both blind and through-hole applications - Indexable inserts mean economy and flexibility over a wide range of applications  Drilling with chamfer (45°) Blind hole Through hole  Drilling with counter boring Technical Guide Blind hole TD 18 Through hole Technical Guide  Plug for stationary machines TaeguTec supplies special plugs with an internal thread for coolant connections used on lathes that can be pressed into the cavity on the back end of the shank. Item No. Description Shank diameter Internal thread 6102019 6102020 6102021 6102022 6102023 PL-TCD-12 PL-TCD-16 PL-TCD-20 PL-TCD-25 PL-TCD-32 12 16 20 25 32 G 1/16 G 1/16 G 1/8 G 1/8 G 1/8  Assembly (Available for TOPDRILL & T-DRILL in 3xD, 4xD) DRILLRUSH TOPDRILL & T-DRILL Chamfering ring description Diameter range Chamfering ring description 10.0-10.4 10.5-10.9 11.0-11.4 11.5-11.9 12.0-12.4 12.4-12.9 13.0-13.4 13.5-13.9 14.0-14.4 14.5-14.9 15.0-15.9 16.0-16.9 17.0-17.9 18.0-18.9 19.0-19.9 20.0-20.9 21.0-21.9 22.0-22.9 23.0-23.9 24.0-24.9 25.0-25.9 CFR D100-A45 CFR D105-A45 CFR D110-A45 CFR D115-A45 CFR D120-A45 CFR D125-A45 CFR D130-A45 CFR D135-A45 CFR D140-A45 CFR D145-A45 CFR D150-A45 CFR D160-A45 CFR D170-A45 CFR D180-A45 CFR D190-A45 CFR D200-A45 CFR D210-A45 CFR D220-A45 CFR D230-A45 CFR D240-A45 CFR D250-A45 12.5-12.9 13.0-13.4 13.5-13.9 14.0-14.4 14.5-14.9 15.0-15.4 15.5-16.4 16.5-17.4 17.5-18.4 18.5-19.4 19.5-20.4 20.5-21.4 21.5-22.4 22.5-23.4 23.5-24.4 24.5-25.4 CFR D125-A45 CFR D130-A45 CFR D135-A45 CFR D140-A45 CFR D145-A45 CFR D150-A45 CFR D160-A45 CFR D170-A45 CFR D180-A45 CFR D190-A45 CFR D200-A45 CFR D210-A45 CFR D220-A45 CFR D230-A45 CFR D240-A45 CFR D250-A45 Technical Guide Diameter range TD 19 Technical Guide  Chamfering Ring  1. Insert the chamfering ring on to the drill body. The stopper must be inside the flute.  3. Rotate the chamfering ring counterclockwise until stopper engages the flute edge.  When  2. Slide the chamfering ring to the desired position.  4. Tighten the chamfering ring and clamp the drill head. Technical Guide the chamfering ring is clamped correctly, the drill flute will be aligned with the chamfering ring flute. TD 20 Technical Guide  Stable machining Recommended 3xD 5xD 1. If possible, always use a short holder. If not, reduce the cutting speed to minimize vibration. 2. Mount the chamfering ring as close as possible to the drill shank when drilling a through hole.   More than 1mm 4. When mounting the chamfering ring, please ensure that it does not block the coolant. Technical Guide 3. For better insert life, apply external and internal coolant to the insert. TD 21 Technical Guide  DRILLRUSH L Technical Guide Designation TD 22 TCD 130-134-16T3-3D 135-139-16T3-3D 140-144-16T3-3D 145-149-16T3-3D 150-159-20T3-3D 160-169-20T3-3D 170-179-20T3-3D 3D 180-189-25T2-3D 190-199-25T2-3D 200-209-25T2-3D 210-219-25T2-3D 220-229-25T2-3D 230-239-32T2-3D 240-249-32T2-3D 250-259-32T2-3D TCD 100-104-16T3-5D 105-109-16T3-5D 110-114-16T3-5D 115-119-16T3-5D 120-124-16T3-5D 125-129-16T3-5D 130-134-16T3-5D 135-139-16T3-5D 140-144-16T3-5D 145-149-16T3-5D 150-159-20T3-5D 5D 160-169-20T3-5D 170-179-20T3-5D 180-189-25T2-5D 190-199-25T2-5D 200-209-25T2-5D 210-219-25T2-5D 220-229-25T2-5D 230-239-32T2-5D 240-249-32T2-5D 250-259-32T2-5D TCD 100-104-16T3-8D 8D 105-109-16T3-8D 110-114-16T3-8D CFR Designation CFR D130-A45 CFR D135-A45 CFR D140-A45 CFR D145-A45 CFR D150-A45 CFR D160-A45 CFR D170-A45 CFR D180-A45 CFR D190-A45 CFR D200-A45 CFR D210-A45 CFR D220-A45 CFR D230-A45 CFR D240-A45 CFR D250-A45 CFR D100-A45 CFR D105-A45 CFR D110-A45 CFR D115-A45 CFR D120-A45 CFR D125-A45 CFR D130-A45 CFR D135-A45 CFR D140-A45 CFR D145-A45 CFR D150-A45 CFR D160-A45 CFR D170-A45 CFR D180-A45 CFR D190-A45 CFR D200-A45 CFR D210-A45 CFR D220-A45 CFR D230-A45 CFR D240-A45 CFR D250-A45 CFR D100-A45 CFR D105-A45 CFR D110-A45 L min max 19 19 21 22 23 24 26 27 29 30 32 33 35 36 38 28 29 31 32 33 34 36 37 38 39 41 43 46 48 51 53 56 58 61 63 66 45 49 49 19 20 22 23 23 25 28 30 33 36 39 42 45 48 51 28 30 33 35 45 40 43 43 48 48 53 58 63 68 73 78 79 84 89 94 99 58 62 66 L Technical Guide  DRILLRUSH L Designation CFR D115-A45 CFR D120-A45 CFR D125-A45 CFR D130-A45 CFR D135-A45 CFR D140-A45 CFR D145-A45 CFR D150-A45 CFR D160-A45 CFR D170-A45 CFR D180-A45 CFR D190-A45 CFR D200-A45 CFR D210-A45 CFR D220-A45 CFR D230-A45 CFR D240-A45 CFR D250-A45 CFR D100-A45 CFR D105-A45 CFR D110-A45 CFR D115-A45 CFR D120-A45 CFR D125-A45 CFR D130-A45 CFR D135-A45 CFR D140-A45 CFR D145-A45 CFR D150-A45 CFR D160-A45 CFR D170-A45 CFR D180-A45 CFR D190-A45 CFR D200-A45 CFR D210-A45 CFR D220-A45 CFR D230-A45 CFR D240-A45 CFR D250-A45 L min max 53 53 57 57 61 61 65 65 69 73 77 81 85 89 93 97 101 105 75 78 81 84 87 90 93 96 99 102 105 111 117 123 129 135 141 147 153 159 165 70 74 78 82 84 88 92 96 103 111 118 126 134 142 150 158 166 174 97 103 109 115 121 127 133 137 143 149 155 166 178 189 201 213 225 237 249 261 273 L Technical Guide TCD 115-119-16T3-8D 120-124-16T3-8D 125-129-16T3-8D 130-134-16T3-8D 135-139-16T3-8D 140-144-16T3-8D 145-149-16T3-8D 150-159-20T3-8D 160-169-20T3-8D 8D 170-179-20T3-8D 180-189-25T2-8D 190-199-25T2-8D 200-209-25T2-8D 210-219-25T2-8D 220-229-25T2-8D 230-239-32T2-8D 240-249-32T2-8D 250-259-32T2-8D TCD 100-104-16T3-12D 105-109-16T3-12D 110-114-16T3-12D 115-119-16T3-12D 120-124-16T3-12D 125-129-16T3-12D 130-134-16T3-12D 135-139-16T3-12D 140-144-16T3-12D 145-149-16T3-12D 150-159-20T3-12D 12D 160-169-20T3-12D 170-179-20T3-12D 180-189-25T2-12D 190-199-25T2-12D 200-209-25T2-12D 210-219-25T2-12D 220-229-25T2-12D 230-239-32T2-12D 240-249-32T2-12D 250-259-32T2-12D CFR Designation TD 23 Technical Guide  TOPDRILL and T-DRILL L TOPDRILL Technical Guide TOP TD 24 T-DRILL TDR 3125-20T2-05 3130-20T2-05 3135-20T2-05 3140-20T2-05 3140-20T2-05 3145-20T2-05 3145-20T2-05 3150-20T2-05 3150-20T2-05 3155-20T2-05 3155-25T2-06 3160-20T2-05 3160-25T2-06 3165-25T2-06 3165-25T2-06 3170-25T2-06 3170-25T2-06 3175-25T2-06 3175-25T2-06 3180-25T2-06 3180-25T2-06 3185-25T2-06 3185-25T2-06 3D 3190-25T2-06 3190-25T2-06 3195-25T2-07 3195-25T2-06 3200-25T2-07 3200-25T2-06 3205-25T2-07 3205-25T2-06 3210-25T2-07 3210-25T2-06 3215-25T2-07 3215-25T2-07 3220-25T2-07 3220-25T2-07 3225-25T2-08 3225-25T2-07 3230-25T2-08 3230-25T2-07 3235-25T2-08 3235-25T2-07 3240-25T2-08 3240-25T2-07 3245-25T2-08 3245-25T2-07 3250-25T2-08 3250-25T2-07 TOP TDR 4125-20T2-05 4130-20T2-05 4135-20T2-05 4140-20T2-05 4140-20T2-05 4145-20T2-05 4145-20T2-05 4150-20T2-05 4150-20T2-05 4155-20T2-05 4155-25T2-06 4160-20T2-05 4160-25T2-06 4D 4165-25T2-06 4165-25T2-06 4170-25T2-06 4170-25T2-06 4175-25T2-06 4175-25T2-06 4180-25T2-06 4180-25T2-06 4185-25T2-06 4185-25T2-06 4190-25T2-06 4190-25T2-06 4195-25T2-07 4195-25T2-06 CFR Designation CFR D125-A45 CFR D130-A45 CFR D135-A45 CFR D140-A45 CFR D145-A45 CFR D150-A45 CFR D150-A45 CFR D160-A45 CFR D160-A45 CFR D170-A45 CFR D170-A45 CFR D180-A45 CFR D180-A45 CFR D190-A45 CFR D190-A45 CFR D200-A45 CFR D200-A45 CFR D210-A45 CFR D210-A45 CFR D220-A45 CFR D220-A45 CFR D230-A45 CFR D230-A45 CFR D240-A45 CFR D240-A45 CFR D250-A45 CFR D125-A45 CFR D130-A45 CFR D135-A45 CFR D140-A45 CFR D145-A45 CFR D150-A45 CFR D150-A45 CFR D160-A45 CFR D160-A45 CFR D170-A45 CFR D170-A45 CFR D180-A45 CFR D180-A45 CFR D190-A45 CFR D190-A45 L min max 16 16 17 17 18 18 19 19 21 22 23 23 24 25 25 26 27 27 28 29 29 30 31 31 32 33 25 25 27 28 29 30 31 32 33 34 35 36 37 38 39 16 16 18 18 19 19 21 21 24 24 27 26 29 29 32 32 35 35 38 38 41 41 44 44 47 47 26 26 30 30 34 34 37 37 41 41 45 44 48 48 52 L Technical Guide  TOPDRILL and T-DRILL L TOPDRILL CFR Designation TDR 4200-25T2-06 4205-25T2-06 4210-25T2-06 4215-25T2-07 4220-25T2-07 4225-25T2-07 4230-25T2-07 4235-25T2-07 4240-25T2-07 4245-25T2-07 4250-25T2-07 TDR 5125-20T2-05 5130-20T2-05 5135-20T2-05 5140-20T2-05 5145-20T2-05 5150-20T2-05 5155-25T2-06 5160-25T2-06 5165-25T2-06 5170-25T2-06 5175-25T2-06 5180-25T2-06 5185-25T2-06 5190-25T2-06 5195-25T2-06 5200-25T2-06 5205-25T2-06 5210-25T2-06 5215-25T2-07 5220-25T2-07 5225-25T2-07 5230-25T2-07 5235-25T2-07 5240-25T2-07 5245-25T2-07 5250-25T2-07 CFR D200-A45 CFR D200-A45 CFR D210-A45 CFR D210-A45 CFR D220-A45 CFR D220-A45 CFR D230-A45 CFR D230-A45 CFR D240-A45 CFR D240-A45 CFR D250-A45 CFR D125-A45 CFR D130-A45 CFR D135-A45 CFR D140-A45 CFR D145-A45 CFR D150-A45 CFR D150-A45 CFR D160-A45 CFR D160-A45 CFR D170-A45 CFR D170-A45 CFR D180-A45 CFR D180-A45 CFR D190-A45 CFR D190-A45 CFR D200-A45 CFR D200-A45 CFR D210-A45 CFR D210-A45 CFR D220-A45 CFR D220-A45 CFR D230-A45 CFR D230-A45 CFR D240-A45 CFR D240-A45 CFR D250-A45 L min max 40 41 42 43 44 45 46 47 48 49 50 31 33 34 35 36 38 39 40 41 43 44 45 46 48 49 50 51 53 54 55 56 58 59 60 61 63 52 56 56 60 60 64 64 68 68 72 72 39 39 44 44 49 49 53 53 58 58 63 62 67 67 72 72 77 77 82 82 87 87 92 92 97 97 L Technical Guide TOP 4200-25T2-07 4205-25T2-07 4210-25T2-07 4215-25T2-07 4220-25T2-07 4D 4225-25T2-08 4230-25T2-08 4235-25T2-08 4240-25T2-08 4245-25T2-08 4250-25T2-08 TOP 5140-20T2-05 5145-20T2-05 5150-20T2-05 5155-20T2-05 5160-20T2-05 5165-25T2-06 5170-25T2-06 5175-25T2-06 5180-25T2-06 5185-25T2-06 5D 5190-25T2-06 5195-25T2-07 5200-25T2-07 5205-25T2-07 5210-25T2-07 5215-25T2-07 5220-25T2-07 5225-25T2-08 5230-25T2-08 5235-25T2-08 5240-25T2-08 5245-25T2-08 5250-25T2-08 T-DRILL TD 25 Tailor-made Order Form  Specific dimensions Technical data L1 S Machine type MCT Lathe ØD1 Spindle - Vertical Through Blind Machine name ØD1 L1 Power α1 S Hole tolerance Horizontal Kw Coolant supply Internal External Coolant pressure Coolant type L1 L2 Workpiece ØD1 ØD2 Part Through Blind Material ØD1 ØD2 Hardness L1 L2 α1 Shank type Hole tolerance L1 Cylindrical type L2 ØD1 ØD2 S Through Blind ØD1 ØD2 L1 L2 α1 α2 Whistle notch type Cylindrical with flat type S Hole tolerance Weldon type Technical Guide Comment TD 26 Shank dia Shank length bar Technical Guide  Maximum  Rotational runout  Stationary runout runout Max’ 0.02mm H-DRILL Max’ 0.02mm  Recommended : Bad : Good  Unstable : Excellent drilling conditions recommends 30 - 40% reduction of feed when drilling on: Slope-Entrance Cross hole Slope-Exit Stacked plates 5°  TaeguTec external coolant supply Maximum slope for drilling Technical Guide Solid carbide drills should NOT be used to enlarge a pre drilled hole TD 27 Technical Guide  Stable drilling with low cutting force 4500 4500 3500 3500 2500 2500 1500 1500 500 500 -500 -500 H-DRILL Competitor H-DRILL Thrust force Moment Thrust force Moment - Drill size : Ø12.0mm - Material : SAE 4140 - Speed : 100(m/min) - feed : 0.25(mm/rev) - Depth : 60(mm) - Internal coolant supply, through hole coolant pressure and volume Technical Guide TD 28 Coolant volume V(l/min) Coolant pressure P(bar)  Recommended Tool diameter d(mm) Required coolant pressure Required coolant volume Optimum pressure Optimum volume Good pressure Good volume Minimum pressure Minimum volume Technical Guide  Regrinding instructions 1 H-DRILL 0.02mm  Grinding for 1st clearance angle  Grinding for 2nd clearance angle • Set up the drill in a collet chuck - the total run out must not exceed 0.02mm • Set the drill for point angle (140°) and 1st clearance angle (10°-17°) • Keep the cutting edge in the horizontal plane • Grind the 1st clearance angle to a depth of 0.02 - 0.03mm, try spark-out 2 - 3 times to keep the lip height within 0.02mm when finishing • Set the drill for 2nd clearance angle (25° - 30°) • Grind the 2nd clearance faces of both cutting edges one by one in order to make the intersection between the 1st and 2nd clearance parallel with cutting edge 50 °-7 0.05 - 0.25 0°  Clamping 0.04 - 0.07  Thinning • Keep workhead horizontal • Using height gauge, keep two corners of cutting edge horizontal • Rotate the drill to 50°- 70° to keep the chisel edge vertical • Set wheel location for thinning to 30°- 50° with reference to drill axis • Edge part of thinning must be away from drill center by 0.04 - 0.07mm Sharp corner Negaland width: SHO, SHD : 0.03 - 0.08mm BHD : 0.06 - 0.08mm • After making negaland as shown, finish with diamond hand lapper Check point Is the lip height within 0.02mm? Is there any defect in cutting edge? Is the negaland fine and uniform? Use very fine hand stone (#1500) Make uniform width of negaland Recommendation Recommend wet grinding Diamond wheel: 250 - 400mesh Diamond file: 140mesh Diamond hand lapper: 800 - 1500mesh Technical Guide •Tool life can be affected by the surface roughness of negaland  Honing TD 29 Tailor-made Order Form  Specific dimensions Technical data Machine type MCT Lathe Spindle - Vertical A1: Horizontal H-DRILL Machine name Kw Power ØD1: Ød: Coolant supply Internal External Coolant pressure bar Coolant type L S: L 1: Workpiece L: Part Material Hardness A 1: A 2: Hole type Blind hole ØD1: Ød: Through hole Coating ØD2: TiAlN Non-coated L1: L 2: LS: Shank type L: Cylindrical type Whistle notch type Cylindrical with flat type * ØD1, ØD2 would be hole dimensions and please note hole tolerance if possible Technical Guide Weldon type TD 30 Comment Trouble Shooting  Drilling trouble shooting tips Division Part Image Cause Solution  Feed too high (hardened material)  Weak drill body  Chisel too small  Lack of honing on chisel part  Unstable fixture  Decrease feed  Reduce overhang and use a center drill  Check chisel  Check honing  Check fixture  Incorrect cutting conditions (chipping of built-up-edge)  Weak drill body  Lack of honing on edge part  Insufficient relief angle  Incorrect grade  Unstable tool holding  Increase cutting speed and decrease feed Edge Chipping corner  Improper grade  Unstable toolholder  Toolholder vibration  Lack of cutting fluid  Unstable fixture  Change grade  Change toolholder  Check clamping direction of the toolholder  Increase cutting fluid supply  Check fixture Chipping Margin  Interrupted cutting in the hole entrance  Incorrect margin shape  Weak drill body  Lack of cutting fluid  Unstable fixture  Wear too large  Flatten entrance and reduce feed to 30~50%  large back taper and small margin width  Short overhang and use a center drill  Increase cutting fluid supply  Check fixture  Reduce regrinding time Breakage Body  Cutting conditions too high  Weak drill body  Lack of cutting fluid  Unstable fixture  Wear too large & first chipping  Bad chip evacuation  Decrease cutting speed and feed  Correct tool geometry and use a center drill  Increase cutting fluid supply  Check fixture  Reduce regrinding time  Change tool shape Wear too Cutting large edge  Incorrect speed and feed  Incorrect relief angle  Incorrect grade  Lack of cutting fluid  Wear too large  Reduce cutting speed and increase feed  Increase relief angle  Change grade  Increase cutting fluid supply and fill fluid tank  Reduce regrinding time Wear too Cutting large corner  High cutting speed and feed  Incorrect relief angle  Incorrect grade  Toolholder vibration  Lack of cutting fluid  Wear too large  Reduce cutting speed and increase feed  Increase relief angle  Change grade  Check clamping direction of the toolholder  Increase cutting fluid supply and fill fluid tank  Reduce regrinding time Wear too Margin large  Cutting speed too high  Interrupted cutting in entrance  Toolholder vibration  Lack of cutting fluid  Wear too large  Decrease cutting speed  Flatten entrance and reduce feed to 30~50%  Check clamping direction of the toolholder  Increase cutting fluid supply and fill fluid tank  Reduce regrinding time  Cutting speed too low  Neg. land too large  Lack of cutting fluid  Increase cutting speed  Change to a sharper edge drill bit  Increase cutting fluid supply and fill fluid tank (Internal coolant) Chipping Point Chipping Cutting edge Pre check list  Proper tool selection in the application?  Good machine spindle and chuck?  Good fixture?  Correct cutting conditions?  Toolholder rigidly clamped ?  Enough cutting fluid supply? Technical Guide Built-up- Cutting edge edge  Reduce overhang and decrease cutting speed  Check honing  Check relief angle  Change grade  Change tool holding TD 31 Trouble Shooting  Drilling Division trouble shooting tips Part Cause Incorrect speed & feed   Chisel wear too large  Improper point shape Dimension Dimension Dimension Expanding hole Decreasing hole Jiggle Position Technical Guide Shape 32  Decrease cutting fluid  Change cutting conditions Incorrect cutting conditions   Increase speed and increase the feed  Margin wear too large  Toolholder vibration  Lack of cutting fluid  Unstable fixture  Reduce regrinding time  Check clamping direction of the toolholder  Increase cutting fluid supply  Check fixture  Incorrect cutting conditions  Cutting rough and hard Inclined entrance  Toolholder vibration  Chuck weakness  No pre hole  Decrease feed  Flatten entrance and reduce feed to 30~50%  Wear too large  Weak drill body  Toolholder vibration (including chisel jiggle)  Rough entrance surface  Unstable fixture  Chip pecking  Reduce regrinding time  Select proper tool geometry  Check clamping direction of the toolholder  Reduce regrinding time  Decrease relief angle  Select proper tool geometry  Check clamping direction of the toolholder  Check clamping direction of the toolholder  Change toolholder  Pre hole(use drill with higher point angle 5~10°)  Flatten entrance and make pre-hole  Check fixture  Change cutting conditions Shape Roundness Wear too large   Insufficient relief angle  Weak drill body  Toolholder vibration (including chisel jiggle) Shape Cylind-ricity Incorrect cutting conditions   Margin wear too large  Toolholder vibration (including chisel jiggle)  Increase feed  Reduce regrinding time  Check clamping direction of the toolholder  Incorrect cutting conditions  Wear too large  Toolholder vibration  Chuck weakness  Lack of cutting fluid  Chip pecking  Increase speed and decrease feed  Reduce regrinding time  Check clamping direction of the toolholder  Change tool holding  Increase cutting fluid supply and fill fluid tank  Change cutting conditions Long chip   Increase feed and select proper tool geometry  Check honing size and chipping and breakage Surface roughness Chip control Jiggle TD Straightness  Chuck weakness  Toolholder vibration (including chisel jiggle)  Cutting fluid pressure too high  Chip pecking Solution  Increase speed and decrease feed  Reduce regrinding time  Select correct geometry & grind to proper dimensions  Change tool holding  Check clamping direction of the toolholder  Stretched chip  Relief angle too large  weak drill body  Chip pecking  Decrease relief angle  Select proper tool geometry  Change cutting conditions Technical Guide  Multi-function system - Drilling, boring and turning with one tool - Short set-up and cycle time - Minimized tool positions and reduced tooling cost TOPCAP  Application Conventional Drilling Face & external turning Boring  TOPCAP application New application Drilling Boring Face turning  Features - Internal coolant supply - Helical flute for smooth chip flow - Large chip gullet for good chip evacuation - Two different unique geometries for drilling and turning - High helix cutting edge to minimize cutting forces - Excellent chip control at low feed and small d.o.c. For turning Technical Guide External turning Grooving For drilling TD 33 Technical Guide  Technical  Insert information positioning TOPCAP Cutting edge for drilling should be positioned in the center of tool body. Cutting edge for drilling Correct  Coolant Correct Wrong pressure Pressure must be above 2 bar in 3xD drills, regardless of drilling diameter. (Optimal pressure is above 5 bar)  Optimization of chip shape Material with low carbon content (low carbon steel / low carbon alloy steel) - High speed machining is recommended to make the chips thinner as many problems are caused by thick chips Material with medium to high carbon content (carbon steel / alloy steel) -If too tight? Increase speed if the speed is slow or reduce feed -If too loose? Reduce speed if the speed is high or increase feed    Set-up Please check formation of core and its size after drilling 3mm to 6mm depth and diameter. Core should be within 0.15 - 0.45mm. Please adjust Y-axis of tool body by using clamping unit if it is available or reverse the tool body 180° and fix it into a turret to check the core again if clamping unit is not available. Core Ø If a core does not appear, - It can cause breakage of insert and vibration when drilling or turning Technical Guide If the size of core is over the recommended limit. - It will cause overload and vibration TD 34 Ø/2 Technical Guide test results Chip shape in drilling •Material=SAE 4140 (220BHN) •Diameter of tool=12mm •V=120m/min •Drilling depth=25mm •Blind hole •Wet cutting Hole deviation in drilling •Material=SAE 4140 (220BHN) •Diameter of tool=10mm •V=120m/min •Drilling depth=20mm •Blind hole •Wet cutting Maker F=0.05mm/rev F=0.10mm/rev TOPCAP TOPCAP Optimal chips Competitor Chips that occur during vibration Hole deviation (mm)  Comparison 0.025 TOPCAP Competitor 0.02 0.015 0.01 0.005 0 Feed (mm/rev) f=0.04 f=0.06 f=0.08 f=0.10 TOPCAP shows less deviation in each feed rate. •Material=SAE 4140 (220BHN) •Diameter of tool=10mm, •V=120m/min •Drilling depth=20mm •Blind hole •Wet cutting Surface finish in external turning TOPCAP Competitor f=0.04 f=0.06 •Rz=5.59µm ••Rz=5.59µm Rz=5.59µm f=0.10 •Rz=11.79µm •Rz=11.79µm TOPCAP Competitor Interference between insert and workpiece in face turning •Material=SAE 1045 (220BHN) •V=150m/min •f=0.1mm/rev •Ap=0.5mm •Dry cutting Scratch No scratches TOPCAP Technical Guide •Material=SAE 1045 (220BHN) •V=150m/min •f=0.1mm/rev •Ap=0.5mm •Wet cutting Surface finish (Ra) Surface finish in drilling Competitor TD 35 Technical Guide  Tool life comparison Drilling & chamfering on tool steel •Holder: TCAP 14R-2.25D •Insert: XCMT 070304 TC TT9030 Part •Tool body •SAE4340 (34HRC) Cutting parameters •Drilling: 1200rpm (D=14mm) f=0.05mm/rev d.o.c=23mm Wet cutting •Boring & Chamfering: V=180m/min f=0.2mm/rev Ap=0.5mm Wet cutting Tool life (pcs/edge) TOPCAP 120pcs 40pcs Competitor TT9030 Turning on steel •Holder: TCAP 12R-2.25D •Insert: XCMT 060204 TC TT9030 Material •SAE 4140 (220BHN) Cutting parameters •V=180m/min •f=0.1mm/rev •Ap=0.7mm •Wet cutting Tool life (min) 125min 60min Competitor TT9030 Turning on stainless steel •Holder: TCAP 12R-2.25D •Insert: XCMT 060204 TC TT8020 Material •316 stainless steel (200BHN) Cutting parameters •V=130m/min •f=0.1mm/rev •Ap=0.7mm •Wet cutting Tool life (min) 70min 42min Competitor TT8020 Technical Guide Turning on stainless steel TD 36 •Holder: TCAP 12R-2.25D •Insert: XCMT 060204 TC TT9030 Material •GG25 (200BHN) Cutting parameters •V=180m/min •f=0.1mm/rev •Ap=0.7mm •Wet cutting Tool life (min) 20min 15min Competitor TT9030 Technical Guide  Chip control range Alloy steel (AISI: 4140, 220BHN), Vc=120m/min Feed rate (mm/rev) TOPCAP 0.20 0.15 0.12 0.13 0.13 0.13 0.13 0.13 0.11 0.10 0.09 0.08 0.06 0.04 0.02 8 10 12 14 16 20 25 32  Chip Diameter of tool (mm) control range for turning operations D.O.C(mm) Carbon steel (220BHN), Vc=150m/min 5.5 4.5 3.5 3.0 XCMT 0401 XCMT 0803 XCMT 0502 XCMT 10T3 XCMT 0602 XCMT 1304 XCMT 0703 XCMT 1705 2.5 2.0 1.5 1.0 0.5 0.2 Feed rate(mm/rev) 0.02 0.05 0.1  Radial 0.15 0.2 0.25 0.3 0.35 0.4 adjustment (Off-center drilling) (mm) Holder TCAP 08 TCAP 10 TCAP 12 TCAP 14 TCAP 16 TCAP 20 TCAP 25 TCAP 32 - Drill dia. Dmin Dmax 8 10 12 14 16 20 25 32 7.86 9.82 11.82 13.80 15.76 19.80 24.80 31.80 8.35 10.60 12.60 14.60 16.50 20.60 25.80 33.00 Technical Guide Radial adjustment is dependent on drill diameter TD 37 Technical Guide Substitute the existing solid drill, boring bar and lathe turning holder, the TOPCAP has been purposely designed to fulfill multi-function machining from drilling to lathe operations. It is capable of handling various grooving operations by adding a set of uniquely designed inserts and holders. TOPCAP  Application External grooving External turning Internal turning Internal grooving  Features - Can use both new and existing inserts - Cutter protects alternate cutting edge - Smooth chip evacuation with internal coolant system - Cost saving – holder indexes 2 different insert types  Cutting test Vibration None Fair Chip Good Fair TaeguTec – TOPCAP groove Competitor A Surface roughness  Recommended - Machine: CNC lathe - Material: S45C - Coolant: Internal - Holder: TCAP 12R-2.25DN-GV - Insert: XCMT 06R-250020GV TT9030 - Depth: 1.5mm - Cutting condition: V=120 [m/min], f=0.1 [mm/rev] cutting conditions TD 38 Feed (mm/rev) Technical Guide Chip control range for XCMT-GV 0.3 Grooving (Material: SAE4140 (220BHN), V=120m/min) 0.25 0.2 0.15 0.1 0.08 0.06 0.04 0.02 XCMT XCMT XCMT XCMT XCMT XCMT XCMT 05-GV 06-GV 07-GV 08-GV 10-GV 13-GV 17-GV Technical Guide  Setting instructions for TBTA 3... / 5... / 7... / 9...series Setting the diameter when indexing and replacing inserts 5 7 1 3 Adjust screw 4 6 2 T-DEEP 1. Head shank 2. Outer cartridge & lock screw 3. Inner cartridge & lock screw 4. Center cartridge & lock screw 5. Guide pad & lock screw 6. Sub guide pad & lockscrew 7. Guide pad protector & lock screw STEP 1: Slide the Guide Pad (5) forward as shown in the diagram - locate the lock screw (5) as shown and tighten STEP 2: Loosen the adjust screws and the lock screw of the outer cartridge (2) STEP 3: Firmly push the outer cartridge toward the center of the head STEP 4: Slightly tighten the lock screw (2) and adjust the diameter with the two adjust screws STEP 5: When adjustment is completed, firmly tighten the lock screw (2) Replacing inserts: Clean insert pockets carefully and remove even the smallest foreign particles from insert pocket. Fasten insert securely in the cartridge and ensure it is completely seated. Replacing guide pad: Guide pad pockets are precisely produced and are back tapered, therefore the guide pads may be reversed and used again when excessive wear occurs on the corner. Guide pads are ground to size for immediate use. Use the correct spanner when attaching or detaching the drill head from boring bar. Use of a pipe wrench or other improper equipment will permanently damage the drill head shank, threading and boring bar threads. Note: Although lock screws have been treated with an anti-friction lubricant, please re-apply a suitable anti-friction lubricant regularly to avoid "lock-up". Technical Guide Special precaution: TD 39 Technical Guide  Cartridge style drill head diameter setting instruction In the final inspection, the Drill Head diameter is set and inspected with a master insert. However, the inserts in the market have a tolerance fluctuation so each time you change or index the insert, the diameter must be adjusted as per the following method. T-DEEP Note: When a corner change is made on the insert, it must be adjusted to the correct size or damage can be caused to the head, body or work piece material. 1. Remove the inner cartridge to avoid interference with the guide screw. 2. The dimensional guide pad must be slid forward to measure the diameter. Loosen the lock screw and slide the guide pad forward Retighten the lock screw at the measuring position 3. Measure the diameter with a micrometer. We recommend setting the tool diameter at h8 tolerance to the cutting diameter. If the diameter is incorrect, go to step 4 below. If it's correct, go to step 5 below. 4. Adjust the outer cartridge  First loosen the lock screw of the outer cartridge and then tighten it slightly  Proceed to adjust the diameter, using the 2 adjust screws and measure with a micrometer  When set to the size, retighten the lock screw.  Recheck the diameter with a micrometer. If it is still out of tolerance, repeat the procedure from the step  Technical Guide Note : When a corner change is made on the insert, it must be adjusted to correct size or damage can be caused to the head or workpiece material. TD 40 5. Slide the dimensional guide pad back to the original position and tighten the lock screw. 6. Replace the inner cartridge and tighten the lock screw. Note : Please check all the lock screws are firmly tightened as they may come loose if vibration occurs during drilling. ume ( ) Coolant Volume L/min Technical Guide  Recommended coolant volume & pressure ( ( )(L/min) Coolant volume ( ) f/cm2) Coolant pressure(kg ) ( Coolant pressure (kgf/cm2) ) Coolant volume (L/min) Coolant Volume L/min T-DEEP Coolant Volume L/min Small diameter Coolant volume Volume (L/min) Coolant L/min Coolant pressure (kgf/cm2) Coolant Volume L/min r ete iam ll d a Sm Diameter (mm) Coolant Volume L/min Diameter (mm) G.P.M(Volume)  Recommended power(kw) & thrust force Coolant Volume L/min Power Thrust force G.P.M(Volume) Alloy steel(HB300) V=100m, f=0.25mm Alloy steel(HB300) V=100m, f=0.25mm Carbon steel(HB200) V=100m, f=0.25mm Carbon steel(HB200) V=100m, f=0.25mm G.P.M(Volume) Diameter (mm) Diameter (mm) Technical Guide TD 41 Technical Guide  Grades combination for ISO applications Grades ISO Range 10 15 20 25 30 35 TB20X T-DEEP P TB25X TB25X M TB33X K TB27X N TB27X S TB27X - Put a request coating No. at the end of grade TB__3 : TiAlN coated TB__4 : TiCrAlN coated  Deep hole drilling systems Technical Guide Single tube system TD 42 40 Double tube system Technical Guide  Calculation guidelines Application: Drill dia: Hole tolerance: Surface finish: Coolant: BTA & BTS Type 12.6 - 65.0mm IT9 Ra 2µm Neat or soluble oil T-DEEP Min hole dia Nominal drill dia Max hole dia Bushing h6 Tolerance on drill head } Oversize of hole G6 Tolerance guide bush Nominal drill dia = Min hole dia + 2/3 X (Max hole dia - Min hole dia) Max hole dia - Tool dia>0.05mm Finish ground to the desired diameter to tolerance ISO h6. *Normally the drill diameter is set at the lower limit plus (+) two thirds (2/3) of the tolerance.  G6 tolerance (for guide bush) Guide bush dia (ømm) Tolerance (mm) 10.01-18.0 18.01-30.0 30.01-50.0 50.01-65.0 +0.006 - +0.017 +0.007 - +0.020 +0.009 - +0.025 +0.010 - +0.029  h6 tolerance (for drill dia) Tolerance (mm) 10.01-18.0 18.01-30.0 30.01-50.0 50.01-65.0 -0.006 - 0 -0.013 - 0 -0.016 - 0 -0.019 - 0 Technical Guide Drill dia (ømm) TD 43 Trouble Shooting  Deep hole drilling trouble shooting guide No. Problem Technical Guide 44 Stringy chips  Incorrect tip geometry  Lack of uniformity in workpiece material  Faulty feed mechanism (likely to occur with hydraulic feed system)  Cooling contaminated with fines  Chemical affinity between workpiece and carbide  Chipped cutting edge  Feedrate too low  Amend chip breaker  Adjust with speed & feed or amend CB  Consult with machine builder or sales engineer  Clean coolant  Check possibility of changing grade  Replace drill  Increase feed 2 Chips too large T-DEEP  Check grade charts for guidelines  Increase coolant supply  Correct tool geometry  Correct misalignment  Contact machine builder or tool manufacturer  Consult with tool manufacturer  Change bushing  Dull tool  Inadequate coolant  Contaminated coolant Carbide tip  Guide bush tolerance too tight 5 breakage  Misalignment of shank and spindle  Tool geometry error  Material variation  Hone cutting edges if required  Check volume and pressure  Check coolant  Replace if necessary or undersize drill  Correct misalignment  Correct geometry  Try to adjust by altering speeds and feeds Short tool life  Improper speed or feed  Incorrect carbide grade  Worn guide bushes  Excessively warm coolant  Incorrect cutting fluid  Misalignment of shank and spindle  Tool geometry error  Material variation  Adjust accordingly  Choose proper grade for material  Replace guide bush  Check coolant temperature & system  Replace if possible  Correct misalignment  Correct geometry  Try to adjust by altering speeds and feeds Poor surface finish  Misalignment  Inadequate dampening of shank causing vibration  CB too far above or below center line  Faulty cutter or guide pad geometry  Misalignment between workpiece and drill  Workpiece deflection  Excessive vibration  Tool geometry error  Cutting speed too low  Feed too light especially in hardened material  Uneven feed  None of above or unsolved problems  Check and adjust  Provide vibration dampers  Correct chip breaker  Correct geometry  Correct misalignment  Improve clamping and rigidity  Contact tool or machine manufacturer  Correct geometry  Increase cutting speed  Increase feed  Correct feed mechanism  Contact tool manufacturer 6 TD  Adjust speeds & feeds or amend CB  Consult machine builder or sales engineer Erratic chip pattern  Lack of uniformity in workpiece material  Faulty feed mechanism (likely to occur with hydraulic feed system)  Inncorrect carbide grade  Chips jamming because of inadequate coolant supply  Pressure or incorrect tool geometry  Misalignment of shank and spindle  Excessive vibration due to insufficient workpiece/tool rigidity  Wrong choice of coolant  Under or oversized guide bushing Chips too small 4 Solutions  Adjust speed and feed  Amend chip breaker  Use correct geometry  Correct misalignment  Try to adjust by altering speeds and feeds  Change bushing  Center workpiece  Adjust speed and feed  Amend chip breaker  Correct misalignment or change bush 1 3 Causes  Improper cutting conditions  Chip breaker or CB radius too small and deep  Faulty tool geometry  Misalignment of shank and spindle  Material variation  Loose or oversize guide bushes  Poor starting conditions (workpiece not centered)  Improper cutting conditions  Chip breaker or CB radius too large and shallow  Oversized guide bush or guide bush misalignment 7 Tailor-made Order Form  Deep hole drilling order form Campany name : Inquiry number : Address : Inquiry date : Contact person : Customer No : Workpiece Tool (If possible,please attach a drawing) Drill head Product name Hole diameter(ø) Hole depth(drilling length) No. of holes Tolerance(of hole) Surface finish(Rz,Ra...) Deviation(mm/100) Straightness(mm/100) Drill diameter(ø) Thread Brazed Indexable Coating Coating type • Solid drilling • Counterboring Cutting brazed angle* indexable Pre-bored size(per side) (mm) (mm) Material Material(DIN,AISI,JIS...) Hardness(HB,HS,HRC...) Condition * Annealed Quenched Tempered Cast  Other  Bottom finishing * • Trepanning Core size(ø) Tube inner dia(ø) Tube outer dia(ø) Machine Machine supplier name Machine type/model Rigidity Date of manufacture Retrofitted Double rotation(TR/WR) Rotating workpiece(WR) Rotating tool(TR) Safety devices Motor power  Please (mm) Inner Outer  Adjustable Direct mount  Coated Uncoated TiN TiAlN Other   20˚ 45˚  Nomal angle Close angle (mm) Fullball R Flatbottom R Corner R Compound R  (mm)  (mm) (mm) Tube Good Normal Outside dia(ø) Total length(L) Internal thread External thread Tube thread Inner tube length Inner tube slit Bad NC lathe M/C Tool and workpiece   Other (kw) (mm) (mm)  4 Starts 2 Starts 1 Start 1 end Both ends (mm) 1 end Both ends Drilling system Single tube system Double tube system Type of coolant Coolant supplier name Water based Oil based Coolant pressure Coolant volume T-DEEP Soluble  Emulsion   STS DTS    (bar) (L/min) Boring conditions Through hole drilling Blind hole drilling Cross hole drilling * (bar) (L/min) sketch your drilling application Quantity per year: Present performance status: grade,tool life,etc: Cutting data: Technical Guide General Information Production Vc= f= m/min, mm/rev, N= F= rpm mm/min TD 45 Technical Guide  Hole tolerance Diameter, D(mm) >D _ 3 6 10 18 30 ≤D 3 6 10 18 30 40 40 50 50 65 65 80 80 100 100 120 120 140 140 160 160 180 Technical Guide 180 200 TD 46 200 225 225 250 Tolerance class (µm) F8 G6 G7 H6 H7 +180 +85 +100 +34 +45 +60 +24 +28 +39 +12 +16 +20 B10 +8 +12 +6 +10 +14 +25 +40 +2 +2 0 +188 +100 +118 +48 +60 +78 +32 +38 +50 +18 +22 +28 +12 +16 +8 3 10 C9 C10 D8 D9 D10 E7 E8 E9 +60 +60 +20 +20 +20 +14 +14 +14 F6 +6 F7 +6 +6 +4 0 +208 +116 +138 +62 +76 +98 +40 +47 +61 +22 +28 +35 +14 +20 +9 30 +70 +70 +30 +30 +30 +20 +20 +20 +10 +10 +10 +80 +80 +40 +40 +40 +25 +25 +25 +13 +13 +13 +4 +5 +5 0 0 H8 0 H9 H10 T-DEEP 0 0 +12 +18 +30 +48 0 0 0 0 +15 +22 +36 +58 0 0 0 0 +220 +138 +165 +77 +93 +120 +50 +59 +75 +27 +34 +43 +17 +24 +11 +18 +27 +43 +70 50 +95 +95 +50 +50 +50 +32 +32 +32 +16 +16 +16 +6 +6 0 0 0 0 0 +244 +162 +194 +98 +117 +149 +61 +73 +92 +33 +41 +53 +20 +28 +13 +21 +33 +52 +84 80 +110 +110 +65 +65 +65 +40 +40 +40 +20 +20 +20 +7 +7 0 0 0 0 0 +270 +182 +220 120 +120 +120 +119 +142 +180 +75 +89 +112 +41 +50 +64 +25 +34 +16 +25 +39 +62 +100 +280 +192 +230 +80 +80 +80 +50 +50 +50 +25 +25 +25 +9 +9 0 0 0 0 0 160 +130 +130 +310 +214 +260 200 +140 +140 +146 +174 +220 +90 +106 +134 +49 +60 +76 +29 +40 +19 +30 +46 +74 +120 +320 +224 +270 +146 +100 +146 +60 +60 +60 +30 +30 +30 +10 +10 0 0 0 0 0 +200 +150 +150 +360 +257 +310 +220 +170 +170 +174 +207 +260 +107 +126 +159 +58 +71 +90 +34 +47 +22 +35 +54 +87 +140 +380 +267 +320 +120 +120 +120 +72 +72 +72 +36 +36 +36 +12 +12 0 0 0 0 0 +240 +180 +180 +420 +300 +360 +260 +200 +200 +440 +310 +370 +208 +245 +205 +125 +148 +185 +68 +83 +106 +39 +54 +25 +40 +63 +100 +160 +280 +210 +210 +145 +145 +145 +85 +85 +85 +43 +43 +43 +14 +14 0 0 0 0 0 +420 +330 +390 +260 +230 +230 +440 +355 +425 +280 +240 +240 +420 +375 +445 +242 +285 +355 +146 +172 +215 +79 +96 +122 +44 +61 +20 +46 +72 +115 +185 +260 +260 +260 +170 +170 +170 +100 +100 +100 +50 +50 +50 +15 +15 +440 +395 +465 +280 +280 +280 0 0 0 0 0 Technical Guide  TM-REAM advantages - High speed / high production - No setup time - Low runout (maximum 3 ) - One shank can be used for a range of hole diameters and various types of cutting edges - Durable, due to the combination of a carbide head and steel shank - No fear of losing any clamping parts which may fall during indexing - Internal coolant directed optimally to the cutting edges (see illustration) - Possibility of applying Minimal Quantity Lubrication (MQL) systems - No need to remove the tool, due to frontal indexing  Reamer TM-REAM flutes Straight flutes Left-hand Used mainly for blind holes, usually have a positive rake on the leading chamfer. The chips can flow freely when flushed out. Used only for through holes. The left-hand flute pushes the chips forward. They do not flow along the flutes and do not damage surface quality. The helical flute operation is more stable than that of the straight flute. Therefore, it has less tendency to vibrate. Left-hand reamers should be used for interrupted and irregular holes.  Lead geometry parameters code key When choosing a reamer, it is important to select a lead geometry which covers the reaming allowance. b b β° Lead code β° A B C D E F G X 45° 25° 45° 30° 45° 90° 75° γ° a(mm) b(mm) 0.5 1.07 0.5 8° 0.75 0.5 4° 1.85 0.2 0.15 Specially tailored (undesignated) allowance (Based on diameter) Reaming allowance is the stock material which should be removed by reaming. It is recommended to leave different reaming allowances depending on the workpiece material and the pre-hole quality. Pre-hole should be smooth and straight, without deep scratches on it. Hole (Ømm) <9.5 9.5-11.5 11.5-13.5 13.5-16 16-32 >32 Steel and cast iron 0.07-0.10 0.07-0.15 0.10-0.20 0.10-0.30 0.10-0.30 0.20-0.40 Aluminum and brass 0.07-0.10 0.10-0.15 0.15-0.25 0.20-0.30 0.20-0.40 0.20-0.50 Material Technical Guide  Reaming a γ° γ° β° a TD 47 Technical Guide  Assembly TM-REAM 1 B8: 12-14N •m B7: 10-12N •m B6: 8-10N •m  First 4 720°  2  5 assembly - Clean the toolholder pocket (Fig. 1) - Clean the reamer head clamping cone - Insert the clamping screw into the holder and rotate it 2-3 turns in a clockwise direction (Fig. 2) - Clamp the reaming head on the screw. Please note that it can be assembled only in a specific position relative to the screw (rotate the head until locating the correct position) (Fig. 3) - Manually rotate the reaming head until it sits firmly in the pocket Tighten with the special key: 12-14 N·m (the toolholder should be clamped into an adapter) (Fig. 4) - Make sure there is no face gap between the toolholder and the reaming head (Fig. 5) Technical Guide  Indexing TD 48 - Release the reaming head with the key, turning in a counter-clockwise direction until it rotates freely - Rotate by hand another one turn - Remove the reamer head from the tool. The clamping screw should remain inside!!! - Clean the pocket of the toolholder (Fig. 1) - Clean the cone on the reamer head - Clamp the reaming head on the screw. Please note that it can be assembled only in one position relative to the screw (rotate the head until locating the correct position) (Fig. 3) - Manually rotate the reaming head. In the beginning it should rotate without the screw and then (after 1/6 of a turn) it should engage with the screw. Rotate until it sits firmly in the pocket If the screw is rotating together with the reaming head from the beginning, remove the reaming head and open the screw another one turn - Tighten with the special key: 12-14 N·m (the toolholder should be clamped into an adapter) (Fig. 4) - Make sure that there is no face gap between the toolholder and the reaming head (Fig. 5) 3 Technical Guide  Application range TB-REAM is suitable for high precision applications and tight hole diameter tolerance (IT≥5). The high surface quality and accurate bore geometry achieved with theTB-REAM very often saves necessity for additional machining operations such as honing or internal grinding that had been previously required. The reamer body has carbide guiding pads brazed on it. The adjustment system guarantees a user-friendly and easy process for adjusting the required diameter and back taper control. A strong and reliable insert clamping mechanism in the pocket, together with nickel plated body ensure long tool life. The TB-REAM reamers were designed for high speed reaming. This feature is most advantageous in mass production applications. When large batches are involved, the indexable insert with the double cutting corner provides high productivity and an extremely economical solution. TB-REAM  Bore types  Front Through hole coolant Blind hole coolant A reamer body for a through hole includes coolant hole outlets located behind the insert, which direct the chips forward to prevent scratching the hole surface. Moreover, extra holes are located behind the pads in order to convey lubricant and reduce the friction between the pads and the hole’s surface. For blind hole applications the coolant outlet is located at the front end of the tool. The blind hole causes the coolant with the chips to flow backwards. angles and cutting geometries  Indexing Lead L (mm) I Use LL A 3 1 High surface quality at lower cutting conditions 666 LL B 1.3 C 0.55 D 0.6 Universal use Ideal for high speed cutting conditions 0.5 L Suitable for aluminum and brass LL Geometry for blind hole and low feed rates standard cutting angles are available: Lead Angle (°) LLL 00 For cast iron applications 6 66 06 LLL 12 Use General use LLL L LL Technical Guide 3 0.2 For stainless steel and aluminum TD 49 Technical Guide  Insert indexing TB-REAM 1) Rotate the adjustment screws 1 turn counter-clockwise (CCW).  Setting 2) Rotate the clamping screw CCW from the top and/or clockwise from the bottom, turning both sides simultaneously. 3) Remove the insert. Clean the insert and the pocket. Place the sharp edge on the outer position. 4) Press the insert against the back stopper and the two adjustment pins. Tighten the clamping wedge by rotating the clamping screw CW from the top or CCW from the bottom. process There are two optional setting mechanisms: a comparison micrometer and a setting device. Comparison micrometer with dial gauge - Low cost solution and readily available for small workshops - Prone to damage the cutting edge therefore not recommended Setting device, located between centers - Shorter setting time - Modular system - Higher accuracy - No risk of damaging the cutting edge TaeguTec designation: TB-SETTING L450 Technical Guide Using a comparison micrometer TD 50 1) Set the micrometer to the correct diameter using the precision blocks. 2) Adjust the frontal diameter and back taper by turning the adjustment screw C.W. The frontal diameter should be larger than the rear diameter by approximately 0.015 mm. Using a setting device TaeguTec is offering a mechanical setting device. It enables an easy, quick and accurate adjustment. Due to its modular construction, it can be used for standard as well as for special and more complicated reamer adjustments. Technical Guide  Using a setting device TB-REAM 1. Place the reamer between fixture’s centering pins 2. Use the pad as a zero reference to set the indicators to zero 3. Rotate and position the insert against indicators 4. Tighten the adjustment screws in a clockwise direction 0 5. Adjust the frontal side of insert to +15/20 microns +5/+10 +15/+20 0 6. Adjust the back side of insert to +5/10 microns Technical Guide TD 51 Reamer Hole Tolerance Table  Hole tolerance Diameter D(mm) >D ≤ D B10 D8 D9 D10 E7 E8 E9 F6 F7 F8 G6 G7 H7 H8 +100 +34 +60 +20 +45 +20 +60 +20 +24 +14 +28 +14 +39 +14 +12 +6 +16 +6 +20 +6 +8 +2 +12 +2 +6 0 H6 +10 0 +14 0 3 3 6 +180 +100 +118 +48 +140 +70 +70 +30 +60 +30 +78 +30 +32 +20 +38 +20 +50 +20 +18 +10 +22 +10 +28 +10 +12 +4 +16 +4 +8 0 +12 0 +18 0 6 +208 +116 +138 +62 10 +150 +80 +80 +40 +76 +40 +98 +40 +40 +25 +47 +25 +61 +25 +22 +13 +28 +13 +35 +13 +14 +5 +20 +5 +9 0 +15 0 +22 0 10 +220 +138 +165 +77 18 +150 +95 +95 +50 +93 +50 +120 +50 +50 +32 +59 +32 +75 +32 +27 +16 +34 +16 +43 +16 +17 +6 +24 +6 +11 0 +18 0 +27 0 18 +244 +162 +194 +98 30 +160 +110 +110 +65 +117 +149 +61 +65 +65 +40 +73 +40 +92 +40 +33 +20 +41 +20 +53 +20 +20 +7 +28 +7 +13 0 +21 0 +33 0 +270 +182 +220 40 +170 +120 +120 +119 +142 +180 +75 +280 +192 +230 +80 +80 +80 +50 50 +180 +130 +130 +89 +50 +112 +41 +50 +25 +50 +25 +64 +25 +25 +9 +34 +9 +16 0 +25 0 +39 0 +310 +214 +260 65 +190 +140 +140 +146 +174 +220 +90 +146 +100 +146 +60 +320 +224 +270 80 +200 +150 +150 +106 +134 +49 +60 +60 +30 +60 +30 +76 +30 +29 +10 +40 +10 +19 0 +30 0 +46 0 T7 50 65 Diameter D(mm) >D ≤ D Technical Guide C10 _ 40 52 Tolerance (µm) C9 +180 +85 +140 +60 30 TD T-REAM Tolerance (µm) H9 H10 +40 0 JS6 ±3 JS7 M6 M7 N6 N7 P6 P7 R7 S7 ±5 0 -6 K6 0 -10 K7 -2 -8 -2 -12 -4 -10 -4 -14 -6 -12 -6 -16 -10 -20 -14 -24 U7 X7 – -18 -28 -20 -30 _ 3 +25 0 3 6 +30 0 +48 0 ±4 ±6 +2 -6 +3 +9 -1 -9 0 -12 -5 -13 -4 -16 -9 -17 -8 -20 -11 -23 -15 -27 – -19 -31 -24 -36 6 10 +36 0 +58 0 ±4.5 ±7 +2 -7 +5 +10 -3 -12 0 -15 -7 -16 -4 -19 -12 -21 -9 -24 -13 -28 -17 -32 – -22 -37 -28 -43 10 18 +43 0 +70 0 ±5.5 ±9 +2 -9 +6 +12 -4 -15 0 -18 -9 -20 -5 -23 -15 -26 -11 -29 -16 -34 -21 -39 – -26 -44 18 30 +52 0 +84 0 ±6.5 ±10 +2 -11 +6 -15 -4 -17 0 -21 -11 -24 -7 -28 -18 -31 -14 -35 -20 -41 -21 -48 30 40 +62 0 +100 ± 8 0 ±12 +3 -13 +7 -18 -4 -20 0 -25 -12 -28 -8 -33 -21 -37 -17 -42 -25 -50 -34 -59 +74 0 +120 ± 9.5 ±15 0 +4 -15 +9 -21 -5 -24 0 -30 -14 -33 -9 -39 -26 -45 -21 -51 -30 -60 -32 -62 -42 -72 -48 -78 40 50 50 65 65 80 – -33 -54 -39 -64 -45 -70 -55 -85 -64 -94 -33 -54 -40 -61 -51 -76 -61 -86 -76 -106 -91 -121 -33 -51 -38 -56 -46 -67 -56 -77 – – Tailor-made Order Form T-REAM : Mandatory data field Request reason • New tool Date: • Problem Subsidiary:  Company: Quality: Cycle time: Alternative supplier: Other: Address: Enquiry dead line: Contact person: Existing tool • Maker: • Tool type: • Speed & Feed: • Tool life: • No of teeth: • Coolant type: Workpiece  • Description:  • Hardness:  • Pre-hole size:  • Depth: • Bore type (Tolerance: ) • Quality requirement  Tolerance:  Surface finish(Ra): Roundness: Straightness: Cylindricity: Concentricity: • Clamping information Machine • Model: vertical  • Type:  • Adaption: • Max RPM: • Power: • Spindle accuracy: • Coolant: horizontal multi-spindle Lubricant • MQL • Coolant pressure • Emulsion Tool (Index multi-edge) TM  • Type:  • Diameter:  • Depth of cut: • Coolant: Internal External  • Shank type:  • Holder type: Collet • Adjustable adaptor: Yes • Yearly consumption: Hydraulic No TB(single blade) TS(Solid) Other Technical Guide • Oil • Ratio of mixture Other TD 53 TECHNICAL GUIDE -Milling Nomenclature and Cutter Data Quick Change Cutters CHASE2QUAD TOPSLOT TSC Slotting Cutter Trouble Shooting TE2 TE6 TE9 TE11 TE13 TE14 Nomenclature and Cutter Data  Milling cutter Peripheral cutting edge (main cutting edge) Cutting edge inclination Face relief angle Chamfering Corner Cutter height Axial rake angle Entering angle Facing cutter edge (Wiper insert) Peripheral cutting edge angle (Lead angle) Radial rake angle  Cutting formulas  Cutting speed π× D × N V = (m/min) 1000  Feed F = f × Z × N (mm/min) F f = (mm/tooth) Z·N  Power Technical Guide TE 2 Hp = Q = calculation Q × Ks (kw) 60 × 102 × η W = V : Cutting speed (m/min) D : Cutter diameter (mm) π: 3.14 N : Spindle speed (rpm) F : Table feed (mm/min) f : Feed per tooth (mm/tooth) Z : Number of insert W 0.75 L × F × ap ap × f × V × L× Z = 1000 π× D W : Power(kw) Hp : Horse power Q : Chip removal (cm3/min) L : Width of cut (mm) F : Table feed (mm/min) ap : Axial depth of cut (mm) Ks : Specific cutting force (kg/mm2) For Ks, see page TE3 η : Machine efficiency (0.5 - 0.75) Effective diameter Peripheral relief angle True rake angle Nomenclature and Cutter Data Specific cutting force(Ks) Material Carbon steel Alloy steel Stainless 300 series Stainless 400 series Carbon steel Steel Alloy steel casting Stainless steel Gray cast iron Nodular cast iron Aluminum Copper Angle Specific cutting force (Kg/mm2) 220 230 250 230 275 325 300 210 220 250 120 - 140 125 - 180 100 - 140 140 - 200 Hardness (HB) 100 - 150 120 - 180 200 - 250 120 - 200 250 - 300 < 225 150 - 250 150 - 300 150 - 300 125 - 300 - nomenclature κ : Entering angle γA : Axial rake angle γR γT : True rake angle : Radial rake angle Technical Guide TE 3 Nomenclature and Cutter Data  Choosing cutter diameter The best cutter diameter (ØD) should be selected upon the workpiece dimensions (a). D ≅ 1.3 - 1.5 WOC WOC If the machine power is limited or the workpiece is too wide, select a cutter diameter that takes more than two passes or that matches the power of machine. When the appropriate cutter diameter is not available, WOC proper cutter position will give good results. WOC = 3/4D  Cutter position  Conventional milling (Up milling) The feed direction of the workpiece is opposite to that of cutter rotation. The chip thickness starts at zero and increases to the maximum at the end of cut. In Up milling, the insert wear is severe with excessive friction and high temperature caused by the rubbing or burnishing effect in the insert. Technical Guide  Channel milling (Up and down milling) The cutter position is in the middle of the workpiece and the cutting force is alternately changed in the radial direction. It causes vibration when the spindle structure is weak. Channel milling is a combination of conventional and climb milling. When channel milling is necessary use positive geometry cutters at reduced speeds and feeds with coolant. TE 4  Climb milling (Down milling) Climb milling is normally recommended. The feed direction of workpiece is the same as that of cutter rotation. So the chip thickness starts from the maximum and decreases to zero at the end of cut. The tool life is long with less heat and minimum work hardening of workpiece. Nomenclature and Cutter Data  Rake angle - Easy chip removal -A  pply to all materials under 300 brinell hardness Especially on light setups and low HP 40 Taper or smaller milling machines. Positive -A  pply to cast iron which gives short chip. Negative - Positive rake angle type is popular and this increases machine efficiency and reduces heat generation. It is possible to reduce machine damage compared to machining with negative rake angle insert, which require high power consumption. - For milling hard materials that require high edge strength, negative rake angle inserts are preferable.  Selection of entering angle Entering angle of face mill is usually less than 90° for easy chip flow and increased edge strength. Entering angle Generally, entering angle are 45° and 75° with the most popular entering angle being 45°. This is economical and enables increased efficiency of power consumption in milling from finishing to roughing. 45° entering angle is suitable for heavy cutting and provides excellent cutting edge strength. With 45° entering angle, axial cutting force is nearly equal to radial cutting force; this is very effective for long overhang milling. When corner damage is likely to occur in milling of cast iron, 45° entering angle is recommended. When it is difficult to position the cutter owing to workpiece shape, bigger entering angles are preferable. Technical Guide FA:Axial cutting force FR:Radial cutting force TE 5 Quick Change Cutters  Multi-bolt type  Light weight cutter Quick change cutters are separated into two parts when the cutter diameter is over 200mm - the cutter and adapter. The adapter is mounted on the main spindle of the machine and the cutter is then mounted on the adapter. The weight of cutter is usually half of total cutter weight, this results in reduced weight load & improved safety.  Save changing time Change over times can be reduced by up to 20% compared to conventional cutters.  Excellent surface finish The accurate insert and minimum cutter run-out guarantee excellent surface finish. Capable of very high feed rates. Setting plate Setting plate  Simple & rigid design Simple design includes a wedge & wedge screw. Body Body Surface Surface plateplate  Setting plate Setting plate Body Technical Guide Surface plate TE 6 Designation SP03 - I SP04 - I SP05 - I SP06 - I SP08 - I SP10 - I SP12 - I SP14 - I SP16 - I D 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Dimension (mm) D2 D1 47 60 82 96 160 137 210 187 274 250 314 290 354 332 d 85 105 130 165 203 253 318 358 403 Quick Change Cutters Adapter Fig.1 Fig.2 Designation D d QA 08 K/M 198 47.625 QA 10 K/M 248 60 QA 12 K/M 313 60 QA 14 K/M 353 60 QA 16 K/M 398 60 • K: Adapter with setting key (Fig.1) M: Adapter without setting key (Fig.2) d1 63.5 133.35 146.05 215.9 254.0 Dimension (mm) d2 d3 d4 101.6 114.3 101.6 177.8 101.6 177.8 215.9 101.6 177.8 260.4 101.6 177.8 304.8 M M16 X 40 M16 X 50 M20 X 50 M20 X 50 M20 X 50 N 4 4 4 6 6 Weight (Kg) 10 15 19.7 24 29 Technical Guide TE 7 Quick Change Cutters  Double face contact type-Quick & easy  Light weight cutter Reduced cutter weight almost half of conventional one achieves easy handling & improved safety Ød2  Quick and easy system Quick and easy system with optimized design for reducing tool change time º 45 Adaptor  Double face contact Excellent repeatability and accuracy High stiffness Ød1 H1 H2 5 Contact surface Ød1  Adaptor Ød4 ØD Ød 25 45 º Ød2 Cutter Ød 5 Ød 10 15 H1 H2 TE 8 5 Ød Ød4 ØD Ød 25 Ød1 10 20 15 H2 Designation D 248 313 353 398 TQCA D250 TQCA D315 TQCA D355 TQCA D400 10 d1 101.6 101.6 101.6 101.6 d2 177.8 177.8 177.8 Dimension (mm) d3 d4 d5 158 190.37 219 195 230.33 273.5 235 270.33 313.5 280 315.33 358.5 Ød4 ØD d 60 60 60 60 15 20 20 50.8 20 50.8 H1 Ød 25 Technical Guide 45 º Ød2 Clamp (N: Number of clamp 88.9 N 4 4 8 8 H1 72 77 77 77 88.9 H2 48 42 42 42 Weight (kg) 17.56 39.05 55.53 68.47 Technical Guide  Setting instructions CHASE QUAD 1.Height gauge 2.Insert 3.Insert screw 4.Adjust wedge 5.Wedge screw 6.T-Wrench � Move the adjust wedge to (4) its bottom-most position by rotating the wedge screw ( 5) clockwise. � Mount new cutting edge of insert. Make sure that the insert pocket is thoroughly cleaned before mounting insert. � Measure the Runout of the cutter when all inserts are mounted and select the highest insert as a reference. � Set the height of cutter, raising the reference insert by turning the wedge screw(5) counter clockwise. ※Please avoid using too much force. ※Please fix the insert screw(3) completely as readjustment is not expected once it is done. ※Please ensure that insert edge does not get damaged during setting. Use optimum dial pressure only. ※Increase height by 0.01mm at least from the highest insert. � Adjust axial Runout of the l 1 remaining inserts with the same process as used with the reference insert. � If it is beyond the l 3 acceptable range, please reset it with the orderof ����� � Runout adjustment is completed.(you don’t have to clamp the insert screw(3) anymore once it is fixed.) Technical Guide ※Please note that max adjustment height should not exceed 0.1mm(.004") � Adjust Runout in the l 2 range of 0.005mm rotating the wrench gradually. TE 9 Technical Guide  Gauge user guide CHASE Yes  Special No precautions - While loading a new insert corner, ensure that the adjust wedge is in the bottom-most position Bottom out the adjust wedge completely before unclamping the insert from cutter - Clean the insert and pocket thoroughly before mounting fresh insert /corner - While assembling adjust wedge onto cutter body, please ensure that the adjust wedge is tightened until it reaches the bottom II I No Technical Guide III TE 10 Yes No QUAD Technical Guide  Part names TOPSLOT L-Wrench Height gauge Cartridge Clamp screw Adjust screw Insert screw Insert  Setup instructions  Disk type Datum plane X B H B=Target Width H=Cutter Height X=Adjustment value  Flange X Datum plane X=(H-B)/2 type X A Bottom face B=Target width H=Cutter height X=Adjustment value X B Technical Guide Top face X=(B-A)/2 TE 11 Technical Guide  Setting  Disc procedure type 1. Index unused inserts firmly onto the cartridge 2. Turn the clamping screw 60º-90º turn counter-clockwise 4. Inserts on same cutter face are must be adjusted to same desired value 5. Repeat steps 1- 4 on the opposite side of the cutter face  Flange * Datum plane is bottom plane for flange type cutter 2. For top face set-up, the use of setting plate is mandatory and the height gauge must be reset to ‘0’ 4. Adjust the cartridge to the desired value (A+X) by turning the adjust screw then tighten the clamping screw Technical Guide  Important 12 TOPSLOT ※ To eliminate backlash, adjust the cartridges upward above the designated ‘X’ value * Turn the adjust screw clockwise to descend the cartridge * Turn the adjust screw counter-clockwise to ascend the cartridge type 1. For bottom face inserts, repeat disc type steps 1- 4 TE  . a)Adjust the adjust screw to the 3 desired ‘X’ value by measuring from the datum plane to the cutting edge of the inserts b) Tighten the clamping screw 3. Put the cutter bottom face on the setting plate and turn clamping screw 1/2~1 turns counter-clockwise *Turn the adjust screw 5. Inserts on the same face clockwise to descend the must be adjusted to the cartridges. same desired value *Turn the adjust screw counter-clockwise to ascend the cartridges set-up points - All adjustments must be done on a plain, flat surface - For improved accuracy, remove any foreign substances from the insert and insert pocket surfaces before clamping - ‘X’ value should be equal for both top and bottom faces when adjusting - Width of cut must be adjusted within the range that is the laser-marked on the cutter Ex) WIDTH 10 – 12 WIDTH 20 - 23 - To eliminate backlash, the cartridges must be set upward on both the bottom and top face to achieve desired width Technical Guide  Narrow TSC Slotting Cutter width slotting cutters Metric cutting diameters: 75mm, 100mm, 125mm, 160mm, 250mm Cutting width ranges: 1.6mm 6.35mm Geometry: Positive Rake Applications: Slotting and Sawing Materials: Carbon Steels, Alloy Steels, Stainless Steels, Cast Iron, Aluminum, and Exotics  Recommended Features / Benefits of slotting cutters : - Narrow width applications to 1.6mm - Simple easy-to-mount inserts - Secure insert retention self-positioning insert stopper for repeatability - Drive flange mounting for extra stability - Minimal radial runout - Efficient chip evacuation - Reduced cutting forces - Improved tool life - Economical feed rates for - TSC slotting cutters Rotation TIMC TIMJ Drive flange set recommended for style 2 cutters TIPV DOC Table feed  Recommended feed rates (Based on insert width) (mm) 6.0 W Feed rates are for radial DOC = >1/4 the cutter diameter 5.0 For radial DOC <1/4 the cutter diameter increase feed rates by the following % 4.0 3.0 DOC/Cutter diameter 2.0 1.6 1/4 1/6 1/8 1/10 1/20 Increase feed 0% 15% 30% 45% 100% rate by - > 0.05 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.25 0.30 Feed rate (mm/tooth)  Cutter mounting The use of drive flange sets are recommended to prevent denting of arbor drive keys and to provide added stability during increased metal removal rates.  Insert mounting Manually place insert in pocket and seat in place by using a wooden or plastic hammer. This will ensure self positioning for insert repeatability and minimal radial runout. Pockets must be clean and free of debris prior to installation. Technical Guide  Cutter entry Climb milling enters the workpiece with a thick chip and exits with a thin chip. Honed inserts are recommended. Conventional milling enters the workpiece with a thin chip and exits with a thick chip. Sharp inserts are recommended. Climb milling should be used whenever possible, especially when replacing high speed steel slotting cutters. On machines with backlash eliminators, climb milling is preferred. TE 13 Trouble Shooting Problem Normal flank wear Chipping (Frittering) Built-up edge Technical Guide Notching TE 14 Thermal crack Cause • Most desirable wear • Start from micro chipping • Caused by vibration or bending (Long overhang, Up milling: Burr ,Down milling: Entry shock, Back lash….) • Friction, affinity, heating, pressure… • Fast happening (1/10~1/50 sec): chipping accuracy, bad surface roughness • Cutting speed be low • Bad surface roughness • Work hardening • Burr • Thermal shock (Temperature difference) • Interrupt cutting Solution • High resistance grade • Up cut down cut • Minimize deflection (short overhang) • Reduce entry shock: speed , feed • Tough grade • Change cutter position • Rigid clamping • Strong edge geometry, honing • Reduce friction force (TMP) • Increase cutting speed • Coolant • Sharp cutting edge • Coated grade(TiN) • Honed insert, change DOC • Change lead angle • Reduce feed: minimize burr Technical Guide • Coolant - Enough cooling - Reduce speed • High rake tool TE 15 TECHNICAL GUIDE Nomenclature and Cutting Data TF2 Spindle Speed Table TF6 -Solid End Mills Actual Diameter of Ball Nose End Mill TF8 Trouble Shooting TF9 Nomenclature and Cutting Data  End mill nomenclature  Selection of grade by materials Materials Applications grade of end mill Hardened steels (Hardness <65 HRC) TT5505 Pre-hardened steels, Alloy steels, Carbon steels (Hardness <55 HRC) Stainless steels, Ti-alloy, Super alloy TT5515 / TT5525 Non ferrous material (Al-alloy, Cu-alloy) Graphite and CFRP  Calculation V= π ×D×N 1000 Feed per tooth (mm/tooth) fz = F Z×N Table feed rate (mm/min) F = fz×Z×N Technical Guide Cutting time (min) TF 2 TT6050 for cutting speed, spindle speed and feed Cutting speed (m/min)  Feature UF10, TT9020 Tc = of cutting angle L F  V: Cutting speed (m/min)  D: Diameter of end mill (mm)  N: Spindle revolution (RPM)  F: Table feed rate (mm/min)  fz: Feed per tooth (mm/tooth)  Z: Number of teeth  Tc: Cutting time (min)  L: Length of cut (material length + tool diameter + α) Technical Guide  Effect of cutting length It is necessary to keep the tool overhang to the minimum possible. Rigidity can vary along the cutter length or the length of cut by a factor of three. The shorter the overhang, the better the rigidity and smaller the deflection. :Deflection of end mill P·L 3 3·E·I  Features P L E I :Cutting resistance :Overhang :Modulus of elasticity :Moment of inertia of the teeth Type Shape Feature Square type without center hole Used for general machining including - slotting, side-milling, boring, plunging Square type with center hole Used for general machining including - slotting, side-milling, boring Square type with corner radius Used for high speed milling and radius milling Ball type Used for contour or copy milling  Evaluation reference for regrinding Application Dia. of end mill (mm) Max. flank wear Finishing - Ø10 Ø11 - Ø30 Ø31 - Ø50 0.05-0.10 0.10-0.25 0.20-0.35 Roughing - Ø10 Ø11 - Ø30 Ø31 - Ø50 0.08-0.15 0.15-0.35 0.30-0.45 of peripheral relief angle Concave  For precise outer diameter of end mill  Use flat wheel Flat  Good machinability  2nd relief angle required  For taper of ball end mill Eccentric  Reliable cutting edge & excellent surface finish  Recommended method Technical Guide  Regrinding TF D 3 Technical Guide  Regrinding of end teeth Gash 2nd Relief  Use plain wheel  Use cup wheel  Gash angle: 30 - 45º  Relief angle: 15 - 25º  Number 1st Relief  Use cup wheel  Relief angle: 6 - 15º  Width: 0.5 - 2mm of flutes and section area (based on Ø10) No. of cutting edges 2 3 4 Section shape Core diameter 60% 60% 60% Cross section mass 42mm2 44mm2 47mm2 Section ratio 53.50% 56% 60% 2 flute design Technical Guide  Large chip gullet  Easy chip evacuation  Recommended for slot milling applications  Strong design for heavy duty milling applications TF 4 3 flute design  Large section area better rigidity than 2 flute cutters  3 flutes provide high quality surface finish 4 flute design  4 flute and multi flute cutters provide highest rigidity  Provides high quality surface finish  Recommended for profiling, side milling and shallow slotting Technical Guide  Inspection of cutter run-outs & surface roughness Solid carbide cutters perform best when the cutting edge of each tooth runs true with the cutter axis. When each tooth runs true the work load will be shared and this will optimize performance. Radial and axial run out should be checked using a DTI after each regrind. Put the cutter in a V-block and measure both the peripheral and end tooth run out, also ensure that the cutter is rotated so that each tooth is checked in several positions. If the cutter has centre holes, these can be used to check the cutter between centres. Please refer to the tables on each page of this catalogue for tolerances and permissible run out. Use a "Profilemeter" to check ground surface finish - maximum surface roughness permissible is Rmax6.3. Rough or uneven surface finish of a ground cutter can effect the surface finish of the workpiece and cause premature failure and chipping of the helical cutting edge. BALL STOPPER INDICATOR (AXIAL) INDICATOR (RADIAL) V-BLOCK PLATE PLATE  Parameters for end mill operation Factor Instruction and advice Chuck and end mill run-out  Use rigid and high quality chucking system  Check and minimise end mill run-out Workpiece clamping  Ensure workpiece is firmly and securely clamped  If this cannot be achieved or if vibrations occur - reduce cutting conditions accordingly Cutting fluid and chip evacuation  Maximise coolant flow whenever possible  Always use flood coolant for heavy roughing applications  Please refer to manual for (dry machining conditions - HSM applications) - on hardened steels  Use “air blow” for HSM applications  Always ensure good evacuation of chips from the working area End mill selection  Please ensure the correct cutter is selected - see technical data for detailed information and selection of correct cutter for task, application and material to be machined  Refer to page 115 for more details Cutting conditions  Please refer to recommended cutting condition data in this catalogue  The recommended cutting conditions always refer to optimum conditions if machine rigidity or work piece clamping is not ideal - these cutting conditions should be altered accordingly Overhang of end mill from spindle nose  Always minimise the cutter overhang to the minimum possible  If cutter overhang cannot be reduced - cutting conditions should be altered accordingly Technical Guide Rigidity of machine  Use a rigid machine whenever possible  If rigidity is poor - adjust cutting conditions accordingly TF D 5 Technical Guide  Spindle speed table Diameter Technical Guide D TF 6 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Cutting speed (m/min) 20 30 40 50 60 70 80 90 31,850 21,230 15,920 12,740 10,620 9,100 7,960 7,080 6,370 4,550 3,980 3,540 3,180 2,900 2,650 2,450 2,270 2,120 1,590 1,270 1,060 910 800 710 640 580 530 490 450 420 400 370 350 340 320 300 290 280 270 250 240 240 230 220 210 47,770 31,850 23,890 19,110 15,920 13,650 11,940 10,620 9,550 6,820 5,970 5,310 4,780 4,340 3,980 3,670 3,410 3,180 2,390 1,910 1,590 1,360 1,190 1,060 960 870 800 730 680 640 600 560 530 500 480 450 430 420 400 380 370 350 340 330 320 63,690 42,460 31,850 25,480 21,230 18,200 15,920 14,150 12,740 9,100 7,960 7,080 6,370 5,790 5,310 4,900 4,550 4,250 3,180 2,550 2,120 1,820 1,590 1,420 1,270 1,160 1,060 980 910 850 800 750 710 670 640 610 580 550 530 510 490 470 450 440 420 79,620 53,080 39,810 31,850 26,540 22,750 19,900 17,690 15,920 11,370 9,950 8,850 7,960 7,240 6,630 6,120 5,690 5,310 3,980 3,180 2,650 2,270 1,990 1,770 1,590 1,450 1,330 1,220 1,140 1,060 1,000 940 880 840 800 760 720 690 660 640 610 590 570 550 530 95,540 63,690 47,740 38,820 31,850 27,300 23,890 21,230 19,110 13,650 11,940 10,620 9,550 8,690 7,960 7,350 6,820 6,370 4,780 3,820 3,180 2,730 2,390 2,120 1,910 1,740 1,590 1,470 1,360 1,270 1,190 1,120 1,060 1,010 960 910 870 830 800 760 730 710 680 660 640 111,460 74,310 55,730 44,950 37,150 31,850 27,870 24,770 22,290 15,920 13,390 12,380 11,150 10,130 9,290 8,570 7,960 7,430 5,570 4,460 3,720 3,180 2,790 2,480 2,230 2,030 1,860 1,710 1,590 1,490 1,390 1,310 1,240 1,170 1,110 1,060 1,010 970 930 890 860 830 800 770 740 127,390 84,930 63,690 50,960 42,460 36,400 31,850 28,310 25,480 18,200 15,920 14,150 12,740 11,580 10,620 9,800 9,100 8,490 6,370 5,100 4,250 3,640 3,180 2,830 2,550 2,320 2,120 1,960 1,820 1,700 1,590 1,500 1,420 1,340 1,270 1,210 1,160 1,100 1,060 1,020 980 940 910 880 850 143,310 95,540 71,660 57,320 47,770 40,950 35,830 31,850 28,650 20,470 17,910 15,920 14,330 13,030 11,940 11,020 10,240 9,550 7,170 5,730 4,780 4,090 3,580 3,180 2,870 2,610 2,390 2,200 2,050 1,910 1,790 1,690 1,590 1,510 1,430 1,360 1,300 1,250 1,190 1,150 1,100 1,060 1,020 990 960 Technical Guide  Spindle speed table Diameter Cutting speed (m/min) 100 120 140 150 180 200 250 300 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 159,240 106,160 79,620 63,690 53,080 45,500 39,810 35,390 31,850 22,750 19,900 17,690 15,920 14,480 13,270 12,250 11,370 10,620 7,960 6,370 5,310 4,550 3,980 3,540 3,180 2,900 2,650 2,450 2,270 2,120 1,990 1,870 1,770 1,680 1,590 1,520 1,450 1,380 1,330 1,270 1,220 1,180 1,140 1,100 1,060 191,080 127,390 95,540 76,430 63,690 54,590 47,770 42,640 38,220 27,300 23,890 21,230 19,110 17,370 15,920 14,700 13,650 12,740 9,550 7,640 6,370 5,460 4,780 4,250 3,820 3,470 3,180 2,940 2,730 2,550 2,390 2,250 2,120 2,020 1,910 1,820 1,740 1,660 1,590 1,530 1,470 1,420 1,360 1,320 1,270 222,930 148,620 111,460 89,170 74,310 63,690 55,730 49,540 44,590 31,850 27,870 24,770 22,290 20,270 18,580 17,150 15,920 14,860 11,150 8,920 7,430 6,370 5,570 4,950 4,460 4,050 3,720 3,430 3,180 2,970 2,790 2,620 2,480 2,350 2,230 2,120 2,030 1,940 1,860 1,780 1,710 1,650 1,590 1,540 1,490 238,850 159,240 119,430 95,540 79,620 68,240 59,710 53,080 47,770 34,120 29,860 26,540 23,890 21,710 19,900 18,370 17,060 15,920 11,940 9,550 7,960 6,820 5,970 5,310 4,780 4,340 3,980 3,670 3,410 3,180 2,990 2,810 2,650 2,510 2,390 2,270 2,170 2,080 1,990 1,910 1,840 1,770 1,710 1,650 1,590 286,620 191,080 143,310 114,650 95,540 81,890 71,650 63,690 57,320 40,950 35,830 31,850 28,660 26,060 23,890 22,050 20,470 19,110 14,330 11,460 9,550 8,190 7,170 6,370 5,730 5,210 4,780 4,410 4,090 3,820 3,580 3,370 3,180 3,020 2,870 2,730 2,610 2,490 2,390 2,290 2,200 2,120 2,050 1,980 1,910 318,470 212,310 159,240 127,390 106,160 90,990 79,620 70,770 63,390 45,500 39.810 35,390 31,850 28,950 26,540 24,500 22,750 21,230 15,920 12,740 10,620 9,100 7,960 7.080 6,370 5,790 5,310 4,900 4,550 4,250 3,980 3,750 3,540 3,350 3,180 3,030 2,900 2,770 2,650 2,550 2,450 2,350 2,270 2,200 2,120 398,090 265,390 199,040 159,240 132,700 113,740 99,520 88,460 79,620 56,870 49,760 44,230 39,810 36,190 33,170 30,620 28,430 26,540 19,900 15,920 13,270 11,370 9,950 8,850 7,960 7,240 6,630 6,120 5,690 5,310 4,980 4,680 4,420 4,190 3,980 3,790 3,620 3,460 3,320 3,180 3,060 2,950 2,840 2,750 2,650 477,710 318,470 238,850 191,080 159,240 136,490 119,430 106,160 95,540 68,240 59,710 53,080 47,770 43,430 39,810 36,750 34,120 31,850 23,890 19,110 15,920 13,650 11,940 10,620 9,550 8,690 7,960 7,350 6,820 6,370 5,970 5,620 5,310 5,030 4,780 4,550 4,340 4,150 3,980 3,820 3,670 3,540 3,410 3,290 3,180 Technical Guide D TF D 7 Technical Guide  Actual diameter of ball nose end mill Diameter Depth of cut (Ad, mm) Radius Dia 0.01 0.02 0.03 0.04 0.05 0.08 0.1 0.1 0.2 0.3 0.4 0.5 1 1.5 2 2.5 3 4 5 6 7 8 9 10 0.2 0.4 0.6 0.8 1 2 3 4 5 6 8 10 12 14 16 18 20 0.087 0.125 0.154 0.178 0.199 0.282 0.346 0.399 0.447 0.489 0.565 0.632 0.693 0.748 0.8 0.848 0.894 0.12 0.174 0.215 0.25 0.28 0.398 0.488 0.564 0.631 0.692 0.799 0.894 0.979 1.058 1.131 1.199 1.264 0.143 0.211 0.262 0.304 0.341 0.486 0.597 0.69 0.722 0.846 0.978 1.094 1.198 1.295 1.384 1.468 1.548 0.16 0.24 0.299 0.349 0.392 0.56 0.688 0.796 0.891 0.977 1.129 1.262 1.383 1.495 1.598 1.695 1.787 0.173 0.265 0.332 0.387 0.436 0.624 0.768 0.889 0.995 1.091 1.261 1.411 1.546 1.67 1.786 1.895 1.997 0.196 0.32 0.41 0.48 0.54 0.78 0.97 1.12 1.25 1.38 1.59 1.78 1.95 2.11 2.26 2.39 2.52 0.2 0.35 0.45 0.53 0.6 0.87 1.08 1.25 1.4 1.54 1.78 1.99 2.18 2.36 2.52 2.68 2.82 Diameter Dia 0.15 0.2 0.3 0.5 0.8 1 2 3 0.1 0.2 0.3 0.4 0.5 1 1.5 2 2.5 3 4 5 6 7 8 9 10 0.2 0.4 0.6 0.8 1 2 3 4 5 6 8 10 12 14 16 18 20 0.39 0.52 0.62 0.71 1.05 1.31 1.52 1.71 1.87 2.17 2.43 2.67 2.88 3.08 3.27 3.45 0.4 0.57 0.69 0.8 1.2 1.5 1.74 1.96 2.15 2.5 2.8 3.07 3.32 3.56 3.77 3.98 0.6 0.77 0.92 1.43 1.8 2.11 2.37 2.62 3.04 3.41 3.75 4.05 4.34 4.61 4.86 1 1.73 2.24 2.65 3 3.32 3.87 4.36 4.8 5.2 5.57 5.92 6.24 1.96 2.65 3.2 3.67 4.08 4.8 5.43 5.99 6.5 6.97 7.42 7.84 2 2.83 3.46 4 4.47 5.29 6 6.63 7.21 7.75 8.25 8.72 4 4.9 5.66 6.93 8 8.94 9.8 10.58 11.31 12 6 7.75 9.17 10.39 11.49 12.49 13.42 14.28 Technical Guide  Calculation TF 8 Depth of cut (Ad, mm) Radius of actual diameter Tool diameter : D d=2 Actual tool실제공구경: diameter d :d 절삭깊이: Adof Depth cut : Ad Ad (D-Ad) Trouble Shooting  Trouble Trouble Chipping Wear shooting Caused by Sharp cutting edge Chatter/Vibration Low cutting speed Excessive overhang Unreliable chucking of end mill Unstable workpiece Chamfer or round the cutting edge to reduce sharp edge Reduce RPM Increase RPM - or change to a high helix end mill Reduce tool overhang to minimum possible Check run out and change to a more precise system Try to improve stability and clamping or reduce cutting conditions High cutting speeds Low feedrate Incorrect helix on end mill Up milling Hard material Check the cutting data - and select the recommended conditions Check the cutting data - and select the recommended conditions Check the recommended cutter for the material being machined Change to Down Mill machining Replace end mill with correct style as recommended or change to TiAlN coated cutter Use air-blast or flood coolant to remove chips or replace cutter with a lower number of flutes. Increase feedrate - use a sharp edged end mill Change to large relief angle Poor chip evacuation Material with low heat conductivity Too small primary relief angle Tool breakage Excessive chipping or wear Excessive feedrate Excessive cutting forces Excessive overhang Surface finish Chatter Built-up edge Tool wear High feed - low speed Cutting condition Excessive feedrate Burrs Regrind cutter or replace Reduce feedrate to recommended conditions Check conditions - reduce/increase RPM or feed to the recommended conditions Reduce to minimum possible Check recommended data and change cutting conditions Increase speed - use higher helix cutter or climb mill and apply flood coolant Regrind or replace cutter Reduce feedrate and increase RPM to recommended conditions Poor rigidity Start with the recommended cutting conditions Reduce as required to achieve the required surface finish and part accuracy Replace high flute number end mill Use large diameter and short fluted tool and minimize overhang Change machine holder or cutting conditions Too much wear on primary relief Incorrect conditions Improper cutting angle Regrind at earlier stage Correct milling conditions Change to correct cutting angle Number of flutes Tool deflection Technical Guide Accuracy of finished workpiece Solution TF D 9 ER Collet & TSK Collet TG2 T-CLICK TG5 T-BALANCE TG6 TECHNICAL GUIDE T-HYCHUCK TG7 T-SHRINK TG8 -Tooling System Tap Chuck TG9 FITBORE TG10 GYRO TG11 Technical Guide - Collet  Sealed collet  Application ER collets are used for applications requiring through coolant, as well as for standard cutting tools such as drills, boring bars, end mills, reamers, taps and special tools. They provide an effective solution for accurate controled coolant flow. Front sealing collets are available for advanced high speed machines with through coolant spindles/turrets. They provide maximum performance, high cutting speeds, extended tool life and high quality surface finish.  Features - A revolutionary high precision front sealing collet with 1.00mm collapsibility that has through coolant capability - Increased machining efficiency - Extended tool life - Has powerful gripping and parallel clamping - Front sealing provides protection from contamination - Fast chip removal from work piece  Advantages - High-pressure coolant supply up to 100 bar - Eliminates coolant flow interference  Notes - For maximum security and clamping power, the cutting tool shank must be inserted into the collet to a minimum depth of 2 X shank diameter - In sealed collet JET2 the nozzle must be adjusted directly to the flute of the cutting tool - Suitable for all shank standards  TaeguTec  Two ER coolit sealed collet types: Sealed collet jet 2 Technical Guide Sealed collet jet For straight shank cutting tools with internal coolant supply  Shank standards Plain shank WELDON/DIN 1835/B Whistle notch TG D 2 With angular double nozzle. Coolant flow is direct to the cutting edge - for use with standard straight shank cutting tools (without coolant hole) Technical Guide - Collet  ER - Top clamping nut DIN 6499  Description The friction ER Nut has a unique two piece exclusive friction mechanism combining radial and angular self-centering movements.  Features - Unique two piece friction bearing - Radial and angular float for better concentricity - Powerful gripping force, 50-100% higher than standard ER nut due to the friction bearing mechanism - Balanced for higher spindle speed due to unique extractor teeth design - Compact design - general dimensions and size range are the same as the standard nut sealed design for use with sealed collets  Operation To insert collet: Always assemble the collet into the nut before mounting onto the collet chuck.  Inserting procedure Insert the collet slantwise, fitting the two protruding extractor teeth (A) into the collet groove (B). Place the two parts onto a clean and horizontal surface. Press down with your thumb on the back end of the collet until it clicks into place (C). B A A Collet groove C Extractor teeth  Important Never insert the collet parallel to the extractor ring. This will chip or break the teeth of the extractor. When unclamping the nut, the collet will self release from the chuck by means of the extractor teeth.  Extracting procedure 1. Align the diamond-shaped engraved logo which is on the silver ring (D) to any of the key slots (E) of the nut. 2. Place the nut with the collet facing down on a clean and horizontal work surface. 3. Insert a screwdriver vertically between the nut slots and the collet – on the reverse side of the diamond shaped engraved logo (D). 4. Tilt the screwdriver outwards while helping the extraction by pushing the back of the collet in the opposite direction (F). F E Note: For maximum performance the clamping nut thread and collet taper must be cleaned and oiled before use. Recommended clamping torque for standard ER & ER-Top clamping nut Nut type ER-11 ER-11M ER-16 ER-16M ER-20 ER-20M ER-25 ER-32 ER-40 ER-50 Kg × m 5 3 7 4 12 8 20 22 25 35 Important: The torque is calculated to suit the maximum diameter capacity of each collet. The torque should be gradually reduced when used with a smaller shank size. Technical Guide D D TG 3 Technical Guide - TSK Slim Collet Chuck  Features & advantages - Excellent accuracy & good gripping power by gentle taper angle (ER collet : 8º, TSK collet : 4º) - Slim design for deep and cavity machining - Suitable on high speed machining - Variety of TSK collets (normal & coolant type) - General machining using drill & end mill  Application - General machining using drill & end mill - High speed machining for mold & die industry - Accurate machining using reamer & end mill  How to assemble the collet with a nut a. Assembly device (provided with the set) Technical Guide 1. Insert the back end of the collet (c) into the assembly device (a) TG D 4 b. Nut 2. Insert the combined part (a+c) in the nut (b) c. Collet 3. Pluck out the assembly device (a) from the remaining part (b+c) Technical Guide - Quick Change Holder  Quick-change system  DIN 69871 HSK BT MAS 403  T-CLICK advantages - Taper and face contact - Ideal for high speed machining - High precision: low run-out - Excellent rigidity - Quick and easy clamping  Quick-change advantages - Quick tool change - the taper shank and the holder connect in a quick half turn - No thermal shock on holder taper - Flexibility in diameter and length - Eliminates the use of extension chuck - No spare parts required - T-CLICK blanks available to provide custom made tooling - Shrink clamping for solid carbide tooling Tightening torque: 235N.m Technical Guide D TG 5 Technical Guide - Balanceable Chuck  Balanceable collet chuck system - Direct reading precision rings for high grade balance - Simple procedure on all types of balancing machines - Static and dynamic balance DIN 69871 HSK BT MAS 403  Operating instructions The following procedure should be adjusted according to the specific type of balancing machine being used. 1. Loosen the 3 locking screws on the angle reference ring (blue). Align the two balancing rings (gold-colored) to the ‘0’ position on the angle reference ring. After the rings are all aligned, tighten the 3 locking screws. 2. Insert the collet chuck into the spindle and tighten it using the pull stud. Insert the cutting tool into the collet chuck, adjust to desired projection and clamp it. 3. Enter the required parameters on the balancing machine: balancing grade (G..), RPM, etc. 4. Run a test with the assembled collet chuck on the balancing machine. Read the results for the unbalance angle orientation and the gr x mm unbalance value. 5. Loosen the 3 locking screws on the angle reference ring and align the two balancing rings with the measured unbalance value. Rotate both balancing rings to the unbalance angle on the angle reference ring (or to the laser mark on balancing machines with a laser indicator). Tighten the locking screws. 6. Run a second test with the assembled collet chuck and read the results - Note: The reading should be within tolerance or very close  If the necessary balance on the machine has been achieved, the tool is ready for operation. If the balance is out of tolerance, one of the following procedures should be performed: Technical Guide - First option : IF unbalance is within 0-3 gr x mm and within ± 20º from original angle, THEN increase the original value of gr x mm on the balancing rings according to the reading on the machine, without changing the original angle position. - Second option : IF unbalance is within 0-3 gr x mm at an angle of approximately 180º from original angle, THEN decrease the original value of gr x mm on the balancing rings according to the reading on the machine without changing the original angle position. - Third option : IF unbalance is less than 1 gr x mm at an angle between 20º to 90º from the original angle, THEN rotate both balancing rings approximately 5º towards the indicated direction. - Fourth option : On some balancing machines it is possible to adjust the unbalance by rotating the peak point marked on the balancing rings to the required angular position. TG D 6 "0" position balance to G2.5 20K Peak point Technical Guide - Hydraulic Chuck  Features & advantages - Consistent gripping force - Excellent accuracy (run-out : within 5㎛) - Convenient and safe tool change using a clamping screw - Can use THC straight collets (normal & coolant type)  Application - Accurate machining: fine milling - Drilling: small diameter using carbide drill : reaming : for Al or Cast Iron : fine boring  Operation - Tool mounting : Insert the tool shank between Lmax and Lmin (Fig 1) and then, turn the clamping screw clockwise until it can no longer rotate - Tool releasing : To release the tool from the hydraulic chuck, turn the clamping screw in a counter clock-wise direction approximately 5 or 6 evolutions and remove the tool shank - Notice : Eliminate grease, coolant oil and any dirt from the internal bore of the Hydraulic chuck and tool shank prior to mounting : Ensure the minimum chucking length (L min) is maintained (see fig 1 & table 1) : Cylindrical tool shanks available in accordance with h6 tolerance (table 2) and Ra min =0.3㎛ (ground) and weldon shanks should be used in collet only : Remove the end tool from the hydraulic chuck when not in use for long periods of time : Do not turn the clamping screw prior to tool mounting in the hydraulic chuck *Please refer to the backface for information tables. Figure 1. Tool structure Actuator Clamping screw(1) Lmax Lmin Stopper Hydraulic oil Clamping sleeve Table 1. r ecommended minimum & maximum depth (L) of end tool insertion Table 2. h6 tolerance range Shank size Ø(mm) 3 3 6 6 10 10 18 18 30 30 50 h6 tolerance range(㎛) 0 -6 0 -8 0 -9 0 -11 0 -13 0 -16 Table 3. clamping torque Inner bore diameter Ø(mm) 6 8 10 12 14 16 20 25 32 Clamping torque(N*m) 10 25 40 65 90 120 240 260 450 Technical Guide Inner bore L min L max (mm) (mm) diameter Ø(mm) 6 27.5 37.5 8 27.5 37.5 10 32.5 42.5 12 37.5 47.5 14 37.5 47.5 16 42.5 52.5 20 42.5 52.5 25 51 61 32 55 65 D TG 7 Technical Guide - Thermal Chucking System  Thermal T-SHRINK chucking system  T-SHRINK chucking system The thermal T-SHRINK ER collet chucking system is an enhancement to the existing popular ER system. The T-SHRINK collets utilize the thermal shrink phenomena for rigid clamping of solid carbide cutters. This new system provides higher torque, precision runout and better repeatability. The T-SHRINK collets with their slim design and different projection length allows the user to reach into deeper cavities and perform narrow milling applications. TaeguTec offers a complete system for T-SHRINK ER collets, including a uniquely designed heating unit with a portable heating handle. The unit is equipped with a high-tech temperature control for easy and practical use at the machining center or in the tool room.  For carbide tools only L(mm) 35 60 85 h6 Max. T.I.R 7㎛ 9㎛ 10㎛ Technical Guide  Features - Slim design to maximize effectiveness and application access - Flexible - fits into standard ER chucks - High torque transfer - Rigid clamping of carbide tools - High precision – low runout - Perfect repeatability - Vibration damping - Coolant JET2 available - Symmetrical design for high speed machining - Quick and easy tool changing - Unique T-Shrink heating unit with portable handle TG D 8 0.003mm Clamping time 15-45 sec Technical Guide - Tap Chuck  GTI-Tap attachment  Description Short tap chucks for ER collets  Application Axial-float/tension/compression type for CNC milling machines and lathes with reversing motors and rigid tapping DIN 69871 BT MAS-403 Straight shank  Features - Compensates for machine feed and tap pitch variance - Floating mechanism compensates for misalignment between tap and workpiece - Right and left-hand tapping  Advantages - Practical and efficient tap holding by the ER spring collet without using drive jaw - Compact design for minimal clearance applications - Heavy-duty design for high torque drive ensures the same accuracy as the tap itself  Operation For through and blind hole tapping 2. Start spindle forward with right hand rotation until reaching desired depth. 3. Stop feed and rotation and reverse to starting point. Technical Guide 1. Enter feed rate according to thread pitch (or 1-2% lower), and set spindle to starting point with 0.08mm clearance. D TG 9 Technical Guide - Adjustable Diameter Chuck  Adjustable rotary tool holder indexable insert drills  Application For use on machining centres and drilling machines  Features - Diameter adjustment range – 0.30mm to +1.30mm - Guaranteed bore tolerance of ±0.02mm - Through the shank coolant design or “Type B” coolant through the flange - Coolant pressure up to 70 bar  Operation Best results are achieved on a preset machine or similar device. - Adjust with screws A or B. Preset should be made on a pre-setter to minus 0.3 mm on required diameter - Tighten the clamp screws A and B - On the machine, make a test cut, measure the bore diameter and then adjust to required diameter - Final adjustment to the desired diameter can be made on the machine with dial indicator or on the pre-setter A Technical Guide Min: D-0.3 TG D 10 Max: D+1.3 B Technical Guide - Alignment Tool Holder  GYRO GYRO - Radial and angular alignment of tool holder  Advantages - Easy adjustment for correcting misalignment between chuck and turret axis (drill and workpiece) - Precise and efficient tool clamping with ER collets and ER sealed coolit jet collets - Quick functional adjustment is made on machine by using plug and ring gauge kit  Operation Operating instructions are included with each tool supplied.  Notes - Coolant supply should be minimum 10 bar and maximum 80 bar for small diameter oil hole drills : ranging from 3~20mm (the normal machine pressure of 4 bar is insufficient) - Coolant filtration is important to eliminate chips from blocking the drill oil hole - To ensure maximum performance of the GYRO, the backlash of the turret indexing and support axis mechanism should be checked and re-adjusted according to the machine standard  GYRO - Radial and angular alignment of tool holder Adjustable tool holder for easy adjustment of radial and angular misalignment  Application Gyro is a rugged and adjustable toolholder to solve drilling, tapping and reaming problems encountered on CNC and turret lathes. Its unique design allows smooth and easy adjustment of radial and angular misalignment between chuck and turret.  yro reduces total machining time by making it possible to complete machining of holes in one drilling step and G achieve tolerances as close as 0.01mm, thereby eliminating subsequent boring or reaming operations. - A breakthrough in drilling technology for CNC lathes - Dramatic increase in tool performance at reduced cost T.I.R. max 0.02mm Technical Guide  Features - Enables high precision drilling to a close tolerance of 0.01mm, to be performed as a final boring operation on CNC lathes - Reduces machining cycle time by completing the bore in one drilling step, eliminating secondary turning and boring operations - Prolongs tool life tenfold, especially when using HSS, solid and brazed carbide drills, taps and reamers - Permits increase in speeds and feeds by up to 300% - Coolant supply through the centre of the unit via the tool shoulder for oil fed drilling Angular Adj. 1˚ Radial Adj. 2.0mm D TG 11 TECHNICAL GUIDE -MPT(Modular Precision Tooling) Operating Instructions TH2 Operating Instructions  Fine boring  Assembly head BHF 16-50 and BHE - When mounting the BHF boring head, the expanding pin should be kept tightly inside the cylindrical body - Insert the BHF into the shank - Tighten the pin (2) by turning clockwise The recommended tightening torque guidelines are as follows: Recommended Torque (N·m) BHF MB16 - 16 x 34 2.0 - 2.5 BHF MB20 - 20 x 40 4.0 - 4.5 BHF MB25 - 25 x 50 6.5 - 7.5 BHF MB32 - 32 x 63 7.0 - 8.0 BHF MB40 - 40 x 80 16.0 - 18.0 BHF MB50 - 50 x 60 30.0 - 35.0 - Insert screw (5) until it completely enters the recess in the sleeve nut or boring bar  Disassembly Loosen the pin (2) by turning counter-clockwise  Positioning - Loosen the screw (4) before making any slide adjustment - By turning the graduated dial (3) counterclockwise, set the tool slide (7) allowance for a 4mm adjustment - Lock the tool slide by means of screw (4), to the desired position - Lock the screw (4) - When making any slide adjustment, firstly loosen the screw (4)  Maintenance Weekly: - Lubricate through the oiling nipple (8) with ISO UN G220 oil Periodically: - Clean the conical cylindrical surface and then lubricate - Grease the expanding pin (2) with an anti-friction lubricant - Clean and lubricate the tool slide guideway  Important note: Toolholder should be firmly affixed to the slide at all times * Due to back-lash phenomenon, if you pass the required value, turn the dial (3) in the reverse direction at least one rotation and then re-adjust in the original direction  BHF 50 Reduction sleeve * IHAXF 1 3 * 4 6 11 IHAXF 2 BBH IHFF IHFF Sleeve Nut 8 Technical Guide 5 TH 2 9 7 1 Body 2 Expanding pin * *4 3 Graduated dial Slide locking screw 10 5 Toolholder locking screw 6 Coolant nozzle 7 Slide holder 8 Oiling nipple 10 Slide adjusting range Do not exceed the range marks!! 9 Tool bore .63H7 11 Cutting edge position mark Operating Instructions  Fine boring  Assembly head BHF 63-125 - When mounting the BHF boring head, the expanding pin should be kept tightly inside the cylindrical body - Insert BHF into the shank - Tighten the pin (2), by turning clockwise The recommended tightening torque guidelines are as follows: Recommended Torque (N·m) BHF MB50 - 63 x 87 30 - 35 BHF MB50 - 80 x 94 30 - 35 BHF MB63 - 63 x 87 80 - 90 BHF MB80 - 80 x 94 80 - 90 BHF MB80 - 125 x 94 80 - 90 BHF MB50 - 50 x 60 30.0 - 35.0 - Insert the screw (5) until it completely enters the recess in the sleeve nut or boring bar  Disassembly - Loosen the pin (2) by turning counterclockwise  Positioning - Loosen the screw (4) before making any slide adjustment - By turning the graduated dial (3) counterclockwise, set the tool slide(7) allowance for a 4mm adjustment - Lock the tool slide by means of screw (4), to the desired position - Lock the screw (4) - When making any slide adjustment, firstly loosen the screw (4)  Maintenance Weekly: - Lubricate through the oiling nipple (8) with ISO UN G220 oil Periodically: - Clean the conical cylindrical surface and thenlubricate - Grease the expanding pin (2) with an anti-friction lubricant - Clean and lubricate the tool slide guideway  Important note: Toolholder should be firmly affixed to the slide at all times * Due to back-lash phenomenon, if you pass the required value, turn the dial (3) in the reverse direction at least one rotation and then re-adjust in the original direction BHFH * 1 7 3 IHFF 9 BBH 34 89 012 5 67 8 IHFF / IHRF ADBH 30xD16 4 6 10 * IHAXF 5 1 Body 2 Expanding pin * 3 Graduated dial * 4 Slide locking screw 6 Coolant nozzle 5 Toolholder 7 Slide holder locking screw 8 Oiling nipple 9 Toolholder locking screws Technical Guide 2 10 Slide adjusting range Do not exceed the range marks TH 3 TECHNICAL GUIDE -Grades Grades Classification Grades Recommendation Grades Chart by Product Line Cermet / Ceramic / CBN / PCD Grades Grades Comparison Table Turning Chip Breaker Comparison Table Material Conversion Table TI2 TI4 TI8 TI11 TI19 TI23 TI26 Grades Classification The TaeguTec coated grades are produced from a specialized technical process that incorporates CVD and PVD products that cover a wide cutting range. This range includes grades for high speed machining to heavy rough machining. Such diversity is possible with TaeguTec’s high wear resistant ceramic coating layer that has characteristics such as chipping-resistance on hard and/or toughened substrates. CVD coated products have two main coating layers that are strengthened MT CVD TiCN and a microstructurecontrolled Alpha Alumina with specially designed substrate that toughens the cutting edge. The PVD coated products have been developed with a combination of TiAlN, AlTiN and AlTiCrN that is produced with TaeguTec’s unique process of controlling the nano-scale structure and residual stresses. Following the coating process, TaeguTec introduces its ’Gold-Rush’ concept, this smooth new coating surface with a shiny yellow color gives the cutting edge lower friction and an anti-adhesion to the material during machining. The best performance in each application is a result of selecting the suitable combination of grade and geometry according to the machining environment. This accounts for the workpiece materials, cutting conditions, coolants and machine. Turning grades Uncoated Coated Cermet Ceramic CBN P K CVD PVD Uncoated PVD Uncoated CVD PVD TB610 TD810 P20 K10 TT7005 TT5080 CT3000 PV3010 AW120 SC10 AB2010 TB650 KP500 TT7015 TT9080 PV3030 AB20 TB670 KP300 TT7310 TT8020 AB30 TB730 KP100 KB90A P30 TT8115 TC430 TT8125 AS500 TT8135 AS10 TT5100 AS20 TT7100 TT9215 TT9225 Technical Guide TT9235 Threading grades Coated Uncoated P K P30 UF10 PVD TT7010 TT8010 TT9030 TI 2 PCD Grades Classification Parting & grooving grades Parting and grooving Uncoated Coated K10 PVD Turning & grooving Cermet Uncoated Cermet Coated K10 CVD PVD TT6300 TT6080 TT6080 TT9080 Uncoated PVD TT8020 CT3000 PV3010 TT9100 TT7220 Uncoated TT5100 TT8020 PV3030 PVD CT3000 PV3010 Ceramic CBN AW120 TB610 AB30 TB650 AS10 TB670 AS500 TB730 TT9080 PCD PV3030 TD810 KP500 KP300 Milling grades Uncoated Coated Cermet Ceramic CBN PCD Uncoated AS10 KB90 TD810 AS20 KB90A KP500 P K Ultra fine grades CVD P30 K10 UF10 TT6800 CT3000 TT7800 CT7000 PVD TT2510 TT7080 TT5505 TT8020 TT5515 TT8080 TT5525 TT9030 TT6080 TT9080 KP100 KP300 KP100 Uncoated Coated K Ultra fine grades CVD K10 UF10 TT7400 TT6030 TT9030 UF1A TT9300 TT8020 TT9080 PVD Technical Guide Holemaking grades TI 3 Grades Recommendation  For turning Materials Carbon steel, Alloy steel, Mild steel Cutting condition Finish-light Medium Rough ISO P01 P10 P20 P30 P40 P50 Cast iron Finish Medium High speed K01 K10 K20 K30 TT7005 TT5100 TT7100 TT8020 Coated TT7015(TT7310) TT8115 TT8125 TT8135 Coated PV3010 Cermet CT3000 Uncoated Coated P20 CT3000 P30 K10 K20 SC10 AW120 AB30 Ceramic AS500 AS10 TB730 CBN KB90A PCD Materials Cutting condition Hardened steel Finish Medium Stainless steel Finish-light Medium TT8020 TT9215 TT8020 TT9215 TT9225 TT9225 TT9235 Coated Non-ferrous Finish Medium TT5080 TT5080 TT9080 Coated Heat resistant alloy Finish Medium TT9235 PV3010 CT3000 Cermet Uncoated Coated K10 AB2010 Ceramic AS20 AB20 Technical Guide AB30 TI 4 TC430 TB610 CBN PCD TB650 TB670 TB730 TD810 KP500 KP300  For threading Materials Carbon steel, Alloy steel, Mild steel Finish-light Medium Rough Cutting condition High Speed P01 P10 ISO P20 P30 P40 High Speed Cast iron Finish K01 K10 Medium K20 TT7010 Coated TT8010 TT9030 TT9030 Cermet Uncoated Materials Cutting condition UF10 P30 Hardened steel Finish Medium Stainless steel Finish-light Medium Heat resistant alloy Finish Medium TT8010 TT9030 TT8010 TT9030 TT7010 Coated TT9030 Cermet Uncoated  For Non-ferrous Finish Medium TT9030 UF10 UF10 parting & grooving Materials Carbon steel, alloy steel, Mild steel Cutting condition High Finish-light Medium Rough Speed P01 P10 P20 P30 P40 P50 ISO / ANSI Cast iron Finish Medium High Speed K01 K10 K20 K30 TT9100 TT6080 TT5100 Coated TT6300 TT9080 TT7220 TT8020 Coated Cermet Uncoated Ceramic CBN PCD Materials Cutting condition PV3030 CT3000 K10 AB30 KB90 Hardened steel Finish Stainless steel Finish-light Medium Heat resistant alloy Finish Medium Non-ferrous Finish Medium TT5100 Coated TT9080 TT9080 TT8020 PCD PV3030 CT3000 K10 K10 AB30 TB610 TB650 TB670 KP300 Technical Guide Coated Cermet Uncoated Coated Ceramic CBN TT8020 TI 5 Grades Recommendation For milling Materials Carbon steel, Alloy steel, Mild steel Finish-light Medium Rough Cutting condition High speed P ISO 01 P10 P20 P30 P40(M40) Cast iron Finish High speed K01 TT2510,TT5505 Medium K20 K10 K30 TT6080 TT7080 TT6800 TT5515 TT7800 Coated TT8020 TT8080 TT5525,TT9030, TT9080 Coated CT3000 Cermet CT7000 CT7000 Uncoated Coated K10 P30 AS10 CBN KB90 KB90 KB90A KB90A PCD Materials Cutting condition Hardened steel Finish Medium Stainless steel Finish-light Medium TT8020 TT2510,TT5505 TT8080 Coated TT5515 Heat resistant alloy Finish Medium Non-ferrous Finish Medium TT6080 TT8020 TT8020 TT5525, TT9030,TT9080 TT9030,TT9080 TT6080 TT7800 TT8080 Coated Cermet CT3000 CT7000 Uncoated Coated Ceramic CBN K10,UF10 AS20 KP500 KP300 Technical Guide PCD TI 6 Coated Application  Based on application (Coated) Range Range Application Grades Application P M K Grades P M K N S H N S H TT7005 K01-K15 TT7015 K10-K25 TT8115 Turning TT9215 S05-S20 TT5080 M05-M25 S05-S25 P15-P30 TT5100 P20-P35 M15-M30 S15-S30 TT9020 P20-M40 M20-M40 TT9080 M20-M40 S20-S40 TT8020 Milling P10-P25 TT7400 P10-P25 TT8020 P25-P40 Threading P30-P45 M25-M40 S25-S40 P30-P50 M30-M50 TT8010 Tougher TT2510 P05-P25 H05-H25 Harder TT6800 P10-P25 K10-K25 TT6080 K05-K25 H05-H25 TT7080 P05-P25 K05-K25 P20-P40 TT7010 TT9030 S30-S50 TT9080 K05-K25 H05-H25 TT9300 TT9030 TT9225 TT9235 TT6080 TT9080 TT8125 TT7100 Holemaking P05-P20 M05-M20 TT8135 Harder Solid carbide FINE TT5505 end mill & TT5515 TT7800 TT8080 TT8020 TT5525 M20-M40 TT6300 TT6080 TT9100 TT5100 TT9080 TT7220 TT8020 P30-P50 M30-M50 S30-S50 Tougher P05-P25 K05-K25 Harder P20-P40 M20-M40 S20-S40 P30-P50 M30-M50 S30-S50 Tougher P05-P25 H05-H25 Harder M10-M30 K10-K30 S10-S30 P20-P40 M20-M40 S20-S40 M20-M40 Tougher P30-P45 M30-M45 P30-P50 M30-M50 S30-S50 M30-M50 S30-S50 Tougher K01-K15 Harder K05-K25 H05-H25 P10-P25 P20-P35 M20-M35 P20-P40 M20-M40 S20-S40 P25-P45 M25-M45 P30-P50 M30-M50 S30-S50 Notice: This is a standardised classification chart designed for user convenience. In real world conditions performance may vary due to machine, workpiece, working conditions as well as other environmental factors. It is recommended to co-ordinate the concerned application with representative TaeguTec technical staff. Technical Guide Parting & Grooving M20-M40 S20-S40 M20-M40 S20-S40 P30-P50 P20-P40 H10-H30 S20-S40 P20-P40 M20-M40 S20-S40 P10-P30 TT9020 TT9030 P20-P40 Harder Tougher TI 7 Grades Chart by Product Line  Based on grades Grades P M K N S H CVD coated carbide Medium & low speed machining of stainless steel ● High speed turning & grooving of cast iron K01-K15 TT6800 K10 - K25 P10-P25 TT7005 K01 - K15 ● High speed continuous turning for gray and ductile cast iron TT7015 K10 - K25 ● General, continuous and interrupted turning of gray and ductile cast iron TT7100 TT7400 P30 - P45 ● ● High speed milling of gray and ductile cast iron ● High speed milling of steel Interrupted and rough turning of steel High speed drilling of carbon & alloy steel ● P10 - P25 ● Rough milling of carbon & alloy steel ● Medium speed milling of stainless steel TT7800 P30 - P45 M30 - M45 TT8115 P05 - P20 ● High speed turning of steel TT8125 P15 - P30 ● General turning of steel TT8135 P25 - P40 ● TT9100 P10 - P25 TT9300 TT2510 TT5080 TT5505 Technical Guide Medium turning of low carbon steel and alloy steel ● TT6300 TT9235 TT5515 M05 - M20 S05-S20 M15 - M30 S15 - S30 M25 - M40 S25 - S40 Heavy Interrupted turning of steel. Improved higher toughness and superior fracture resistance High speed turning & grooving ● ● High speed turning of stainless steel ● High & medium speed machining of heat-resistant alloy ● General turning of stainless steel ● Medium speed machining of heat-resistant alloy ● Low speed and interrupted turning of stainless steel Low speed machining of heat-resistant alloy ● TT5525 High speed drilling of carbon & alloy steel ● P10 - P25 P05 - P25 ● High speed milling of steel H05 - H25 ● High speed milling of hardened steel M05- M25 ● S05 - S25 ● High speed finish turning of stainless steel High speed turning of heat-resistant alloy P05 - P25 ● High speed milling of steel H05 - H25 ● High speed milling of hardened steel ● P10 - P30 M10 - M30 High speed milling of steel. Excellent wear and heat resistance ● General milling of stainless steel K10 - K30 ● General milling of cast iron ● General milling of heat-resistant alloy ● High speed milling of hardened steel. Excellent wear resistance P20 - P40 ● High speed milling of steel M20 - M40 S20 - S40 ● High speed milling of stainless steel ● High speed milling of heat-resistant alloy S10 - S30 H10 - H30 TT6080 8 ● P20 - P35 M20 - M35 TT9225 TI ● Workpiece material and application TT5100 TT9215 PVD coated carbide Turning Milling Parting & Grooving Holemaking Threading End milling / Fine ball Application ISO Range K05 - K25 H05 - H25 ● ● ● General machining for gray and ductile cast iron ● ● ● Finish and medium machining of hardened steel Grades P M K N S H PVD coated carbide TT7010 P05 - P25 K05 - K25 TT7080 P05 - P25 K05 - K25 TT7220 P25 - P45 M25 - M45 TT8010 P30 - P50 M30 - M50 S30 - S50 TT8020 P30 - P50 M30 - M50 S30 - S50 Turning Milling Parting & Grooving Holemaking Threading End milling / Fine ball Application ISO Range TT9020 TT9080 K10 Carbide P30 General milling of steel Heavy interrupted cutting of cast iron Parting, grooving, turn grooving & drilling of steel Parting, grooving, turn grooving & drilling of stainless steel ● For a wide range of threading on stainless steel & exotic materials ● Toughest grade in threading product line ● ● ● Interrupted and rough machining of steel ● ● ● ● Interrupted and rough machining of stainless steel ● ● ● ● Low speed and interrupted machining of heat-resistant alloy ● Interrupted and rough machining of steel ● Interrupted and rough machining of stainless steel ● Low speed and interrupted machining of heat-resistant alloy For small parts turning on steel ● ● ● General machining of stainless steel ● ● ● General machining of steel M20 - M40 S20 - S40 ● ● ● ● General machining of stainless steel ● ● ● ● General machining of heat-resistant alloy P20 - P40 ● ● ● General machining of steel ● ● ● ● General machining of stainless steel ● ● ● ● General machining of heat-resistant alloy ● ● ● ● General machining of cast iron ● ● ● ● General machining of aluminum alloys and non-ferrous materials ● ● General machining of heat-resistant alloy M20 - M40 S20 - S40 K05 - K15 N05 - N15 S05 - S15 P25 - P35 ● ● General machining of steel ● M05 - M20 PVD cermet ● ● ● ● ● ● ● ● ● ● ● ● ● ● P05 - P20 M05 - M20 K05 - K20 ● General machining of steel ● General machining of stainless steel ● General machining of aluminum alloys and non-ferrous materials High speed finish machining of carbon steel, alloy steel, mild steel, mold steel and free-cutting steel High speed finishing of stainless steel High speed finishing of cast iron High speed finish machining of carbon steel, alloy steel, mild steel, mold steel and free-cutting steel High speed finish and medium machining of austenite and maltensite stainless steel High speed finish & medium machining of gray cast iron, nodular and ductile cast iron Technical Guide M25 - M35 N25 - N35 K05 - K20 PV3030 For a wide range of threading on low carbon steel & low carbon alloy steel ● ● P05 - P20 PV3010 ● ● P25 - P35 UF10 Threading of cast iron ● P20 - P40 TT9030 Threading of steel ● ● M30 - M50 S30 - S50 P20 - P40 M20 - M40 ● ● P30 - P50 TT8080 Workpiece material and application TI 9 Grades Chart by Product Line  Based on grades Grades P M K N S H Turning Milling Parting & Grooving Holemaking Threading End milling / Fine ball Application ISO Range ● ● Finish machining of carbon steel, alloy steel, mild steel and mold steel Good surface roughness ● ● Finish machining of stainless steel. Good surface roughness ● ● Finish machining of cast iron P10 - P20 CT3000 CT7000 Technical Guide TI 10 Finish milling of stainless steel High speed turning of hardened steel. Shiny yellow color K20 - K30 ● Roughing of cast iron with and without coolant AW120 K01 - K10 ● High speed continuous turning of cast iron. Excellent wear resistance AB20 H01 - H10 ● Turning of high hardness steel and cast iron (HRc 50-65) ● ● Continuous to light interrupted turning of cast iron without coolant H05 - H15 ● ● High speed turning of hardened steel (HRc 40-50) AS500 K10 - K20 ● ● Roughing of cast iron with and without coolant. SiAlON grade AS10 K20 - K30 ● ● ● Turning and milling of cast iron AS20 S05 - S20 ● ● TC430 S01 - S15 ● ● TB610 H01 - H10 TB650 TB670 TB730 KB90 PCD Finish milling of steel ● H01 - H10 AB30 CBN P15 - P25 M15 - M25 ● ● Coated AB2010 PVD ceramic SC10 CVD Ceramic M10 - M20 K10 - K20 Cermet Workpiece material and application K05 - K15 High speed turning and milling of superalloy ● High speed turning and milling of superalloy. Whisker ceramics ● ● Continuous turning of case hardened steel H10 - H20 ● ● General turning of case hardened steel H15 - H25 ● ● General turning of hardened steel K15 - K25 ● ● High speed precision turning of cast iron in continuous cut and interrupted cut S05 - S20 ● Severe interrupted turning of heat-resistant alloy K15 - K25 ● ● ● High speed machining of cast iron S05 - S20 ● ● ● Machining of heat-resistant alloy ● KB90A K10 - K25 ● TD810 N01 - N10 ● ● ● ● High speed precision turning of cast iron Solid CBN Multi modal composition for high speed of non-ferrous materials KP500 N05 - N15 ● ● ● ● High Si-Al alloy, hardmetal, metal composite & ceramic composite materials KP300 N10 - N20 ● ● ● ● General turning and milling of non-ferrous materials KP100 N20 - N30 ● ● ● ● Non-ferrous metals. Good surface finishes Cermet Grades TaeguTec’s Cermet grades focus on stable machining and extended tool life when customers are focused upon achieving high productivity levels and work piece consistency and stability. The TaeguTec grades deliver excellent finishes on any work material, ensuring the customer is confident in the performance and productivity levels of all TaeguTec products.  CT3000  Features - High wear and oxidation resistance that delivers exceptional productivity levels as it can conduct extremely high speed machining - Strong adhesion resistance and solid cutting edges deliver fine surface finishes and precise machining of the workpiece - High thermal conductivity that dissipates the heat generated during cutting - CT3000 is classified as a ‘Functionally Graded Material’ and its surface compression enhances cutting edge stability and makes cutting edges extremely strong - Suitable for high speed finish and semi-finish turning operations on carbon and alloyed steels  CT7000  Features - Excellent for interrupted cutting with its reinforced toughness that provides stable tool life - Remarkable thermal shock resistance prevents sudden failure and always gives stable wear on the cutting edges - Chemical stability and chipping resistance provides long tool life - Excellent surface finishes can be achieved with specially designed cutting tool bodies - Suitable for finish and semi-finish milling operations on carbon and alloyed steels  Applications TaeguTec grades Application Finish Semi-finish Medium - Suitable for finishing to semi-finishing of carbon Steel V : 100 - 450m/min f : 0.03 - 0.5mm/rev steel, alloy steel, mild steel, stainless steel and cast iron - Precise finish machining Cast V : 50 - 200m/min - General turning and grooving iron f : 0.05 - 0.3mm/rev Finish Semi-finish - High speed finish of carbon steel, alloy steel, stainless steel and cast iron - Precise finish machining Finish Semi-finish Medium - Finish, medium and interrupted milling of carbon steel, alloy steel and mold steel - Good surface roughness - Suitable for unstable and interrupt machining Turning P10 P20 M10 M20 K10 K20 Recommended cutting conditions CT3000 Steel P10 P20 M10 M20 Milling CT7000 P15 P25 M15 M25 V : 100 - 350m/min f : 0.05 - 0.3mm/rev Cast V : 100 - 250m/min iron f : 0.05 - 0.3mm/rev Steel V : 100 - 300m/min f : 0.05 - 0.4mm/rev Cast V : 100 - 200m/min iron f : 0.05 - 0.5mm/rev Technical Guide Milling TI 11 Ultra Fine Cemented Carbide Grades TaeguTec’s ultrafine grades have improved hardness, toughness and strength levels when compared to conventional cemented carbides grades. This is credit to the very fine (less than 1um) & extremely uniformly sized grains of the WC (Tungsten carbide) and the tough Co (Cobalt) metal binder. These characteristics ensure high wear resistance, high impact strength and excellent sharp edge strength. So, TaeguTec’s ultrafine grades can be applied to a wide range of cutting tools and applications. For example the grades can be used for turning, milling and drilling applications on various workpiece materials with or without coatings.  Grades UF1A, UF10, UF10N UF grade (2000X)  Features Suitable for end mills & drilling tools due to high toughness and excellent wear resistance on low to medium applications Conventional grade (2000X)  Comparison diagrams of UF with conventional grade Transverse rupture strength Application area Technical Guide  Applications TI 12 TaeguTec grades UF1A UF10 UF10N Applications Reamer Solid carbide end mills & solid carbide drills Density (g/cm3) TRS (kg/mm2) Hardness (HRA) 14.9 > 400 > 93.0 14.5 > 400 > 91.8 14.4 > 400 > 93.0 Ceramic Grades TaeguTec has a wide range of high technology ceramic grades from excellent wear resistant high alumina grade to silicon carbide whisker reinforced ceramic grades. The ceramic grade show very good performance in the machining of hardened steel, cast iron and heat resistant super alloy. Cast iron  AW120 - Excellent oxidation resistance and chemical stability - High speed continuous turning without coolant - Gray cast iron, Compacted graphite iron (CGI) - Especially High Speed Dry Machining of Cylinder Liner  AB30 AW120 - High hardness and moderate fracture toughness - High speed continuous and light interrupted turning - Gray cast iron, Nodular cast iron, Alloy steel  AS500(SiAION) - High fracture toughness and mechanical/thermal shock resistance - General turning of cast iron with/without coolant - Gray cast iron, Nodular cast iron  SC10 (CVD-TiN) - High fracture toughness and mechanical/thermal shock resistance - General turning of cast iron with/without coolant - Gray cast iron, Nodular cast iron  AS10 - High fracture toughness and mechanical/thermal shock resistance - General turning and milling of cast iron with/without coolant - Gray cast iron, Nodular cast iron Elongated sialon grains enhance the fracture toughness. area - Cast iron AB30 AW120 AS500 SC10 AS10 Technical Guide Cutting speed  Application AS500 Feed rate TI 13 Ceramic Grades Hardened steel  AB2010 (PVD-TiN) - Shiny gold colored ceramic with excellent wear resistance - Comparable to low CBN grade in machining of hardened steel - Hardened steel, alloy steel, tool steel, case hardened steel - Coating improves tool life 50% than over uncoated grades  AB20 Coating layer TiN (1㎛) AB2010 - High hardness and good oxidation resistance - High speed continuous turning - High hardness steel(Alloy steel, high speed steel, chilled cast iron) Cutting speed  Application area - Hardened steel AB2010 AB20 Exotic material  Feed rate TC430 (Whisker) - High hardness and high fracture toughness - SiC whisker reinforced ceramic grade - General turning and milling - Ni-base superalloy, inconel, waspaloy, rene  AS20 - High fracture toughness and good chemical stability - General turning and milling - Ni-base superalloy, inconel, waspaloy, rene Cutting speed Technical Guide  Application area - Exotic material TC430 AS20 Feed rate TI 14 TC430 Ceramic Grades  Ceramic grades properties Grades AW120 AB20 AB30 TC430 AS500 AS10 AS20 Al2O3 Al2O3-TiCN Al2O3-TiC SiCw SiAlON Si3N4 Si3N4-TiN Hardness (HRa) 93.8-94.3 94.5-95.0 94.5-95.0 95.0-95.5 93.8-94.3 93.5-94.0 93.0-93.5 Toughness (KIC) 3.0-3.5 3.0-3.5 3.2-3.7 4.5-5.5 5.0-6.0 5.0-6.0 5.0-6.0 Composition Chemically stable Feature Application  Coated Cast iron Hardened steel Cast iron Physically stable Exotic material Cast iron Cast iron ceramic grades properties Grades AB2010 SC10 Al2O3-TiCN Si3N4 Hardness (HRa) 94.5-95.0 93.5-94.0 Toughness (KIC) 3.0-3.5 5.0-6.0 TiN Al2O3/TiN Hardened steel Cast iron Composition Coating layer Application  Recommended Materials Super alloy (Ni-base) cutting conditions AW120 AB2010 AB20 V(m/min) 400-1,000 AB30 AS500 SC10 AS10 TC430 AS20 300-800 400-1,000400-1,000 400-800 f (mm/rev) 0.1-0.5 0.1-0.5 V (m/min) 300-600 250-500 200-600 200-600 200-500 f (mm/rev) 0.1-0.2 0.1-0.3 V (m/min) 50-200 f (mm/rev) 0.05-0.2 0.05-0.2 V (m/min) 100-400 100-400 100-300 0.2-0.6 0.1-0.5 0.2-0.6 0.1-0.5 0.2-0.8 0.2-0.6 50-200 f (mm/rev) 0.1-0.2 0.1-0.2 V (m/min) 50-250 50-250 f (mm/rev) 0.05-0.2 0.05-0.2 0.1-0.2 V (m/min) 50-100 50-80 20-60 f (mm/rev) 0.2-0.5 0.2-0.5 0.2-0.7 V (m/min) 150-400 100-300 f (mm/rev) 0.1-0.3 0.1-0.3 Technical Guide Gray cast iron (HB 180-230) Ductile cast iron (HB 200-240) Chilled cast iron (> HB 400) Hardened steel (HRc 40-50) Hardened steel (> HRc 50) ADI or HSS roll Exotic material TI 15 CBN Grades TaeguTec produces various kinds of CBN grades for the machining of hardened steels and cast iron in the world wide market. They have extremely high hardness and moderate fracture toughness. And they have excellent cutting performance and good finish surfaces due to their chemical composition of grades and by state-of-the art brazing technology.  TB650  TB610 - Excellent oxidation resistance and chemical stability - From continuous to light interrupted turning - High hardness steel (Alloy steel, tool steel, case hardened steel) - High hardness and moderate fracture toughness - From continuous to interrupted turning - Alloy steel, tool steel, case hardened steel, chilled cast iron  TB730  TB670  KB90A (Solid (KB90) - High hardness and high fracture toughness - General turning and milling - Gray cast iron, nodular cast iron, carbide rolls - High hardness and impact resistance - Severe interrupted turning - Alloy steel, tool steel, case hardened steel, chilled cast iron format) - High hardness and high fracture toughness - Rough turning and milling - Gray cast iron, nodular cast iron, carbide rolls TB730 TB670  CBN grade Grades TB610 TB650 TB670 TB730(KB90) 40-50 50-60 60-70 90-95 90-95 2,800-3,000 3,100-3,300 3,200-3,400 4,000-4,200 3,800-4,000 Hardened steel Cast iron CBN (%) Hardness (Hv) Interrupted cuts Continuous cuts Feature Application Hardened steel  Application Hardened steel  Recommended area Cutting speed Technical Guide Materials TB610 TB650 TB670 TB730(KB90) KB90A Feed rate TI 16 KB90A Gray cast iron V (m/min) (HB 180-230) f (mm/rev) Chilled cast V (m/min) iron(> HB 400) f (mm/rev) Hardened steel V (m/min) (HRc 40-65) f (mm/rev) Sintered metal V (m/min) (Hv 200-600) f (mm/rev) V (m/min) DCI or HSS roll f (mm/rev) Super alloy V (m/min) (Ni-base) f (mm/rev) Cast iron cutting conditions TB730 KB90A TB610 TB650 TB670 (KB90) 500-1,000 500-1,000 0.1-0.3 0.1-0.3 80-150 80-150 80-150 80-150 0.1-0.2 0.1-0.2 0.1-0.3 0.1-0.3 150-350 100-300 100-300 0.05-0.2 0.05-0.2 0.1-0.3 100-300 100-300 100-250 0.05-0.2 0.05-0.2 0.1-0.25 300-600 200-500 0.05-0.2 0.05-0.2 100-300 100-300 0.05-0.2 0.05-0.2 PCD Grades TaeguTec produces wide range of PCD grades through especially advanced grinding technology. They have extremely high hardness and moderate fracture toughness. And they have excellent cutting performance and good finish surface in the machining of non-ferrous materials.  TD810 - Highly densified grade with mixed coarse and fine grains - Combination of wear resistance and toughness - MMC, high Si-Al alloys, high strength cast irons, bi-metal applications, etc  KP500 - High diamond contents with coarse grain size - High hardness and excellent wear resistance - High Si-Al alloy, Al-composites (MMC) material, Hardmetal  KP100  KP300 - High fracture toughness grade with fine grain size diamond - Interrupted cutting. Good finish surfaces - Low Si-Al alloy, wood, etc. - High hardness and moderate fracture toughness - General turning and milling of non-ferrous metals - Al-Si alloy, fiber reinforced plastic (FRP), hardmetal, carbon, etc.  Physical properties Grades TD810 KP500 KP300 KP100 Grain size (㎛) 30.2 25 10 2 TRS (MPa) 1,300 1,130 1,400 1,560 Combination of wear resistance and thermal stability Feature Wear resistance (High PCD) Balance of wear resistance and toughness Toughness (High binder) Microstructure (x1k)  Recommended area TD810 KP500 KP300 KP100 Feed rate Materials V (m/min) Al alloy (Si ≤ 12%) f (mm/rev) V (m/min) Al alloy (Si ≥ 12%) f (mm/rev) V (m/min) Cu alloy f (mm/rev) FRP V (m/min) (Fiber Reinforced f (mm/rev) Plastic) cutting conditions TD810 KP500 KP300 KP100 600-3,000 600-3,000 600-3,000 0.1-0.3 0.1-0.3 0.1-0.3 300-800 300-800 300-600 0.1-0.3 0.1-0.3 0.1-0.3 500-1,000 500-1,000 0.1-0.3 0.1-0.3 300-1,000 300-1,000 0.1-0.4 10-50 Hardmetal V (m/min) (WC-Co) f (mm/rev) 0.1-0.2 V (m/min) 100-600 Carbon f (mm/rev) 0.3-1.0 0.1-0.4 10-50 0.1-0.2 10-50 0.1-0.2 100-600 0.3-1.0 Technical Guide Cutting speed  Application TI 17 Uncoated Grades P.M.K  Uncoated grades Cemented carbide grades are made from a very hard WC (Tungsten carbide) and additional refractory carbides (TiC, TaC) and the tougher Co (Cobalt) metal. Each grade is designed to have excellent hardness, toughness, strength, thermal shock and chemical reaction resistance even at high temperatures. Their characteristics are very suitable for the various machining applications and workpiece materials. With TaeguTec's highly developed production technology the customer is guaranteed very stable performance and excellent quality levels, thus meeting the customer’s demands.  Application ISO TaeguTec class grades Materials Cutting methods P10 P P20 Steel Cast steel Turning Milling Steel Cast iron Stainless steel Turning Milling M40 K10 K K20 Reaming Cast iron Hardened steel Turning Milling Nonferrous  Mechanical Technical Guide TI 18 M WC + Co + TiC + TaC TiC & TaC is added to improve heat & crater resistance WC + Co + TiC + TaC Less TiC and TaC is added. High wear and shock resistance, but less heat and crater resistance than P grades. Low speed Heavy cutting Finishing WC + Co Medium speed No TiC or TaC. Excellent mechanical wear and shock resistance. and physical properties Hardness (HRA) Transverse rupture strength (kg/mm2) Young’s modulus (x103,kg/mm2) Thermal conductivity (cal/cm·sec·Kº) Compressive strength (kg/mm2) Thermal expansion coefficient (10-6/ °C) P10 92.7 > 200 53 0.07 460 6.5 P20 92.5 > 210 54 0.08 480 6.0 P30 91.2 > 250 57 0.10 480 5.5 M10 92.8 > 200 58 0.12 500 5.5 M20 92.1 > 250 57 0.15 490 5.5 M40 89.1 > 330 54 0.14 440 5.5 K10 92.7 > 240 64 0.19 620 4.7 K20 92.1 > 260 62 0.19 530 5.0 ISO TaeguTec class grades P Features Medium speed M10 M20 Medium-high speed General cutting Composition Low-medium speed Roughing P30 M Application K Grades Comparison Table  Turning ISO class grades TaeguTec SANDVIK WALTER SECO KENNAMETAL MMC SUMITOMO TUNGALOY KYOCERA KORLOY ISCAR UE6105 AC810P T9105 TT8115 GC4205 GC4005 WPP05 TP0500 KCP05 UE6005 AC500G T9005 CA5505 WPP10S TP1500 KCP10 UE6110 AC1000 T9115 CA515 NC3010 IC8150 TT8115 GC4215 GC4015 WPP10 TP1000 KCP10B KC9110 UE6010 AC700G T9015 CA5515 NC3015 IC9150 P KCP25 MC6025 AC820P T9125 CA525 NC3220 IC8250 TT8125 GC4325 WPP20S TP2500 KCP25B AC2000 T9025 CA5525 NC3120 IC9250 TT5100 GC4225 WPP20 TP2000 KC9125 UE6020 ACZ310 NC3020 KCP30 UE6135 AC830P T9135 CA5535 NC3030 IC8350 TT8135 GC4235 WPP30S TP3500 TP3000 KCP40 UH6400 TT7100 GC4035 WPP30 AC3000 T9035 CR9025 NC500H IC9350 GC2135 TP40 KC9040 MC7015 AC610M TM2000 IC6015 TT9215 GC2015 WSM10 US7020 EH10Z T6120 CA6515 PC8110 WAM10 TP200 KCM15 VP05RT NC902 IC807 MC7025 AC630M T6130 CA6525 NC9025 IC6025 TT9225 GC2025 WSM20 WAM20 CP500 KCM25 US735 AC304 AH630 IC9300 T6020 M TT9235 GC2035 TM4000 UH6400 AH645 GC30 WSM30 TT8020 GC235 WAM30 TP400 KCM35 MP7035 AC3000 T6030 PR630 NC5330 PC9030 IC3028 TT7005 GC3205 WKK10S TK1001 KCK05 MC5005 AC405K CA4505 NC6205 IC5010 AC410K T5105 GC3005 WAK10 TK1000 KC9315 UC5105 AC300G T5010 CA4010 NC6105 IC4028 KCK15 MC5015 AC415K T5115 CA4515 NC6210 TT7015 GC3210 WKK20S TK2001 KCK15B CA4115 NC6110 IC5005 TT7310 GC3015 WAK20 TK2000 KC9325 UC5115 AC500G T5020 CA4120 K GC3215 WAK30 H AC420K T5125 NC315K KCU10 AC510U KC5510 VP05RT EH510Z AH110 PR1005 VP10RT PR930 PC8110 KC5010 EH10Z IC807 IC907 PR1025 KCU25 VP15TF AC520U PR1125 PC5300 KC5525 VP20RT AH120 EH20Z PR1225 PC9530 KC5025 PR1425 IC808 IC908 Technical Guide S TH1000 GCS05F TH1500 TT5080 GC1105 WSM10 TS2000 GC1115 TS2500 CP200 GC15 GC1125 TT9080 GC1025 WSM20 CP500 GC1515 WSM30 GC1525 KCK20 TI 19 Grades Comparison Table  Milling grades ISO class TaeguTec SANDVIK TT2510 WALTER SECO KENNAMETAL MMC SUMITOMO TUNGALOY KYOCERA KORLOY ISCAR PC210F IC903 IC900 MH1000 KC510M MP8010 GC1010 WHH15 F15M KC522M VP15TF GC1030 WXM15 MP1500 KC635M F30M WKP25 MP1500 TT7080 GC4220 WAM10 MP2500 TT7030 GC4230 WAM20 T250M T3130 AH330 PR630 PR660 PR730 PC3600 PC3500 PC3535 PC3525 IC950 F30M KC522M VP15TF TT9080 GC1030 ACP200 WAM30 MP3000 KC635M VP20RT TT9030 GC4240 AH725 AH730 GH330 AH120 PC5300 PR9925 NC5330 PR830 PC9530 IC808 IC908 KC725M VP30RT ACP300 KC735M FH7020 ACZ350 KC935M F7030 KCPM20 AH140 T3130 AH130 PC3545 IC830 IC330 IC928 GC1030 MH1000 TT9080 GC2030 WAM30 MP2500 KC635M VP15TF ACP200 S30T WXM35 TT9030 F30M GC1025 T3130 AH725 AH120 PR730 PR830 PC5300 PR9925 PC9530 PR925 NC5330 PR1025 IC808 IC908 F7030 ACP300 WXM35 F40M TT8080 GC2040 WSM35 MM4500 KC725M VP30RT EH20Z TT8020 S40T MP9030 EH520Z WSP45 MS2500 AH130 AH140 SH730 PR1225 PC3545 PR905 PC5300 IC830 IC330 IC928 PC8110 IC5100 PC6510 PC215K PC5300 IC810 IC910 P TT8080 GC4240 TT8020 GC1040 TT7800 Technical Guide M TI 20 WKP35 WXP45 WSP45 F40M T350M S TT6800 GC3220 GC4220 WAK15 MK1500 KC915M MC5020 MP1500 KCK15 TT6080 GC1020 GC4230 GC3040 GC4240 WKP25 WKP35 MP8010 ACK200 MK2050 KCK15 VP15TF ACK300 MK2000 KC520M F5010 ACZ310 MK3000 K T1015 T1115 AH120 GH110 PR905 PR510 PR610 Grades Comparison Table  Cermet grades ISO class TaeguTec SANDVIK KENNAMETAL SUMITOMO KYOCERA TUNGALOY MITSUBISHI HITACHI KORLOY NTK DIJET CERATIZIT CERAMTEC CC105 CC115 CN1000 T3N LN10 TCM407 SC35 TCC410 TP1030 CN2000 CMP CC125 CM T15 C30 Q50 SC15 SC8015 CX50 TCM10 SC7035 CX75 SC40 MP1020 CN20 TP1020 CN30 C15M N20 Z15 C50 C7X CX90 Q50 N40 CX99 T3N LN10 PV7020 GT730 CT5005 TP1030 KT5020 T1500A PV60 CN2000 GT530 MP3025 CT5015 CMP CZ25 KT125 T1200A TN6010 M10 CT3000 CC125 NS520 UP35N CT525 CM KT150 T2000Z TN6020 NS720 GC1525 TN60 T15 C30 Q50 SC15 SC8015 CX50 TCM10 SC7035 CX75 SC40 CH550 VP45N TN100M CH7030 CN20 TP1020 NS730 KT1120 T3000Z NX99 TC60M MZ1000 CN30 C15M NS530 KT175 T130Z NX3035 PV90 MZ2000 N20 Z15 C50 C7X CX90 Q50 N40 CX99 T3N Q15 LN10 T15 Z15 C7Z CX75 TCM10 SC7015 P01 PV3030 PV3010 T110A PV30 GT720 AP25N KT315 T1000A TN30 NS710 NX2525 T1500Z PV7010 PV7020 PV7025 GT730 CT5005 KT5020 T1500A PV60 GT530 MP3025 CT5015 CZ25 KT125 T1200A P10 CT3000 TN6010 NS520 UP35N CT525 KT150 T2000Z TN6020 NS720 GC1525 TN60 CH550 VP45N TN100M CH7030 NS730 KT1120 T3000Z NX99 TC60M P20 CT7000 CT530 MZ1000 NS530 KT175 T130Z NX3035 PV90 MZ2000 T250A T130A NS740 NX4545 KT315 T110A PV30 GT720 AP25N TN30 NS710 NX2525 PV7010 P30 M01 PV3010 PV3030 M20 CT7000 CT530 T250A T130A M30 K01 PV3030 NS740 NX4545 SECO MZ3000 CH7035 CC105 CC115 CN1000 MZ3000 CH7035 PV30 NS710 T110A PV7005 GT720 AP25N CH350 CN1000 KT315 T1000A PV7020 NS720 NX2525 T1500Z PV60 NS520 CM GT730 T1200A TN60 NS730 T2000Z TN6020 NS530 CH550 CN2000 C15M MZ1000 K20 T3000Z MZ2000 TCM407 SC35 TCC410 SC7015 SC60 TCM407 SC8015 TCC410 Technical Guide K10 CT3000 CT5015 KT125 SC7015 SC60 TI 21 Grade Comparison Table  Ceramic Application grades Composition TaeguTec SANDVIK Al2O3 AW120 CC620 Al2O3+TiC AB30 CC650 SiAlON AS500 Cast iron Si3N4 Hardened steel AS10 KENNAMETAL CERAMTEC SN60 SN80 KY300 KY1310 KYK10 SH2 SH4 SL506 SL508 SL606 SL608 CC6090 CC6091 KY1320 KY3500 SL500 SL808 CC1690 KY3400 KYK25 KY1615 KYOCERA KA30 NB90S NB90M A65 SX1 SX2 SX6 KS500 KS6000 KS6050 NS260 SP2 SP9 CS7050 NS260C SC10 Al2O3+TiCN AB20 Al2O3+TiCN + PVD Al2O3+SiCw Si3N4+TiN AB2010 CC6050 KY4400 TC430 AS20 CC670 KY4300 HC2 HC5 HC7 ZC4 ZC7 WA1 CC6060 CC6065 KY2100 KY1540 KYS30 KYS25 SX5 SX7 SX9 SiAlON SUMITOMO SSANG-YONG A66N PT600M NB100C WX2000 Continuous Hardened steel TaeguTec TUNGALOY SANDVIK TB610 BX310 CB7015 TB650 BX530 BX330 BXM20 CB7025 TB670 General Technical Guide Solid CBN TI 22 ISO class ST300 ST500 ST700 TC300 SW500 SW800 SN800 SN900 KS6040 KENNAMETAL CERAMTEC KB1610 KB5610 WBN575 KB9610 SECO SUMITOMO CBN10 CBN050C BNX10 BNC100 BN250 BNX20 BNC160 BNC200 BN350 BNX25 BN500 BNC300 KB1625 KB5625 WBN570 WBN560 CBN100 CBN160C KB1630 KB5630 WBN555 CBN150 CBN100P KB1345 KB9640 WBN735 WBN750 CBN200 CBN400C BN100 BN700 WBN100 WBN100C CBN300 CBN350 BNS800 General  PCD SN26 SN300 SN400 SN500 SN600 grades Application Cast iron SZ200 SZ300 ST100 SD200 TC100(PVD) SN200K SN2100K Si3N4+CVD Super alloy  CBN SL550C SL554C SL654C SL658C SL854C SL858C SH2 SH4 NTK HC1 HW2 HC2 HC5 HC6 TB730(KB90) KB90A BX360 BX380 BXC50 BX930 BX850 BX950 BX470 BX480 BX90S BXC90 CB7050 grades TaeguTec ISCAR TD810 TUNGALOY SUMITOMO DX180 SANDVIK KENNAMETAL MITSUBISHI DA90 NTK KD1425 KYOCERA SECO KPD230 PCD30M N01-N10 KP500 ID8 DX160 MD203 N05-N20 KP300 ID5 DX140 DA150 N15-N30 KP100 DX120 DX110 DA2200 DA1000 CD10 KD1400 KD1405 PCD30 MD220 PD1 KPD010 PCD20 MD230 PD2 KPD001 PCD10 PCD05 Turning Chip Breaker Comparison Table Description TaeguTec SANDVIK KENNAMETAL SECO WS WF, WL FW W-MF2 WT WMX,WM MW W-M3 FA FF FF1 FS FP FG QF FN MF2 FC VF Double sided For steel ML PF, LC XF K MP GPXM QM MC PC SM PM XMR MT MG- Negative insert RT RX Single sided PR QR MR HT, HD HR, 31 HY, HZ EA,SF MF EM Stainless Double steel sided ET SU Cast Double iron sided MN MF3 MR3 M3 MP RP UN PR HM RH 95 GP-K,MSMS GP P UM RN MGRM RP RH MP3 NM4 NM6 MP5 NS8 M4 MP, MV GE,GU M3 MG- NM5,NM7 M5 NRT, RP5 MR7, M6 NM6,NM9 MH,GJ R3 NRF R6,RR9 NR6 R5,R4,37 NR5,NR8 RR6 NR7 R8,56,57 R7 NRR R6 F5 MR RP MR6, MF5 NR4 MM-MR MM-RR6 NMS SF, SGF FH, FX MX-SM, MS, MH, 23, SM MX SR, SMR M5 MT MGRT WT KF,KM FA PF,UF UF,11,GM KR WM FN RP UN MW MF1 MF4 M5 MR7 W-F2 FF1 PC HZ HA HH HC5 HX,HBS HV,HDS, HXD FS MS UM XF MT PM XM PR,UR XR PMR- PMR- FL AL F1 MA MGGH MW NM5, MK5 PF PF4 PF5 MP MF FV PM3 PM4 PF2 F2 PMRHP PS4 PS5 PM5 E47, MT- PM5 PMRAL PM2 HS CS MGC ME GT,PT MU, MX PH,HT S CB,17 AS TM WG SF NF HA VP2 12 PP HS,GS, VP3 TF VL HC VM HM,GM GN 38 DM,MG- B20,B25 33,37 MG- TH HR, GR NR TRS 57 GH RP NM PX MP HG HP HF HU HW SU EX GU SMG FP LF UZ ZF ZM,TS, VG,HF,GF NS,NM TSF VF VQ VL, VB, HC ISCAR HX 65 TU MQ,GU MU MS SS HU SM VT,HH VH,B40 HA VP3 HS GS TNM IL SQ,SV UZ GZ LU FP FC FK SU SC,SK MGC ZS, GC CF CM CH XP GK, GP, 01,PF,PSF DP CF, GF GQ GR XQ HQ B25 GR HFP 38, PF JS VF HMP,C05 PSS PS MQ,MV MTG SF,MU PMR- UJ GP,HQ G,PMR- 23 AZ AG AH AL MT- WG PM SM 16, GT- C25 14, 17 19, MT- AR AF, AS Technical Guide For aluminum FG GH, RP HAS,HDS UX,UG GS PS TUNGALOY KORLOY AFW LW ASW VW,HW TF HU HMM, SA SA Positive For steel insert MA MG- NF4 NMS NM4 MM FP MU1, MS1 UP WALTER VALENITE MITSUBISHI SUMITOMO KYOCERA NF W3 SW LUW, SEW WP NM W6 MW GUW WQ F2 FH FL,FA GP, DP, XF XP PP NF3 SH SU FP5 SE NFT HQ NS6 FY,SA LU CJ LP CQ,PQ ES GX,HM G-NMT, FJ,SY XQ NS4 NS5,G1 MJ A3, AH UP XS NM4 M2 TI 23 Technical Guide Hardness Conversion Table Brinell HB10mm ball Rockwell Brinell HB10mm ball Rockwell LOAD 3000kgf LOAD 3000kgf Tensile Tensile Vickers Standard Tungsten A scale B scale C scale D scale Shore's Strength Vickers Standard Tungsten A scale B scale C scale D scale Shore's Strength carbide 60kgf 100kgf 150kgf 100kgf ball carbide 60kgf 100kgf 150kgf 100kgf 50kg 50kg ball N/mm2 N/mm2 ball Diamond 1/16in diamond diamond ball Diamond 1/16in diamond diamond (kgf/mm2) (kgf/mm2) brale ball brale brale brale ball brale brale HS HV HRA HRB HRC HRD HV HRA HRB HRC HRD HS 1900 470 441 442 74.1 1570(160) 46.9 60.7 93.1 80.5 1800 460 433 433 73.6 46.1 60.1 92.6 79.2 62 1530(156) 1700 450 425 425 73.3 1459(153) 45.3 59.4 91.9 77.9 1600 440 415 415 72.8 44.5 58.8 91.3 59 1460(149) 76.6 1500 430 405 405 72.3 1410(144) 43.6 58.2 90.5 75.3 1450 420 397 397 71.8 42.7 57.5 90.1 57 1370(140) 74.6 1400 410 388 388 71.4 1330(136) 41.8 56.8 89.6 74.0 1350 400 379 379 70.8 40.8 56.0 89.1 55 1290(131) 73.4 1300 390 369 369 70.3 1240(127) 39.8 55.2 88.7 72.7 1250 380 360 360 69.8 (110.0) 38.8 54.4 88.3 52 1250(123) 72.1 1200 370 350 350 69.2 1170(120) 37.7 53.6 87.9 71.5 1150 360 341 341 68.7 (109.0) 36.6 52.8 87.5 50 1130(115) 70.9 1100 350 331 331 68.1 1095(112) 35.5 51.9 87.1 70.3 1050 340 322 322 67.6 (108.0) 34.4 51.1 86.6 47 1070(109) 69.6 1000 330 313 313 67.0 1035(105) 33.3 50.2 86.2 68.9 940 320 303 303 66.4 (107.0) 32.2 49.4 85.6 45 1005(103) 68.0 76.9 97 920 310 294 294 65.8 980 (100) 31.0 48.4 85.3 67.5 76.5 96 900 300 284 284 65.2 (105.5) 29.8 47.5 85.0 42 950 (97) 67.0 76.1 95 880 295 280 280 64.8 935 (96) (767) 84.7 29.2 47.1 66.4 75.7 93 860 290 275 275 64.5 (104.5) 28.5 46.5 (757) 84.4 41 915 (94) 65.9 75.3 92 840 285 270 270 64.2 905 (92) (745) 84.1 27.8 46.0 65.3 74.8 91 820 280 265 265 63.8 (103.5) 27.1 45.3 (733) 83.8 40 890 (91) 64.7 74.3 90 800 275 261 261 63.5 875 (89) (722) 83.4 26.4 44.9 64.0 74.8 88 780 270 256 256 63.1 (102.0) 25.6 44.3 (710) 83.0 38 855 (87) 63.3 73.3 87 760 265 252 252 62.7 840 (86) (698) 82.6 24.8 43.7 62.5 72.6 86 740 260 247 247 62.4 (101.0) 24.0 43.1 (684) 82.2 37 825 (84) 61.8 72.1 84 720 255 243 243 62.0 805 (82) (670) 81.8 23.1 42.2 61.0 71.5 83 700 250 238 238 61.6 99.5 22.2 41.7 (656) 81.3 36 795 (81) 60.1 70.8 81 690 245 233 233 61.2 780 (79) (647) 81.1 21.3 41.1 59.7 70.5 680 240 228 228 60.7 98.1 20.3 40.3 (638) 80.8 34 765 (78) 59.2 70.1 80 670 230 219 219 96.7 (18.0) 630 80.6 33 730 (75) 58.8 69.8 660 220 209 209 95.0 (15.7) 620 80.3 32 695 (71) 58.3 69.4 79 650 210 200 200 93.4 (13.4) 611 80.0 30 670 (68) 57.8 69.0 640 91.5 (11.0) 601 79.8 29 635 (65) 57.3 68.7 77 2205(210) 200 190 190 2020(206) 190 181 181 630 89.5 (8.5) 591 79.5 28 605 (62) 56.8 68.3 620 87.1 (6.0) 582 79.2 26 580 (59) 56.3 67.9 75 1985(202) 180 171 171 1950(199) 170 162 162 610 85.0 (3.0) 573 78.9 25 545 (56) 55.7 67.5 600 81.7 (0.0) 564 78.6 24 515 (53) 55.2 67.0 74 1905(194) 160 152 152 1860(190) 150 143 143 590 78.7 554 78.4 22 490 (50) 54.7 66.7 580 75.0 515 78.0 21 455 (45) 54.1 66.2 72 1825(186) 140 133 133 1795(183) 130 124 124 570 71.2 535 77.8 20 425 (44) 53.6 65.8 560 69.8 525 77.4 19 (42) 53.0 65.4 71 1750(179) 127 121 1750(174) 122 116 550 (505) 517 77.0 67.6 18 (41) 52.3 64.8 540 (496) 507 76.7 65.7 15 (39) 51.7 64.4 69 1660(169) 117 111 1620(165) 530 (488) 497 76.4 51.1 66.2 520 (480) 488 76.1 50.5 63.5 67 1570(160) 1530(156) 510 (473) 479 75.7 49.8 62.9 500 (465) 471 75.3 49.1 62.2 66 1459(153) 1460(149) 490 (456) 460 74.9 48.4 61.6 480 488 452 74.5 47.7 61.3 64 1410(144) • Note: Gothic figures come from ASTM E 140 table(Calculated by SAE-ASM-ASTM together) TI 24 Material Properties According ISO to DIN / ISO 513 and VDI 3323 standard Material Non-alloy steel and cast steel, free cutting steel P < 0.25 %C >= 0.25 %C < 0.55 %C >= 0.55 %C Low alloy steel and cast steel (less than 5% all elements) High alloy steel, cast steel, and tool steel M Stainless steel and cast steel Grey cast iron (GG) K Cast iron nodular (GGG) Malleable cast iron Aluminumwrought alloy Aluminum-cast, alloyed N < = 12% Si > 12% Si > 1% Pb Copper alloys No-metallic Fe based S High temp, alloys Ni or Co based Titanium and Ti alloys Hardened steel H (1) Specific Steel Annealed Annealed Quenched and tempered Annealed Quenched and tempered Annealed Quenched and tempered Quenched and tempered Quenched and tempered Annealed Quenched and tempered Ferritic/martensitic Martensitic Austenitic Ferritic Pearlitic Ferritic Pearlitic Ferritic Pearlitic Not curable Cured Not curable Cured High temperature Free cutting Brass Electrolitic copper Duroplastics, fiber plastics Hard rubber Annealed Cured Annealed Cured Cast Alpha+beta alloys cured Hardened Hardened Cast Hardened cutting force for 1 mm2 chip section (2)Chip thickness factor Stainess steel Cast iron Nonferrous Tensile Kc(1) strength [N/mm 2] [N/mm2] 420 650 850 750 1000 600 930 1000 1200 680 1100 680 820 600 RM 400 RM 1050 - mc(2) 1350 1500 1675 1700 1900 1775 1675 1725 1800 2450 2500 1875 1875 2150 1150 1350 1225 1350 1225 1420 700 800 700 700 750 700 700 700 0.21 0.22 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.23 0.23 0.21 0.21 0.20 0.20 0.28 0.25 0.28 0.25 0.3 0.25 0.25 0.25 0.25 0.25 0.27 0.27 0.27 2600 3100 3300 3300 3300 1700 2110 4600 4700 4600 4500 0.24 0.24 0.24 0.24 0.24 0.23 0.22 High temp. alloys Hardness Material (HB) No. 125 190 250 220 300 200 275 300 350 200 325 200 240 180 180 260 160 250 130 230 60 100 75 90 130 110 90 100 200 280 250 350 320 55HRc 60HRc 400 55HRc Hardened steel 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 Technical Guide Chilled cast iron Cast iron nodular(GGG) Condition TI 25 Material Conversion Table According to VDI 3323 standard Material group AISI/SAE Material No. DIN 1 A 366 (1012) 0.0030 C10 1008 1 1 1 1 A 570 Gr. 33,36 1 1 1115 1 A 570 Gr. 40 1 1 A 570 Gr.50 A 572 Gr.50 1 A 572 Gr. 65 1 1 Technical Guide 1 1 1 A 284 Gr.D A 573 Gr.58 A 570 Gr 36;C A 611 Gr. C 1 1 1 A 573 Gr. 70 A 611 Gr.D 1 1 1 M 1010 TI 26 BS 040 A 10 045 M 10 1449 10 CS 1.0028 Ust 34-2 (S250G1T) 1.0034 RSt 34-2 (S250G2T) 1449 34/20 HR, HS,CR,CS 1.0035 St185 (Fe 310-0) Fe 310-0 St 33 1449 15 HR,HS 1.0036 S235JRG1 (Fe 360 B) Fe 360 B Ust 37-2 4360-40 B 1.0037 S235JR (Fe 360 B) Fe 360 B St 37-2 4360-40 B 030A04 1A 1.0038 GS-CK16 1.0044 S275JR (Fe 430 B) Fe 430 B FN St44-2 1449 43/25 HR, HS 4360-43 B 1.0045 S355JR 4360-50 B 1.0050 E295 (Fe 490-2) Fe 490-2 FN St 50-2 4360-50 B 1.0060 E335 (Fe 590-2) Fe 60-2 St 60-2 4360-55 E; 55 C 1.0060 St 60-2 1.0070 E360 (Fe 690-2) Fe 690-2 FN St 70-2 1501-164-360B LT20 1.0112 P235S 1.0114 S235JU;St 37-3 U 4360-40C 1.0116 S235J2G3 (Fe Fe 360 D1 FF 360 D 1) 1449 37/23 CR St 37-3 4360-40 D 1.0130 P265S 1.0143 S275J0; St 44-3 U 1.0144 S275J2G3 (Fe 430 D 1) St 44-3 1.0149 S275JOH; RoSt 44-2 1.0226 DX51D; St 02 Z 1.0301 C10 1 A 621 (1008) 1.0330 DC 01 St 2; St 12 1 A 619 (1008) 1.0333 Ust 3 (DC03G1) Ust 13 1 A 621 (1008) 1.0334 UStW 23 (DD12G1) 1 A 622 (1008) 1.0335 DD13; StW 24 1 A 620 (1008) 1.0338 DC04 St4; St 14 1 A 516 Gr. 65; 55 1.0345 P235GH A 515 Gr. 65;55 HI A 414 Gr. C A 442 Gr.55 1 (M) 1020 1.0402 C22 M 1023 1 1020 1.0402 C22 1 1020;1023 1.0402 C22 1 1.0425 1 A27 65-35 1 1 1 1 1 1 1.0443 1.0539 1.0545 1.0546 1.0547 1.0549 1.0553 1501-164-400B LT 20 4360-43C Fe 430 D1 FF 4360-43 C; 43 D 4360-43C Z2 040 A 10 045 M 10 1449 10 CS 1449 4 CR 1449 3 CS 1449 2 CR;3 CR 1449 1 HR 1449 1 CR;2 CR EN AFNOR AF 34 C 10 XC 10 SS A 34-2 A 34-2 NE A 33 KS SM 10C SS 330 SS 330 St2sp Fe 320 Fe 310-0 St0 FE37BFU AE 235 B Fe 360 B AE 235 B Fe 360 B 16D, 18Kp St3Kp 2172 1550 2172 1650 A 70-2 1655 A37AP E 24-3 E 24-3 E 24-4 1312 1313 Fe 360 B 1449 37/23 HR Fe 330,Fe 330 B FU Fe 430 B Fe 430 B FN Fe 510 B Fe 490 Fe 60-2 Fe 590 Fe 60-2 Fe 70-2 Fe 690 Fe 360 C Fe 360 C Fe 360 D1 FF Fe 360 C FN Fe 360 D FF Fe 37-2 AE 275 B Fe 430 B FN AE 355 B a 490-2 Fe 490-2 FN A 590-2 Fe 590-2 FN STKM 12A;C STKM 12A;C SS 330 SS 330 SM 400 A;B;C SM 400 A;B;C St4ps; sp SS 490 SS 490 ST5ps; sp SM 570 SM 570 St6ps; sp A 690-2 Fe 690-2 FN AE 235 C AE 235 C AE 235 D Fe 360 D1 FF St3kp; ps; sp 16D SPH 265 AE 275 D AE 275 D SM 400 A;B;C SM 400 A;B;C St4kp> Fe 430 D1 FF ps; sp Fe 430 C FeP 02 G F.1511 S 10C SM 10C 10 F.151.A 1414-01 1411, 1412 1414 1412-04 1151 10 Fe 430 D Fe 430 B, Fe 430 C (FN) Fe 430 D (FF) Fe 430 C FeP 02 G C 10 1 C 10 1142 FeP 00 FeP 01 FeP 02 AP 11 SPHD SPHD TE E AP 02 SPCD SPCD SC 3C ES AP 12 AP 13 AP 04 SPHE SPHE SPCE SPHE SPHE SPCE GC AF 34 C 10 XC 10 1501 Gr. 141-360 A 37 CP;AP 1501 Gr. 161-360; 151-360 1501 Gr. 161-400; 154-360 1501 Gr. 164-360; 161-360 055 M 15, 070 M 20 2C/2D AF 42 C 20; 1499 22 HS, CS XC 25;1 C 22 050A20 2C/2D CC20 055 M 15, 070 M 20 2C AF 42 C 20; XC 25;1 C 22 P265GH H ll 1501 Gr. 161-400;151-400 A 42 CP; AP 1501 Gr. 164-360; 161-400 1501 Gr. 164-400;154-400 GS-45 A1 E 23-45 M S355NH;StE 335 TSE 355-4 S355N; StE 355 4360-50E E 355 R S355NL;TStE 355 4360-50EE E 355 FP S355JOH 4360-50C TSE 355-3 S355 NLH;TStE 355 S355JO;St 52-3U 4360-50C E 36-3 GOST 10 1311 1312 1311 A 60-2 A 42 AP E 28-3 E 28-3 E 28-4 JIS S 10C 1300 1325 1412 A 50-2 UNE F.1511 F.151A Fe 330,Fe 330 B FU Fe 330 B FU E 24-2 E 28-2 E 36-2 UNI C 10 1 C 10 1147 FeP 12 FeP 13 FeP 04 1331 1330 FeE235, Fe 360 1 KW;KG A 37 RC I Fe 360 2 KW;KG RA II 1450 C 20 C 21, C 25 C20, C21 C 20; C 21;C 25 Fe 410 1 KW; KG; KT Fe 410 2 KW; KG 1 C 22 F.112 F.112 1 C 22F.112 Fe 510 B FeE 355 KG FeE 355 KT Fe 510 C Fe 510 D Fe 510 C Fe 355 KGN AE 355 KG AE 355 KT Fe 510 C FeE 355 KTM 1450 1450 1431 1430 1432 1305 2134-04 2334-01 2135-01 2172-04 2135 A 42 RC I A 42 RC II 15kp 10kp 08kp 08jU; JUA SGV 410, SGV SGV 410, SGV 450, SGV 48, 450, SGV SPV 450;SPV 480, SPPV 480 450;SPPV 480 S20C SM 20C 20 S22C SM 22C 20 S 20 C;S 22 C SM 20 C;SM 22C SPV 315; SPV 355 SPPV 315; SPPV 355 16K SG 295; SGV 410 SG 295; SGV 410 20K SGV 450; SGV 480 SGV 450; SGV 480 According to VDI 3323 standard Material group AISI/SAE Material No. DIN 1 A 633 Gr.C 1.0562 P355N A 588 StE 355 1 1 1 1 1.0565 P355NH; WStE 355 1.0566 P355NL1; TStE 355 1.0570 S355J2G3 St 52-3 1 1213 1 1213 1 12 L 13 1.0715 9 SMn 28 (1SMn30) 1.0715 9 SMn 28 1.0718 9 SMnPb 28 (11SMnPb30) 1.0721 10 S 20 1 1108 1109 1 11 L 08 1 11 L 08 1 1215 1 12 L 14 1.0722 1.0722 1.0736 1.0737 1 1 1 1 1 1 1010 1.0972 1.0976 1.0982 1.0984 1.0986 1.1121 1 1 1015 1.1121 1.1141 1 1020 1023 D3 A36 1.2080 1 1 1 1 2 2 2 A572-60 (M) 1025 1.1151 1.8900 1.0406 1.0416 1.0473 10 SPb 20 10 SPb 20 9 SMn 36 11SMn37) 9 SMnPb 36 (11SMnPb37) S315MC; QStE 300 TM S355MC; QStE 360 TM S460MC; QStE 460 TM S500MC; QStE 500 TM S500MC; QStE 500 TM CK 10 (C10E) St 37-1 CK 15 (C15E) C22E CK 22 X 210 Cr 12 St 44-2 StE 320-3Z StE 380 C 25 GS-38 P355GH A 537 CI.1 A 414 Gr. G A 612 2 1035 1.0501 C 35 2 1045 2 1040 1.0503 CF 45 (C45G) 1.0511 C 40 2 1140 2 1146 2 1035 1041 2 1025 2 2 2 2 2 1536 1330 1330 1330 C 50 GS-52 GS-60 S355J2G4 (Fe 510 D 2) 1.0726 35 S 20 1.0727 45 S 20 (46S20) 1.1157 40Mn4 1.1158 C25E CK 25 1.1166 34Mn5 1.1170 28Mn6 1.1170 28Mn6 1.1170 28Mn6 1.1178 C30E; CK 30 (210 M 15) E 315 D E 355 D E 490 D E 560 D XC 10 1501 - 60F55 040 A 10 19 Mn 6 2106 2107-01 2132, 2133 2134, 2174 1912 1912 1914 10S20 10F 2 10PbF 2 10PbF 2 S 300 1501-40F30 1501-43F35 1501-50F45 4360 40 A 040 A 15 080 M 15 055 M 15 (070 M 20) BD 3 4360 43 A 1 501 160 4360 55 E 070 M 26 SS 2106 A2 A3 Fe 510 D2 FF 1501 Gr.224-460 1501 Gr. 224-490 212 M 36 8M 35MF 6 45 MF 4 150 M 36 15 35 M 5 40 M 5 (070 M 25) 2 C 25 XC 25 (150 M 28), (150 M 18) 150 M 5 14A 080M30 CF 10 S 20 F.2111 - 11 SMn 28 11 SMn 28 F.2112-11 SMnPb 28 F. 2121 - 10 S 20 CF 10 SPb 20 CF 10 SPb 20 CF 9 Mn 36 F.2122-10 SPb 20 10 SPb 20 F.2113 - 12 SMn 35 SUM25 SUM25 F-1510-C 10 K S 9 CK S 10 C S 9 CK S 10 C F.1110-C 15 S 15 F.1511-C 16 K S 15 CK F.1120-C 25 K S 20 C, S 20 CK S 22 C SM 15C 15 SM 15CK SM 20 C, SM20 CK 20 SM22 C 2662 FeE 490 TM FeE 560 TM C 10, 2 C 10 2 C 15 1 C 35 1572 AF 55 C 35 1550 XC 38 XC 42 H 1672 1 TS 1 C 40 AF 60 C 40 1674 280-480 M 1505 320-560 M 1606 A 52 FP 2107 C 15 16 C 20 25 FeE390KG C 25 20 M 5, 28 Mn 6 1421 20 M 5 2145 20 M 5 XC 32 C C SUM 22 SUM 22 SUM 22 SUM 22 SUM 22 L SUM 22 L SUM 23 L, SUM 24 L SUM 23 L, SUM 24 L 08;10 S 25C SM 25C SGV 410 SGV 450 SGV 480 S35C SGV 410 SGV 450 SGV 480 SM35C 35 S 45 C SM 45 C 45 S 40 C SM 40 C 1 C 25 Fe E 355-2 A 52 RC I RA II C 35 1 C 35 F.113 C 43 C 46 C 40 1 C 40 C 50 1 C 50 A 52 RB II AE 355 D 1957 1973 C 25 AE 355 D SM 490 A;B;C; SM 490 A;B;C; 17GS Fe 510, D1 FF YA;YB YA;YB 17G1S CF SMn 28 CF 9 SMn 28 CF 9 SMnPb 28 FeE 355TM 1265 UNE JIS KS GOST AEE 355 KG;DD SM 490 A;B;C; SM 490 A;B;C; 15GF YA;YB YA;YB FeE 355-2 FeE 355-3 17GS 17G1S 2642 1300 32C XC 12 XC 15 1370 XC 18 2 C 22 XC 18 1450 XC 25 Z 200 C 12 2642 NFA 35-501 E 28 1411 1421 2145 1 C 25 20-400 M 1306 A 52 CP 2101 2102 080 A 32, 080 A 35 080 M 36, 1449 40 CS 060 A 47 080 M 46 080 M 40 UNI FeE 355 KG;KW Technical Guide 2 1.0540 2 A27 70-36 1.0551 2 A148 80-40 1.0553 2 A738 1.0577 BS EN AFNOR 1501 Gr.225-490A LT 20 FeE 355 KG N E 355 R/FP; A 510 AP 1501-225-490B LT 20 A 510 AP 1501-225-490A LT 50 A 510 FP Fe 510 D1 FF E 36-3 1449 50/35 HR>HS E 36-4 4360-50 D 230 M 07 S 250 230 M 07 S 250 S 250 Pb F.210.G F.1120 - C 25 K TO.B C 28 Mn S 25 C S 28 C SMn 433 H 28 Mn 6 C 28 Mn C 30 2 C 30 S 09CK SMn 433 S 25 C SM 25 C SCMn 1 SCMn 1 SCMn 1 SCMn 1 30G TI 27 Material Conversion Table According to VDI 3323 standard Material group AISI/SAE Material No. DIN 2 1035 1.1180 C35R Cm 35 2 1035 1.1181 C35E 1038 CK 35 2 1035 1.1181 C35E CK 35 2 1042 1.1191 GS- Ck 45 2 1049 1.1206 C50E 1050 CK 50 1.1213 Cf 53 (C53G) 1.5423 22Mo4 1.0050 St50-2 1.0481 P295GH 17 Mn 4 3 3 3 3 1074 1086 1095 1036 1330 3 1335 1.0614 1.0616 1.0618 1.1165 1.1167 30Mn5 120 M 36 (150 M 28) 150 M 36 3 1040 1.1186 C40E CK 40 1.1191 C45E CK 45 060 A 40, 080 A 40 080 M 40 080 M 46 060 A 47 1.1201 C45R Cm 45 080 M 46 3 1049 Technical Guide 3 3 3 3 3 4 28 080 A 35 (080 M 36) 080 A 35 (080 M 36) 080 A 46 080 M 50 2 1050 1055 2 4520 3 3 A 516 Gr.70 A 515 Gr. 70 A 414 Gr.F; G 3 1043 3 1045 TI BS 080 A 35 1.0503 C35 1.7242 A 387 Gr. 12 CI 1.7337 A 387 Gr. 12 CI 1.7337 1.7362 A572-60 1055 1.0535 C 76 D; D 75-2 C 86 D; D 85-2 C 92 D;D 95-2 30Mn5 18 CrMo 4 16 CrMo 4 4 16 CrMo 4 4 12 CrMo 19 5 17 MnV 6 C55 4 1060 1.0601 C60 4 1070 1.0603 C67 4 1074 1075 4 1055 1.0605 C75 4 1055 4 1060 1064 4 1070 4 1074 1075 1078 4 1086 4 1095 4 W 112 4 5 5 5 1.1203 C55E CK 55 1.1209 C55R Cm 55 1.1221 C60E CK 60 1.1231 CK 67 (C67E) 1.1248 CK 75 (C75E) 1.1269 CK 85 (C85E) 1.1274 Ck 101 (C101E) 1.1663 C 125 W 1.0070 St70-2 1.7238 49 CrMo 4 1.7701 51 CrMoV 4 070 M 55 EN AFNOR SS 3 C 35 1572 XC 32 2 C 35, XC 32 1550 XC 38 H 1 1572 1572 XC 45 2 C 50 XC 48 H 1; XC 50 H 1 XC 48 H TS a 48 Cp;AP 060 A 47 080 M 46 1449 50 HS, CS 1 C 45 AF 65 C 45 XC 75 XC 80 XC 90 35 M 5 40 M 5 2 C 40 XC 42 H 1 2 C 45 XC 42 H 1 XC 45 XC 48 H 1 3 C 45 XC 42 H 1 XC 48 H 1 UNE F.1130-C 35 K-1 JIS KS C35 F.1130-C 35 K S 35 C SM 35 C C36 S 35 C SM 35 C 1660 1674 C45 C 50 1674 C 53 1672 1650 16 Mo 5 KG; KW FE50 Fe 510 KG;KT;KW Fe 510-2 KG;KT;KW FeE 295 C 45 1 C 45 1503-245-420 1501 Gr. 224 UNI GOST 35 F-1140 50 SM 50 C 50 F.2602- 16 Mo 5 SB 450 M S 50 C SB 450 M SB 480 M A 47 RC I RA II SG 365, SGV 410 SGV 450 SGV 480 S 45 C SG 365, SGV 410 14G2 SGV 450 SGV 480 SM 45 C 45 F.8211-30 Mn 5 f.8311-AM 30 Mn 5 F. 1203-36 Mn 6 F. 8212-36 Mn 5 SMn 433 H SCMn 2 SMn 438 (H) SCMn 3 S 40 C SMn 433 H SCMn 2 SMn 438 (H) SCMn 3 SM 40 C 27ChGSNMDTL 30GSL 35G2 35GL S 45 C S 48 C S 45 C S 48 C 45 F.114 C 85 2120 C 40 1672 C 45 C 46 F.1140-C 45 K F.1142-C48 K 1660 C 45 F.1145-C 45K-1 S 50 C F.1147C 48 K-1 SM 50 C S 55 C SM 55 C 55 S 58 C SM 58 C 60(G) 18 CrMo 4 3606-625 436055 E 070 M 55 060 A 62 1449 HS,CS 080 A 67 1449 70HS 1449 80 HS 060 A 57 070 M 55 070 M 55 060 A 62 060 A 67 060 A 78 Z 10 CD 5.05 NFA 35-501 E 36 2142 1 C 55 1655 AF 70 C 55 43D 1 C 60 AF 70 C 55 A 18 CrMo 4 5 KW A 18 CrMo 4 5 KW 16 CrMo 20 5 C 55 1 C 55 C 60 1 C 60 C 67 XC65 C 75 2C5 XC 55 H 1 3 C 55 XC 55 H 1 43D 2 C 60 XC 60 H 1 XC 68 1655 75 C 55 F.1150-C 55 K S 55 C C 55 F.1155-C 55 K-1 1655 1678 1770 C 60 774 C 75 SM 55 C 55 S 58 C SM 58 C 60 60G, 60GA 65GA 68GA , 70 75(A) SUP 4 SPS 4 C 70 XC 75 XC 90 XC 100 Y2 120 C 90 C 100 1870 2223 FE70-2 51 CrMoV 4 85(A) F-5117 According Material group AISI/SAE 6 A573-81 65 6 A515 65 6 5120 6 9255 6 9254 6 9262 6 L3 6 L1 6 L2 6 6 6 4135 6 6 01 6 S1 6 S1 6 L6 6 L6 6 O2 6 E 50100 6 52100 to VDI 3323 standard Material No. DIN 1.0116 St 37-3 1.0345 H1 1.0841 St 52-3 1.0904 55 Si 7 1.0904 55 Si 7 1.0961 60SiCr7 1.2067 100Cr6 1.2108 90 CrSi 5 1.2210 115CrV3 1.2241 51CrV4 1.2311 40 CrMnMo 7 1.2330 35 CrMo 4 1.2419 105WCr6 1.2510 100 MnCrW 4 1.2542 45 WCrV7 1.255 60WCrV7 1.2713 55NiCrMoV6 1.2721 50NiCr13 1.2842 90MnCrV8 1.3501 100 Cr 2 1.3505 100Cr6 1.5024 46Si7 6 9255 1.5025 51Si7 6 9255 6 9260 1.5026 55Si7 1.5027 60Si7 6 9260 H 6 6 A 204 Gr.A 4017 6 4419 6 A 350-LF 5 6 3415 6 3310; 3314 6 6 6 5515 6 5132 6 5140 6 5140 6 5115 6 6 5515 6 4135; 4137 6 4142 6 4140 6 6 6 6 ASTM A182 F-12 6 A 182-F11;12 6 ASTM A 182 F.22 6 A182 F-22 6 6 A355A 7 A570.36 1.5028 65Si7 1.5120 38 MnSi 4 1.5415 16Mo3 15 Mo 3 1.5419 20Mo4 1.5622 14Ni6 1.5732 1 NiICr10 1.5752 14NiICr14 1.6587 17CrNiMo6 1.6657 14NiCrMo134 1.7015 15 Cr 3 1.7033 34Cr4 1.7035 41C r4 1.7045 42Cr41 1.7131 16MnCr5 1.7139 16MnCr5 1.7176 55Cr3 1.7220 34CrMo4 1.7223 41CrMo4 1.7225 42CrMo4 1.7228 55NiCrMoV6G 1.7262 15CrMo5 1.7321 20 mOcR 4 1.7335 13CrMo4 4 1.7335 13 CrMo 4 4 1.7380 10CrMo9 10 1.7380 10 CrMo 9 10 1.7715 14MoV6 3 1.8509 41CrAlMo 7 1.0038 S235JRG2 (Fe 360 B) RSt 37-2 7 3135 1.5710 36NiCr6 EN AFNOR E 24-U A 37 CP 20 MC 5 45 55S7 55 S 7 60SC6 Y100C6 SS 1312 1330 2172 2085 2090 60SiCr8 2092 100C3 708 A 37 BO1 BS1 BO2 2 S 135 535 A 99 34 CD 4 105WC13 8 MO 8 55WC20 55NCDV7 55 NCV 6 90 MV8 55WC20 31 100 C 6 2234 2140 2140 2710 2710 UNI Fe 52 55Si8 35 cRmO 8 KU 35CrMo4 10WCr6 10WCr6 45 WCrV8 KU 58WCr9KU 100Cr6 45 S 7; Y 46 7;46 SI 7 51 S 7 2090 48 Si 7 51 Si 7 50 Si 7 55 S 7 2085 2090 55 Si 7 60 S 7 60 Si 7 251 a 58 251 A 60 251 H 60 15 D 3 1503-243-430 655M13 820A16 16N6 14 NC 11 36A 12NC15 18NCD6 523 M 15 530A32 530M40 530 A 40 527 M 17 12 C 3 18B 32C4 18 42C4 42 C 4 TS 16 MC 5 527 A 60 708 Aa 37 48 55 C 3 35 CD 4 42 CD 4 33 12 CD 4 1501-620Gr27 1 501 620 Gr. 27 1501-622gR31; 45 1501-622 1503-660-440 905 M 39 Fe 360 B FU 1449 27/23 CR 4360-40 B 640A35 2912 16Mo3(KG;KW) 34CrMo4 105WCr5 105WCr5 45WCrSi8 SCM435TK SCM435TK SKS 31 STS 31 F.520.S f-528 SKT 4 STF 4 F.1310 - 100 SUJ2 Cr 6 F. 1451 - 46 SI 7 F.1450-50 Si 7 STB 2 F.1440 - 56 Si 7 F. 1441 - 60 Si 7 SchCh 15 55S2 60S2 F. 2601 - 16 Mo 3 -2512 G 20 Mo 5 G 22 Mo5 14 Ni 6 KG;KT F.2641 - 15 Ni 6 16NiCr11 15NiCr11 SNC415(H) SNC815(H) 14NiCrMo13 14NiCrMo131 2245 2511 2127 2253 2234 34Cr4(KB) 41Cr4 41Cr4 16MnCr5 2244 2512 2216 2625 35Cr4 42Cr4 42Cr4 16MnCr5 42CrMo4 SCPH 11 SCPH 11 SCr415(H) SCr430(H) SCr440(H) SCr440 SCr415(H) SCr430(H) SCr440(H) SCr440 SUP9(A) SPS 9(A) SNB 22-1 SNB 22-1 SCM415(H) SCM415(H) 653M31 12CrMo4 14CrMo4 5 15 CD 4.5 GOST 50 P 7 SUP 6 SPS 6 41CrMo4 708 M 0 823M30 KS F-431 56Si7 F-431 60 S 7 1503-243 B JIS 60SiCr8 100Cr6 105WCR 5 107CrV3KU 2550 2258 UNE Fe37-3 Technical Guide 6 BS 4360 40 B 1 501 161 150 M 19 250A53 250 A 53 1 501 161 BL3 2216 12 CD 9.10 2218 12CrMo9,10 41B 40 CAD 6.12 2940 E 24-2NE 1312 41CrAlMo7 Fe 360 B FN 14CrMo45 12CrMo4 TU.H 13MoCrV6 41CrAlMo7 AE 235 B FN;FU Fe 360 B FN; FU St3ps; sp 35NC6 TI 29 Material Conversion Table According Material group AISI/SAE 7 7 8620 7 8740 7 4130 7 7 7 8 4142 8 A128 (A) 8 3435 8 9840 8 4340 8 8 6150 8 8 8 9 9 3135 9 9 10 A573-81 10 A 619 Technical Guide 10 M 1015 M 1016 M 1017 10 10 12L13 10 (12L13) 10 TI 30 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 11 11 Material No. DIN 1.5755 31 NiCr 14 1.6523 2 NiCrMo2 1.6546 40 NiCrMo 22 1.7218 25CrMo4 1.7733 24 CrMoV 5 5 1.7755 GS-45 CrMOV 10 4 1.8070 21 CrMoV 5 11 1.2332 47 CrMo 4 1.3401 G-X120 Mn 12 1.5736 36 NiCr 10 1.6511 36CrNiMo4 1.6582 35CrNiM 6 1.7361 32 CeMo12 1.8159 50 CrV 4 1.8161 58 CrV 4 1.8515 32 CrMo 12 1.8523 39CrMoV13 9 1.4882 X 50 CrMnNiNbN 21 9 1.5710 36NiCr6 1.5864 35 niCr 18 31 NiCrMo 13 4 1.0144 ST 44-3 1.0347 DCO3 RSt;RRSt 13 1.0401 C15 1.0570 1.0718 1.0718 1.0723 1.2083 1.2343 1.2344 1.2363 1.2379 1.2379 1.2436 1.2581 1.2601 H 12 1.2606 D3 1.3343 N08028 1.4563 ASTM A353 1.5662 ASM A353 1.5662 2517 1.5680 2515 1.5680 1.3202 1.3207 T15 1.3243 H 11 H 13 A2 D2 HNV3 D 4 (D 6) H 21 to VDI 3323 standard ST 52-3 9SMnPb28 9 SMnPb 28 15 S 22 15 S 20 BS 653 M 31 805M20 311-Tyre 7 CDS 110 AFNOR SS 18 NC 13 362 20 NCD 2 2506 708 M 40 19A 42 CD 4 Z 120 M 12 30 NC 11 110 40NCD3 24 35 NCD 6 40B 30 CD 12 47 50CrV4 816M40 817 M 40 722 M 24 735 A 50 722 M 24 897M39 640A35 830 m 31 4360 43 C 1449 3 CR 1449 2 CR 080 M 15 080 M 15 1449 17 CS 4360 50 B BH 11 BH 13 BA 2 BD2 BD2 BD6 BH 21 X8Ni9 X8Ni9 12Ni19 12 Ni 19 S 12-1-4-5 S 10-4-3-10 S 6-5-2-5 1501-509;510 502-650 12Ni19 1.3246 S 7-4-2-5 25 CD 4 20 CDV 6 BH 12 BM2 BT 15 BT 42 11 1.3247 S 2-10-1-8 BM 42 11 M 42 11 T 4 1.3249 S 2-9-2-8 1.3255 S 18-1-2-5 BM 34 BT 4 11 M 2 11 M 7 1.3343 S6-5-2 1.3348 S2-9-2 BM2 2225 E 28-3 E 20NiCrMo2 40NiCrMo2(KB) 25CrMo4(KB) 21 CrMoV 5 11 UNE 20NiCrMo2 40NiCrMo2 55Cr3 35 NiCr 9 42CrMo4 GX120Mn12 36nIcRmO4(KB) 35NiCrMo6(KB) 30CrMo12 50CrV4 35NiCrMo4 2541 2240 2230 32CrMo12 36CrMoV12 F.124.A 2534 1412 2132 1914 1914 1922 2314 Z 38 CDV 5 Z 40 CDV 5 2242 Z 100 CDV 5 2260 Z 160 CDV 12 2310 Z160CDV12 2736 Z 200 CD 12 2312 Z 30 WCV 9 2310 Z 35 CWDV 5 Z200C12 2715 Z1NCDU31-27-03 2584 9 Ni Z18N5 Z 18 N 5 Z130WKCDV KCV 2723 06-05-05-04-02 Z110 WKCDV 7-4-2-5 07-05-04 Z110 DKCWV 2-10-1-8 09-08-04 Z 80 WKCV 18-05-04-0 Z 85 WDCV 2722 Z 100 DCWV 2782 09-04-02- JIS KS GOST SNCM220(H) SNCM220(H) SNCM240 SNCM240 SCM420/430 SCM420/430 42CrMo4 SCM (440) SCM (440) F. 8251-AM-X120Mn12 SCMnH 1, SCMn H 11 SCMnH 1, SCMn H 11 110G13L SUP 10 SNCM 447 SPS 10 SNCM 447 SNC236 SNC236 F.124.A 51CrV4 f-1270 SM 400A;B;C SM 400A;B;C Fep 02 AF 37 C12 1350 XC 18 E 36-3 S250Pb S 250 Pb UNI 2244 2183 40B 30 CD 12 2240 40C Z 50 CMNNb 21.09 111A 35NC6 210 A 15 210 M 15 x 38 CrMoV 5 1 X 40 CrMoV 5 1 X100 CrMoV 5 1 X 155 CrVMo 12 1 X210Cr12G X 210 CrW 12 X 30 WCrV 9 3 X 165 CrMoV 12 X 37 CrMoW 5 1 S 6-5-2 11 EN C15 C16 1 C 15 Fe52BFN/Fe52CFN CF9SMnPb28 CF 9 SMnPb 28 AP 02 F.111 08JU S 15 C SM 15 C SM490A;B;C;YA;YB SM490A;B;C;YA;YB 11SMnPb28 11 SMnPb 28 SUM 22L F.210.F SUM 32 SUM 22L SUM 32 X 37 CrMoV 5 1 KU X40CrMoV511KU X100CrMoV51KU X165CrMoW12KU F-5318 SKD61 F-5227 SKD12 X160CrMoW12KU X215CrW 12 1 KU X30WCrV 9 3 KU F-5213 F-526 SKD5 STD5 X 35 CrMoW 05 KU X210Cr13KU F.537 X210Cr12 SUH3 STR3 14 Ni 6 KG;KT X10Ni9 XBNiO9 F-2645 SL9N60(53) SL9N590(520) HS 12-1-5-5 12-1-5-5 HS 6-5-2-5 6-5-2-5 SKH55 SKH55 HS 7-4-2-5 M 35 HS 2-9-1-8 2-9-2-8 M 41 HS 652 HS 292 F-5604 F-5607 SKH 51 SKH 51 STD61 STD12 According Material group AISI/SAE 11 T 1 11 630 11 HNV 3 11 422 12 403 12 12 (410S) 12 405 12 405 12 416 12 410; CA-15 12 430 12 430 12 12 12 420 12 12 430 F 12 440B 12 434 12 12 S31500 12 S31500 12 12 XM 8 430 Ti 439 12 430tI 12 12 409 to VDI 3323 standard Material No. DIN 1.3355 S 18-0-1 1.4548 1.4718 X45CrSi 9 3 1.4935 x20 CrMoWV 12 1 1.4000 X6Cr13 1.4001 X6Cr14 1.4001 X7 Cr 13 1.4002 X6CrA12 1.4002 X6 CrAl 13 1.4005 X12CrS 13 1.4006 (G-)X10 Cr 13 1.4016 X8Cr17 1.4016 X6 Cr 17 1.4027 G-X20Cr14 1.4027 G-X 20 Cr 14 1.4028 X30 Cr 13 1.4086 G-X120Cr29 1.4104 X12CrMoS17 1.4112 X90 CrMoV 18 1.4113 X6CrMo 17 1.4340 G-X40CrNi27 4 1.4417 X2CrNiM0Si19 5 1.4417 X2 CrNoMoSi 18 5 3 1.4418 X4 CrNiMo16 5 1.4510 13 348 1.4546 X5CrNiNb 18-10 13 13 14 14 14 14 14 14 1.4922 1.4923 1.4301 1.4305 1.4306 1.4306 1.4308 1.4310 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 405 430 HNV6 446 446 EV 8 302 429 420 420 431 CA6-NM 630 304 303 304L 304L CF-8 301 x20cRmV12-1 X22 CrMoV12 1 X 5 CrNi 18 9 X10 CrNiS 18 9 X2CrNi18 9 X2 CrNi 18 10 X6 CrNi 18 9 X12CrN i17 7 401S45 AFNOR Z 80 WCV 18-4-01 Z7CNU17-04 52 Z45CS9 403 S 17 Z 6 C 13 (403 S 7) 405S17 405 S 17 416 S 21 410S21 Z8C17 430 S 15 420 C 29 420 C 29 420 S 45 452C11 420 S 37 EN 425 C 11 KS SUH1 STR1 F.3110 F8401 SUS403 STS 403 X6CrAI13 X6CrAI13 X12 CrSC13 X12Cr13 X8Cr17 X8Cr17 F-3411 F.3401 F.3113 F.3113 SUS 416 SUS 410 SUS 416 SUS 410 SUS 430 SUS 430 Z 10 CF 17 2383 X10CrS17 F.3117 SUS430F STS 430F Z 8 CD 17.01 2325 X8CrMo17 SUS434 STS 434 2376 2376 Z6CND16-04-01 2387 Z 4 CT 17 X 6 CrTi 17 F.3115-X 5 CrTi 17 SUS 430 LK STS 430 LX Z 4 CT 17 Z 4 CNb 17 Z 3 CT 12 X 6 CrNb 17 X 6 CrTi 17 F.3122-X 5 CrNb 17 SUS 430 LK SUH 409 STS 430 LX STR 409 Z10C13 60 Z10CAS18 59 Z80CSN20.02 X10CrA112 X8Cr17 X80CrSiNi20 F.311 F.3113 F.320B STS430 STR4 Z 8 C 13 Z8CA12 Z6CA13 Z11 CF 13 56A Z10 C 13 430S15 60 Z 8 C 17 Z20 C 13M Z 20 C 13M Z 30 C 13 2301 2302 2380 2302 2320 2320 2304 Z10CAS24 2322 Z 52 CMN 21.09 Z 10 CN 18-09 2330 Z 20 C 13 Z 40 C 14 Z40 C 14 57 Z 15 CN 16.02 Z 100 CD 17 Z 4 CND 13-04 M 2303 -2304 2321 2385 X16Cr26 X53CrMnNiN21 9 SUS430 SUH4 14210 X40Cr14 X16CrNi16 X 105 CrMo 17 (G)X6CrNi304 F.3405 F.3427 SUS420J2 SUS431 STS420J2 STS431 SCS5 SSC5 08Ch 18N12T X 6 CrNiTi 18 11 2317 58E Z 5 CN 18.09 Z 8 CNF 18-09 Z2CrNi18 10 Z 3 CN 19-11 Z 6 CN 18-10 M Z 12 CN 17.07 2332;2333 2346 2352 2352 2333 2331 08 Ch17T SUH446 STR446 SUH35,SUH36 STR35,STR36 X 6 CrNiNb 18 11 58M GOST 2301 S. 524 S. 526 347 S 31 2 S. 130 2 S. 143/144/145 S.525/527 304 S 15 303 S 21 304S12 304 S 11 304 C 15 301 S 21 JIS F322 349 S 54 302 S 31 420 S 45 431 S 29 UNE X6Cr13 LW 19 409 S 19 420S37 UNI X45CrSi8 434 S 17 403S17 439S15 443S65 SS x20cRmOnI 12 01 X10CrNiS18.09 x2cRnI18 11 X2CrNi18 11 F.3508 F.3503 X2CrNi18 07 F.3517 SUS303 SCS19 STS303 SSC19 SUS304L STS304L Technical Guide 13 1.4510 X6 CrTi 17 1.4511 X 6 CrNb 17(X 6 CrNb 17 1.4512 X 6 CrTi 12 (X2CrTi12) 1.4720 X20CrMo13 1.4724 X10CrA113 1.4742 X10CrA118 1.4747 X80CrNiSi20 1.4749 x18 cRn 28 1.4762 X10CrA124 1.4871 X 53 CrMnNiN 21 9 x12 CrNi 18 9 X10 CrNi 15 1.4021 X20Cr13 1.4031 X40 Cr 13 1.4034 X46Cr13 1.4057 X20CrNi172 1.4125 X 105 CrMo 17 1.4313 G-X4 CrNi 13 4 1.4542 X 5 CrNiCuNb 17 4 (X5CrNiCuNb 16-4) 1.4544 BS BT 1 TI 31 Material Conversion Table According Material group AISI/SAE 14 304 LN 14 14 305 14 14 304 14 S32304 14 202 14 316 14 316L 14 316LN 14 CF-8M 14 14 316 Ln 14 316L 14 316 14 317L 14 (s31726) 14 14 317 14 329 Technical Guide 14 329 14 TI 32 Material No. DIN 1.4311 X2 CrNiN 18 10 1.4312 G-X10CrNi18 8 1.4312 X8 CrNi 18 12 1.4332 X2 CrNi 18-8 1.4350 X5CrNi18 9 1.4362 X2 CrNiN 23 4 1.4371 X3 CrMnNiN 188 8 7 14 14 14 14 14 14 14 14 14 17-4PH S31254 17-4PH 347 17-7PH 316tTi 318 BS 304 S 62 302C25 305 s 19 304S15 EN 58E 284 S 16 1.4401 X 5 CrNiMo 17 12 2 316 S 13 (X4 CrNiMo 17 -12-2) 316 S 17 316 S 19 316 S 31 316 S 33 1.4404 X2 CrNiMo 17 13 2 316 S 11, 316 S 13 (X2 CrNiMo 17-12-2) 316 S 14, 316 S 31; GX 2 CrNiMoN 18-10 316 S 42, S.537;316 C 12, T.75, S. 161 1.4406 X2 CrNiMoN 17 12 2 (X2CrNiMoN 18-10) 1.4408 GX 5 CrNiMoN 7 12 2 G-X 6 CrNiMo 18 10 1.4410 G-X10CrNiMo18 9 1.4429 X2 CrNiMo 17 -13-3 1.4435 X2 CrNiMo18 14 3 316 S 61 316 S 63 316 C 16 (LT 196) ANC 4 B 316 S 62 316 S 11;316 S 13 316 S 14;316 S 31 LW 22 LWCF 22 1.4436 X 5 CrNiMo 17 13 3 316 S 19; 316 S 31 (X4CRNIMO 17-13-3 316 S 33 LW 23 LWCF 23 1.4438 X2 CrNiMo 18 16 4 317 S 12 (X2CrNiMo 18-15-4) 1.4439 X2 CrNiMoN 17 13 5 1.4440 1.4449 1.4449 1.4460 1.4460 1.4462 14 1.4500 14 17-7PH 1.4504 14 443 1.4521 444 14 UNS N 08904 1.4539 14 CN-7M 1.4539 14 321 1.4541 14 630 to VDI 3323 standard X 2 CrNiMo 18 13 X5 CrNiMo 17 13 3 X 4 CrNiMo 27 5 2 (X3CrNiMo27-5-2) X8CrNiMo27 5 X2CrNiMoN22 5 3 SS 2371 Z6CN18.09 2332 Z 2 CN 23-04 AZ Z 8 CMN 18- 08-05 Z 3 CND 17 -11-01 2347 Z 6 CND 17-11 Z 6 CND 17-11-02 Z 7 CND 17-11-02 Z 7 CND 17-12-02 Z 2 CND 17-12 2348 Z 2 CND 18-13 Z 3 CND 17-11-02 Z 3 CND 17-12-02 FF Z 3 CND 18-12-03 Z 3 CND 19.10 M Z2 CND 17-12 AZ 2343 Z5CNaD20.12M 2328 Z 2 CND 17-13 Az 2375 Z 3 CND 17-12-03 2375 Z 3 CND 18-14-03 Z 6 CND 18-12-03 2343 Z 7 CND 18-12-03 Z 2 CND 19-15-04 2367 z 3 cnd 19-15-04 Z 3 CND 18-14-06 AZ 317 S 16 UNI X2CrNiN18 10 JIS SUS304LN KS STS304LN SUS304 STS304 X 5 CrNiMo 17 12 F.3534-X 5 CrNiMo 17 12 2 SUS 316 STS 316 X5CrNi18 10 318 S 13 316S111 317 S 16 X1NiCrMoCuN25-20-5 (G-)X1 NiCrMoCu 25 20 5 Z 6 CrNiTi 18-10 321 S 31 321 S 51 (1010;1105) LW 24 LWCF 24 1.4542 X5 CrNiCuNb 17 4 (X5 CrNiChNb 16-4) 1.4542 1.4547 X1 CrNiMoN 20 18 7 1.4548 1.4550 X6 CrNiNb 18 10 347 S 17 58F 1.4552 G-X7CrNiNb18 9 1.4568 316S111 1.4571 X6 CrNiMoTi 17 12 2 320 S 31 1.4581 G-X 5 CrNiMoNb 318 C 17 1.4583 X 10CrNiMoNb 18 12 303 S 21 X 5 CrNiMo 117 13 F.3543-X 5 CrNiMo SUS 316 X 8 cRnImO 17 13 17 12 2 F.3538-X 5 CrNiMo 17 13 X2CrNiMo18 16 f.3539-x 2 cRnImO SUS317L 18 16 4 Z 6 CNDT 17-12002 2350 Z 4 CNDNb 18.12 M Z15CNS20.12 STS 316 L STS316LN SSC 14 07 Ch 18N10G2S2MSL STS 316 STS317L SUS 317 STS 317 F.3309-X 8 CrNiMo 17 12 2 F.3552-X 8 CrNiMo 18 16 4 SUS 329 J 1 STS 329 J 1 SUS 329 J3L STS 329 J3L Z8CNA17-07 X2CrNiMo1712 F.3123-X 2 CrMoTiNb 18 2 X 6 CrNiTi 18 11 SUS 444 STS 444 F.3523 - X 6 CrNiTi SUS 321 18 10 STS 321 SCS 24 SUS 630 SSC 24 STS 630 SUS347 STS347 Z 7 CNU 15-05 Z 7 CNU 17-04 Z7CNU17-04 2378 Z7CNU17-04 Z 6 CNNb 18.10 2338 Z4CNNb19.10M SUS 316 L GOST X 2 CrNiMoN 17 13 F.3543-X 2 CrNiMoN 17 13 3 SUS 316 LN STS 316 LN X 2 CrNiMoN 17 13 F.3533-X 2 CrNiMo 17 13 2 SUS 316 L STS 316 L O3 Ch 17N14M3 2326 Z 2 NCDU 25-20 2562 Z1 NCDU 25-02 M 2564 2337 Z 6 CNT 18-10 F.3551 X 2 CrNiMoN 17 12 F.3542-X 2 CrNiMoN 17 12 2 SUS316LN F.8414-AM-X 7 CrNiMo 20 10 SCS 14 X 5 CrNiMo 18 15 Z 3 CND 22-05 Az 2377 (Z 2 CND 24 -08 Az ) (Z 3 CND 25-06-03 Az) 23NCDU25.20M UNE X 2 CrNiMo 17 12 F.3533 - X 2 CrNiMo G-X 2 CrNiMo 17 13 2 19 11 F.3537 - X 2 CrNiMo 17 13 3 (Z 3 CND 25-07 Az) 2324 Z 5 CND 27-05 Az G-X7NiCrMoCuNb25 20 X2CrMoTi18-2 AFNOR Z 2 CN18.10 Z10CN18.9M X6CrNiNb18 11 F.3552 Z8CNA17-07 X2CrNiMo1712 x15cRnIsI2 12 06Ch18N10T 08Ch18N10T 09Ch18N10T 12Ch18N10T According to VDI 3323 standard Material group AISI/SAE Material No. DIN 309 309S 310 S 321 Ss30415 S30815 304H 660 1.4585 1.4821 1.4823 1.4828 1.4833 1.4845 1.4878 1.4891 1.4893 1.4948 1.498 S31753 CLASS20 A48-20B NO 25 B CLASS25 A48 25 B A48-30B NO 30 B A436 Type 2 60-40-18 No 20 B CLASS30 CLASS45 A48-45 B A48-50 A48-60 B 100/70/03 60-40-18 60/40/18 80-55-06 65-45-12 A43D2 A48-40 B 80/55/06 A48 40 B 0.6010 0.6010 0.6015 0.6015 0.6015 0.6020 0.6020 0.6660 0.7040 0.6020 0.6030 0.6030 0.6035 0.6040 0.7070 1.4829 0.7033 0.7033 0.7040 0.7043 0.7050 0.7050 0.7652 0.7660 0.6025 0.7060 0.7060 0.8055 32510 0.8135 A47-32510 0.8135 A220-40010 0.8145 32510 0.8035 0.8040 0.8045 0.8065 A220-50005 0.8155 50005 0.8155 70003 0.8165 90001 0.8170 A220-90001 0.8170 BS G-X7CrNiMoCuNb18 18 X20CrNiSi25 4 G-X40CrNiSi27 4 X15CrNiSi20 12 309 S 24 X6 CrNi 22 13 309 S 13 X12 CrNi 25 21 310S24 X6 CrNiTi 18 9 32 1 S 20 X5 CrNiNb 18 10 X8 CrNiNb 11 X6 CrNi 18 11 304 S 51 X5 NiCrTi 25 15 X5 NiCrN 35 25 X2 CrNiMoN 18 13 4 X2 CrNiMoN 25 22 7 GG10 GG-10 GG 15 Grade 150 GG 15 Grade 150 GG 15 Grade 150 GG-20 Grade 220 GG 20 Grade 220 GGL-NiCr202 L-NiCuCr202 GGG 40 SNG 420/12 GG 10 GG 20 Grade 220 GG 30 Grade 300 Grade 350 GG-35 Grade 350 GG40 Grade 400 GGG-70 SNG700/2 X 12 CrNi 22 12 GGG35.3 GGG-35.3 350/22 L 40 GGG-40 SNG 420/12 GGG-40.3 370/7 GGG50 SNG500/7 GGG-50 SNG 500/7 GGG-NiMn 13 7 S-NiMn 137 GGG-NiCr 20 2 Grade S6 GGG 40.3 SNG 370/17 GG25 Grade260 GGG60 SNG600/3 GGG-60 600/3 GTW55 GTS-35-10 GTS-35-10 GTS-45-06 GTS-35 GTS-35 GTM-35 GTW-40 GTMW-65 GTS-55-04 GTS-55-04 GTS-65-02 GTS-70-02 GTS-70-02 EN AFNOR SS UNI UNE JIS KS GOST X6CrNiMoTi17 12 Z20CNS25.04 58C Z15CNS20.12 Z 15 CN 24-13 Z 12 CN 25-20 58B Z 6 CNT 18-12 (B) Z20CNS25.04 2361 2337 2372 2368 Z 5 CN 18-09 2333 Zz 8 nctv 25-15 b ff 2570 X6CrNi25 20 X6CrNiTi18 11 Ft10D Ft 10 D Ft 15 D Ft 15D Ft 15 D Ft 20 D Ft 20 D L-NC 202 FCS 400-12 Ft 10 D Ft 20D Ft 30D Ft 30D Ft 35 D Ft 40 D FGS 700-2 G 10 FGS 370/17 FGS 400-12 FGS 370/17 FGS 500/7 FGS 500-7 S-Mn 137 S-NC 202 FGS 370-17 Ft 25 D FGS600-3 FGS 600/3 B 340/12 B 340/2 P 440/7 B 340/12 8 290/6 B340/12 W340/3 W410/4 MN35-10 Mn 35-10 Mn 450-6 P 510/4 P 510/4 P 570/3 P 690/2 Mn 550-4 MP 50-5 Mn 650-3 Mn 700-2 Mn 700-2 110 0110-00 0115-00 115 01 15-00 0120-00 120 0523-00 0717-02 110 120 130 01 30-00 135 140 07 37-01 0717-15 0717-15 0717-02 0717-15 0727-02 0772-00 0776-00 0717-12 125 07 32-03 0727-03 G 15 G 15 G 14 SSC17 F.331 F.3553 SUH310 SUS321 STR310 STS321 FG 15 FG 15 FG 15 FC150 GC150 FC200 GC200 FCD400 FC100 GCD400-18,15 GC100 GS 370-17 FGE 38-17 G 20 G 30 FG 20 FG 30 FC300 GC300 G 35 FG 35 FC350 GC350 GGG 70 GGG 70 FCD700 GCD700-2 FCD 500 GCD 500-7 FC250 GC250 FCD600 GCD600-3 GGG 50 0727-02 G 25 GGG 60 FG 25 GGG 60 GTW 55 GTS 35 810 0815-00 0810-00 814 08 15 852 GTB40 GMB45 0854-00 0854-00 0856-00 SCS17 G 20 0852-00 MN 32-8 MN 35-10 MB35-7 MB40-10 F.8414 GMN 55 GMN 65 GMN 45 FCMW370 AC4A FCMW330 AC4A FCMW330 FCMP490 FCMP590 PMC 490 PMC 590 GTM 35 GTM 40 GTM 45 GTM 65 Technical Guide 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 18 18 18 18 19 19 19 19 19 19 19 20 20 20 20 20 20 20 20 20 TI 33 Material Conversion Table According to VDI 3323 standard Technical Guide Material group AISI/SAE Material No. DIN TI 34 20 20 1022 1518 20 1035 20 400 10 20 70003 21 Al99 21 1000 21 22 22 22 21 7050 23 23 23 23 23 ZE 41 23 EZ 33 23 AZ 81 23 AZ 91 24 24 24 24 4218 B 24 SC64D 24 24 QE 22 24 GD-AISI12 23-24 A360.2 23-24 A356-72 23-24 356.1 23-24 A413.2 23-24 A413.1 23-24 A413.0 23-24 A380.1 26 C93200 26 C83600 26 C83600 26 C23000 26 C93800 27 27 C27200 27 C27700 27 27 C 86500 27 C 86200 27 C 18200 28 28 28 C 94100 28 C 63000 28 B-148-52 28 C 90700 28 C 90800 28 C 81500 28 31 N 08800 31 N 08031 BS EN AFNOR SS 0.8170 GTS-70-02 IP 70-2 1.1133 20Mn5 1.1183 Cf 35 (C35G) GTS-45 GTS-65 3.0205 3.0255 AI99.5 3.3315 AIMg1 3.1325 AlCuMg 1 3.1655 AICuSiPb 3.2315 AlMgSi1 3.4345 AIZnMgCuO,5 3.2381 G-AISi 10 Mg 3.2382 GD-AISi10Mg 3.2581 G-AISi12 3.3561 G-AIMg 5 3.5101 G-MgZn4sE1Zr1 3.5103 MgSE3Zn27r1 3.5812 G-MgAI8Zn1 3.5912 G-MgAI9Zn1 2.1871 G-AICu 4 TiMg 3.1754 G-AICu5Ni1,5 3.2163 G-AISi9Cu3 3.2371 G-AISi 7 Mg 3.2373 G-AISI9MGWA 3.2373 G-AISi 9 Mg 3.5106 G-MgAg3SE2Zr1 G-ALMG5 3.2383 G-AISi0Mg(Cu) 120 M 19 080 A 35 P440/7 P 570/3 20 M 5 XC 38 H 1 TS 2132 L31/34/36 A59050C L 86 AZ 4 GU/9051 2.1090 2.1096 2.1098 2.1182 2.1182 2.0240 2.0321 2.0321 2.0590 2.0592 2.0596 2.1293 2.0060 2.0375 2.0596 2.0966 2.0975 2.105 2.1052 2.1292 2.4764 1.4558 1.4562 UNI 0862-00 GMN 70 0864-00 MP 60-3 1572 08 52 858 G 22 Mn 3 20 Mn 7 C 36; C 38 UNE JIS KS F.1515-20 Mn 6 SMnC 420 SMnC 420 S 35 C SM 35 C 35 FCMP540 PMC 540 811-04 MAG 5 MAG 6 NMAG 1 MAG 7 mag 12 LM5 LM9 2789;1973 LM25 LM6 LM20 G-AlSi12 G-AlSi 12 (Cu) GD-AlSi12 GD-AlSi8Cu3 LM24 G-CuSn 7 5 pb G-CuSn5ZnPb LG 2 G-CuSn 2 Znpb G-CuPb15Sn LB1 G-CuPb15Sn CuZn 15 CuZn 37 cz 108 CuZn 37 cz 108 G-CuZn40Fe G-CuZn 35 AI 1 U-Z 36 N 3 G-CuZn 34 AI 2 HTB 1 CuCrZr CC 102 E-Cu57 CuZn36Pb3 G-CuZn 34 AI 2 HTB 1 CuAI 10 Ni 5 Fe 4 Ca 104 G-CuAI 10 Ni G-CuSn 10 CT1 G-CuSn 12 pb 2 G-CuCrF 35 CC1-FF CoCr20W15Ni X 2 NiCrAITi 32 20 NA 15 X 1 NiCrMoCu 32 28 7 G-TR3Z2 A-S7G 4231 A-SU12 4252 4253 C4BS C4BS A5052 A5052P ADC12 A6061 A7075 ALDC12 A6061P A7075P NF A32-201 4244 4261 4260 4247 4250 U-E 7 Z 5 pb 4 U-pb 15 E 8 Uu-PB 15e 8 CuZn 36, CuZn 37 CuZn 36, CuZn 37 HTB 1 U-Z 36 N 3 U-Cr 0.8 Zr U-Z 36 N 3 U-A 10 N UE 12 P C 2700 C 2720 GOST FCMP690 PMC 690 According to VDI 3323 standard Material group AISI/SAE Material No. DIN N 08028 N 08330 330 BS 1.4563 X 1 NiCrMoCuN 32 27 4 1.4564 X 12 NiCrSi 36 16 NA 17 1.4564 X12 NiCrSi 36 16 NA 17 1.4865 G-X40NiCrSi38 18 330 C 40 1.4958 X 5 NiCrAITi 31 20 AMS 5544 LW2.4668 NiCr19NbMo 1.4977 X 40 CoCrNi 20 20 Monel 400 2.4360 NiCu30Fe NA 13 2.4603 5390A Hastelloy C-4 2.4610 NiMo16cR16Ti Nimonic 75 2.4630 NiCr20Ti HR 5,203-4 2.4630 NiCr20Ti HR5,203-4 lnconel 690 2.4642 NiC29Fe NA 21 lnconel 625 2.4856 NiCr22Mo9Nb 2.4856 NiCr22Mo9Nb 5666 NA 16 lncoloy 825 2.4858 NiCr21Mo Monel k-500 2.4375 NiCu30 Al NA 18 2.4375 NiCu30Al 3072-76 4676 2.4631 NiCr20TiAI Hr40;601 lnconel 718 2.4668 NiCr19FeNbMo lnconel 2.4694 NiCr16fE7TiAl 2.4955 NiFe25Cr20NbTi LM2.4668 NiCr19Fe19NbMo HR8 5383 LW2 4670 S-NiCr13A16MoNb 3146-3 5391 LW2.4662 NiFe35Cr14MoTi 5660 LW2.4964 CoCr20W15Ni 5537C AMS 5772 C0Cr22W14Ni lnconel X-750 2.4669 NiCr15Fe7TiAl Hastelloy B 2.4685 G-NiMo28 Hastelloy C 2.4810 G-NiMo30 AMS 5399 2.4973 NiCr19Co11MoTi 3.7115 TiAl5Sn2 2 TA 1 R 50250 3.7025 Ti 1 TP 1 R 52250 3.7225 Ti 1 pd AMS 5397 LW2 4674 NiCo15Cr10MoAITi 3.7124 TiCu2 2 TA 21-24 R 54620 3.7145 TiAl6Sn2Zr4Mo2Si 3.7165 TiAl6V4 TA 10-13;TA 28 3.7185 TiAl4Mo4Sn2 TA 45-51; TA 57 3.7195 TiAl 3 V 2.5 TiAl4Mo4Sn4Si0.5 AMS R54520 TiAl5Sn2.5 TA14/17 AMS R56400 TiAl6V4 TA10-13/TA28 AMS R56401 TiAl6V4ELI TA11 1.1545 C105W1 BW 1A W1 W210 1.1545 C105W1 BW2 1.2762 75 CrMoNiW 6 7 1.4125 X105 CrMo 17 440C 1.6746 32 nIcRmO 14 5 832 M 31 Ni- Hard 2 0.9620 G-X 260 NiCr 4 2 Grade 2 A Ni- Hard 1 0.9625 G-X 330 Ni Cr 4 2 Grade 2 B Ni- Hard 4 0.9630 G-X 300 CrNiSi 9 5 2 0.9640 G-X 300 CrMoNi 15 2 1 A 532 l l A 25% Cr 0.9650 G-X 260 Cr 27 Grade 3 D A 532 l l A 25% Cr 0.9655 G-X 300 CrNMo 27 1 Grade 3 E 1.2419 105 WCr 6 105WC 13 1.4841 X15 CrNiSi 25 20 314 S31 310 0.9635 G-X 300 CrMo 15 3 0.9645 G-X 260 CrMoNi 20 2 1 0.9655 G-X 300 CrNMo 27 1 EN AFNOR SS UNI UNE JIS KS GOST 2584 Z 12 NCS 35.16 Z 12 NCS 37.18 XG50NiCr39 19 SUH330 SCH15 STR 330 HRSC 15 SK3 SUP4 STC 105(STC3) SPS 4 NC20K14 Z 42 CNKDWNb NU 30 NC22FeD NC 20 T NC20T Nnc 30 Fe NC 22 FeDNb Inconel 625 NC 21 Fe DU NU 30 AT NC20TA NC 19 Fe Nb NC19eNB NC12AD ZSNCDT42 KC20WN KC22WN NC 15 TNb A NC19KDT T-A 6 V T-A5E T-A6V Y1105 Y120 1880 2900 C100KU C120KU F-5118 CF.515 Z 100 CD 17 35 NCD 14 0512-00 0513-00 0466-00 Technical Guide 31 31 31 31 31 31 32 33 33 33 33 33 33 33 33 33 34 34 34 34 34 34 34 34 34 34 34 35 35 35 35 35 36 36 36 37 37 37 37 37 37 37 37 37 38 38 38 38 38 40 40 40 40 40 40 40 40 41 41 41 Z 15 CNS 25-20 107 WCr 5 KU TI 35