Transcript
LONG DISTANCE FAR FIELD POWER TRANSFER PAST, PRESENT AND FUTURE HUBREGT J.VISSER
CONTENTS 1. 2. 3. 4. 5. 6. 7.
INTRODUCTION THE EARLY HISTORY OF RWPT THE MODERN HISTORY OF RWPT RWPT BASICS EXAMPLES FUTURE PERSPECTIVES SUMMARY AND CONCLUSIONS
CONFIDENTIAL
1. INTRODUCTION DEFINITIONS
Energy / Power Harvesting: “The process by which power is obtained by a device from external sources in the environment of the device and converted into usable electric power”.
Radiative Wireless Power Transfer (RWPT): “A special form of Radio Frequency (RF) Power Harvesting in which use is made of radiated fields”.
CONFIDENTIAL
1. INTRODUCTION APPLICATIONS RWPT Replacing/charging batteries in small, wireless, autonomous sensors. More sensors, measuring light, temperature, people presence, etc. will lead to e.g. adapting light and heating to local needs, thus lowering costs.
Picture source: http://smarthomeenergy.co.uk/what-smart-home
CONFIDENTIAL
1. INTRODUCTION ENERGY HARVESTING SOURCES
CONFIDENTIAL
1. INTRODUCTION POWER DENSITIES Source Ambient Light Indoor Outdoor Vibration/Motion Human Industrial Thermal Human Industrial RF GSM Base Station
Available Power Density
Typical Harvested Power Density
0.1 mW/cm2 100 mW/cm2
10 W/cm2 10 mW/cm2
0.5 m at 1 Hz 1 m/s2 at 50 Hz 1 m at 5 Hz 10 m/s2 at 1 kHz
4 W/cm2
20 mW/cm2 100 mW/cm2
30 W/cm2 1-10 mW/cm2
0.3 W/cm2
0.1 W/cm2
100 W/cm2
use RWPT CONFIDENTIAL
2.THE EARLY HISTORY OF RWPT 1886: Heinrich Hertz while proving the Maxwell equations, constructs the first radio system
CONFIDENTIAL
2.THE EARLY HISTORY OF RWPT 1894: Guglielmo Marconi develops practical radio, transmitting and receiving data
CONFIDENTIAL
2.THE EARLY HISTORY OF RWPT 1901: Nikola Tesla creates the idea to wirelessly transmit and receive energy
CONFIDENTIAL
3.THE MODERN HISTORY OF RWPT 1931: Harrell Noble demonstrates Radiative Wireless Power Transfer • • •
100 MHz half-wavelength dipoles Displaced 5 to 12 m 15 kW transmit power (!)
• •
Westinghouse laboratories Demonstrated at 1933-1934 Chicago World Fair
CONFIDENTIAL
3.THE MODERN HISTORY OF RWPT 1964: William Brown demonstrates a microwave powered model helicopter • • •
5 kW, 2.45 GHz magnetron 3 m diameter parabolic reflector 9 m height
• • •
1.5 m2 receive antenna 4480 diodes 270 W dc power
•
Raytheon Airborne Microwave Platform (RAMP) project
CONFIDENTIAL
3.THE MODERN HISTORY OF RWPT 2014: Visser et al. demonstrate most compact, efficient 868/915 MHz rectenna
CONFIDENTIAL
4. RWPT BASICS
CONFIDENTIAL
4. RWPT BASICS ANTENNA TO ANTENNA ENERGY TRANSFER GR = 1
PT
PR
r EIRP = Effective Isotropic Radiated Power EIRP = PTGT CONFIDENTIAL
4. RWPT BASICS RECTIFIER
Output load
Input power Frequency
Nonlinear device Input impedance?
Output voltage?
For 868/915 MHz and RF input power level of -10dBm:
• •
Optimum load resistance ~10 k RF-to-DC Power Conversion Efficiency (PCE) 50-60%
CONFIDENTIAL
4. RWPT BASICS RECTENNA State of the art [61] [62] [63] [64] [65] [66] This work
Pin (dBm) -10 4.3 -10 -20 -10 -9 -10 -20
Freq. (MHz) 866.5 870 830 850 950 915 868 868
PCE
[61] [62] [63] [64] [65] [66]
Load (k) 3 1 104 0.13 2.2 10 10
Diode(s) HSMS285C HSMS285X HSMS286Y Skyworks SMS7630 Toshiba 1SS315 Skyworks SMS7630 HSMS2852 HSMS2852
PCE (%) 24 50 44 15 40 37 50 32
Pdc PinRF
D. De Donno, L. Catarinucci and L. Tarricone, ‘An UHF RFID Energy-Harvesting System Enhanced by a DC-DC Charge Pump in Silicon-On-Insulator Technology’, IEEE Microwave Wireless Components Letters, Vol. 23, pp. 315-317, 2013. G. Monti, L. Corchia and L. Tarricone, ‘UHF Wearable Rectenna on Textile Materials’, IEEE Transactions on Antennas and Propagation, Vol. 61, pp. 3869-3873, 2013. H. Kanaya, S. Tsukamaoto, T. Hirabaru and D. Kanemoto, ‘Energy Harvesting Circuit on a One-Sided Directional Flexible Antenna’, IEEE Microwave Wireless Components Letters, Vol. 23, pp. 164-166, 2013. A. Georgiadis, A. Collado, S. Via and C. Menses, ‘Flexible Hybrid Solar/EM Energy Harvester for Autonomous Sensors’, IEEE MTT-S International Microwave Symposium, Baltimore, USA, 2011. K. Ogawa, K. Ozaki, M. Yamada and K. Honda, ‘High Efficiency Small-Sized Rectenna Using a High-Q LC Resonator for Long Distance WPT at 950 MHz’, IEEE MTT-S International Microwave Symposium, Nanjing, China, 2012. K. Niotaki, S. Kim, S. Jeong, A. Collado, A. Georgiadis and M. Tentzeris, ‘A Compact Dual-Band Rectenna Using Slot-Loaded Dual Band Folded Dipole Antenna’, IEEE Antennas and Wireless Propagation Letters, Vol. 12, pp. 1634-1637, 2013. CONFIDENTIAL
4. RWPT BASICS RECTENNA State of the art [63] [67] [68] This work
Pin (dBm) -10 -20 0 -10 -20
Freq. (MHz) 830 550 900 868 868
Load (k) 104 2 1 10 10
Size (2) 0.028 0.036 0.66 0.028 0.028
PCE (%) 44 18 49 55 34
/10 Zrectifier = 9 – j234 Capacitive Compensate with inductance Small antenna [63] [67] [68]
Loop antenna
H. Kanaya, S. Tsukamaoto, T. Hirabaru and D. Kanemoto, ‘Energy Harvesting Circuit on a One-Sided Directional Flexible Antenna’, IEEE Microwave Wireless Components Letters, Vol. 23, pp. 164-166, 2013. C. Mikeka, H. Arai, A. Georgiadis and A. Collado, ‘DTV Band Micropower RF Energy Harvesting Circuit Architecture and Performance Analysis’, RFID-TA, Barcelona, Spain, 2011. S. Korhummel, D.G. Kuester and Z. Popovic, ‘A Harmonically-Terminated Two-Gram Low-Power Rectenna on a Flexible Substrate’, USNC-URSI Radio Science Meeting, Boulder, USA, 2013. CONFIDENTIAL
4. RWPT BASICS RECTENNA WITH POWER MANAGEMENT
CONFIDENTIAL
5. EXAMPLES rectenna
Transmitter (3W EIRP @ 915MHz)
temp & humidity base station
Wireless temperature and relative humidity sensor (`60mA every 45 s)
CONFIDENTIAL
6. FUTURE PERSPECTIVES MINIATURIZATION AND ENVIRONMENT INDEPENDENCE
CONFIDENTIAL
6. FUTURE PERSPECTIVES TRANSIENT ARRAYS
CONFIDENTIAL
7. SUMMARY AND CONCLUSIONS • Best in class in rectennas (power receivers) • Continuing to hold that position through using more efficient rectifiers and smaller, environment-independent antennas • Development of transmitter configurations and waveforms to increase received power levels
• Creating commercial feasibility CONFIDENTIAL