Preview only show first 10 pages with watermark. For full document please download

Uncooled Avago Fp

   EMBED


Share

Transcript

III-V Devices Torino Your Imagination, Our Innovation Semiconductor lasers for optical communication Roberto Paoletti R&D, Testing and Reliability Manager Avago Technologies Italy • Laser sources for “pluggable transceiver world” • Design for performances • Fast lasers • Transceiver for next generation networks • Torino Technology Center - Avago Technologies Italy R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation Pluggability: a keyword… From transceiver cards to hot-pluggable transceiver modules XENPAK (100 x 50mm) LASER Evolution (since 2000) PLUGGABILITY: PAY AS YOU GO ~250 x 250 mm • Strong limits in space available and power budget • Wide temperature operation (0÷85oC) ⇒ Requirement on lasers: • High temperature operation (preferably uncooled) • Low cost, high manufacturing yield, high reliability • no compromise on High performance (high bit rate, high optical power, high spectral purity, …) • Roberto Paoletti, R. Paoletti, 11/2011 X2 XFP (78 x 18mm) III-V Devices Torino Your Imagination, Our Innovation Semiconductor Laser is: Active material Semiconductor layer with optical gain Carrier population generation Cavity Electrical injection Crystal Mirrors (FP) or Grating (DFB – DBR) electrical Heterojunction optical Optical waveguide Confinements: R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation Lasers for Optical Networks 10m 100m 1km 10km 100km Long Haul Storage Enterprise 2-20 km 20-100 km Metro DATACOM FP TELECOM DFB EML VCSEL 10 Gb/s LASER Sources R. Paoletti, 11/2011 Tunable III-V Devices Torino Your Imagination, Our Innovation Design for performance (ridge ) Uncooled Avago FP (2005) Au plated pad Heat path SiO2 TiTi-Pt Pt--Au metal Ridge structure Optimised facet cleavage / coating No lateral blocking layers  • Very simple technological process (onestep epi-growth) • Suitable for Al-based lasers and low cost devices Metal Dielectric Narrow reverse mesa (Low Rs, small cavity, fast chips) R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation Active material: long path of performance improvement 10 years of active material engineering40 leads to massive improvement of 35 temperature performance 40 40 T0=48 K 35 35 30 30 30 T=20-100 ºC 20 15 15 15 55 5 0 0 20 20 10 10 10 InGaAsP Bulk material (50 mA Threshold at 80C, CSELT, 1995) T=20-100 ºC 25 25 Power (mW) Power (mW) 25 T0=95 K 10 20 30 40 50 60 70 80 90 100 000 0 10 10 20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100 Current (mA) InGaAsP-based MQW (Agilent, 2001) Current (mA) InGaAsAl-based MQW (Avago, 2005) R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation Modulation schemes for datacom/transport NW Transmit information: ⇒ Frequency/Phase Modulation of laser source: transport NW. ⇒ Intensity modulation of laser source ☺☺ • Intensity modulation by: • External modulator: ⇒ expensive  (long haul only) • Direct modulation: ⇒ cheap/simple ⇒ short haul ☺☺  (1.55um <200 km @ 2.5 Gb, 30 km @ 10Gb; <25 km 1300nm) ⇒ need high speed devices  So we want uncooled, low cost laser … and fast!!! R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation Direct Modulation of Laser Module Butterfly Laser Module, (1990 – 2000) Back detector Electrical / RF connections Optical coupling: Lens+Optical Isolator + pigtailed fiber Temperature control RF Chip laser R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation Intensity modulation of laser sources • Laser chip equivalent circuit f r ∝ I − I th 10 Parasitics f r ∝ I − I th Active material Rel. Amplitude (dB) 5 0 -5 -10 -15 -20 -25 0 Increasing I-Ith Ith + 10 mA: th (I = 6 mA);-3dB f = 7.93 GHz Ith + 30 mA: th (I = 6 mA);-3dB f = 13.29 GHz Ith + 50 mA: th (I = 6 mA);-3dB f = 16.47 GHz Ith + 70 mA: th (I = 6 mA);-3dB f = 18.56 GHz Ith + 90 mA: th (I = 6 mA);-3dB f = 19.95 GHz 5 10 Frequency (GHz) R. Paoletti, 11/2011 15 20 III-V Devices Torino Your Imagination, Our Innovation Direct Modulation of Laser Module Electro-optical measurement and simulation (1994) for bandwidth E/O S21 optimization Elec. S11 RIN, Optical S21 F. Delpiano, R. Paoletti, P. Audagnotto and M. Puleo; High Frequency Modeling and Characterization of High Performance DFB Laser Modules; IEEE TRANS ON COMPONENTS, PACKAGING, AND MANUFACTURING TECHNOLOGY, VOL. 17, NO. 3, AUGUST 1994 R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation Laser chip optimization On-chip static and dynamic characterizations, on dedicated optical benches. Electrical reflection measurements (S11), parasitics Small-signal modulation bandwidth measurements f-3dB , parasitics Optical modulation bandwidth Intrinsic bw α , ∆ν Eye-diagrams MM, er, tr, tf,, .. Dynamic measurements Chip Laser BER DP, … Static measurements Low-current measurements (junction leakage) Chip Parasitics Active region Out In Hakki - Paoli characterization (Gain and loss) Adiabatic & timeresolved chirp m. Differential carrier lifetime measurements D, τ N P-I, V-I measurements Ith, Pmax, Eff% ,T0 List of on chip characterizations Far-Field measurements FWHM • set-up using RF or static probe, directly contacting chip-on carrier R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation Direct RF Probing of laser chip: Chip parasitics analysis on SI-BH (1995) • Parasitics analysis by S11 measurement: a long story … RF Probe: GND First 0-20GHz S11 – S21 measurements by custom designed RF probe (1995) RF Probe RF Probe: Signal dp06 - ab10scT15 : S11 • RF Probes; • Accurate calibration Im Rc Id Rs Imped. at 1.089 GHz (o): 0.3 j -30.8 Ohm Meas. capacitance at 1.089 GHz: 4.7 pF Rel. Intensity (dB) Key points: SI-BH PBH BRS Il Cp Equivalent Circuit (Chip Parasitics) Active Region I = 0 mA Frequency (GHz) Rc 0 .5 O h m Rs ∞ Cp 4 .7 p F Frequency: *: 0.297 - +: 19.901 GHz Paoletti et al, SPIE'S International Symposia - Photonics West '96 R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation Laser chip RF optimization: direct RF probing of laser chip Chip parasitics on Ridge Structure, ADS model, S11 measurements Geometrical analysis Simulation and experimental results Equivalent circuit R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation S-PARAMETERS Direct RF Probing of laser chip: VCSEL S11 modeling (ADS) S_Param SP1 Start=.130 GHz Stop=25.0 GHz Step=.1 GHz R R RP RS R=0 Ohm R=19 Ohm {t} Term Term1 Num=1 Z=50 Ohm Term Term2 Num=2 Z=50 Ohm CCVS SRC1 G=1 Ohm 1 S1P SNP1 File="C:\work_pod\laser\cad_data_files\ads_data_files\new_VCSEL_9_2009_prj\data\test_16G_2012_5\4c17\S11_25C_4mA S(3,3) S(1,1) Ref 4 mA S11 parameter extraction freq (130.0MHz to 25.00GHz) 8 mA S11 parameter extraction freq (130.0MHz to 25.00GHz) -38.0 -36.0 -36.5 -39.0 -37.0 -39.5 -37.5 dB(S(2,1)) dB(S(2,1)) -38.5 -40.0 -38.0 -38.5 -40.5 -39.0 -41.0 -41.5 1E8 R G2 R=92 Ohm {t} C Cp C=0.0 pF Term Term3 Num=3 Z=50 Ohm S(3,3) S(1,1) C CJ C=0.164 pF {t} 1E9 1E10 3E10 Expected parasitic S21 >25 GHz freq, Hz -39.5 -40.0 1E8 1E9 1E10 freq, Hz Set up: N4376B. Cascade probe + substrate calibration R. Paoletti, 11/2011 3E10 III-V Devices Torino Your Imagination, Our Innovation Intensity modulation of laser sources: MQW active layer ADS model SCH quasi 2D quasi 2D quasi 2D 2D 2D 2D SCH lasing mode Iinj SCH Quasi-2D1 Quasi-2D2 injection recombination diffusion Lasing mode Well1 capture Well1 escape Sout emission G. Rossi, R. Paoletti, M. Meliga, “SPICE simulation for analysis and design of fast 1.55 µm MQW laser diodes”, IEEE Journal of Lightwave Technology, Vol. 16, No. 7, July 1998 R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation ADS model: simulation (red) vs. measurements (blue) LIV curves S parameters (bandwidth and dynamic impedance) Simulated eye diagram Bias = 28mA Bias = 58mA R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation Direct Modulation of TOSA Electro-optical measurement and simulation R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation Intensity modulation of laser sources: Package parasitics (Module + TOSA) RF RF XFP Transceiver, 2005 R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation Large Signal modulation Recalls of digital communications A bit stream like this can be heavily distorted passing through a non ideal channel; bit shape can be broadened and spread out of its time slot, overlapping on its neighbours : this is called “InterSymbol Interference (ISI)” R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation Recalls of digital communications (2) A picture like this gives little information on signal distortion Bit 1 2 3 4 5 6 7 Bit 1&2 Bit 1…12 8 9 10 First 32 bits of a longer bit sequence Bit 1&2&3 Bit 1&2&3&4 Bit 1…18 Bit 1…24 Bit 1…5 Bit 1…32 Bit 1…8 Bit 1…127 To better evaluate signal distortion an “Eye Diagram” is built The eye diagram is obtained by slicing the bit sequence in one (or more) bit time slots and overlapping them. R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation Main parameters of an eye diagram simulated Eye aperture Eye amplitude experimental Eye mask Jitter : DJ deterministic or pattern dependent jitter RJ random jitter R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation Agilent uncooled InGaAsP BH 10Gb DFB/PIN for 10GBASE-LR product • Torino R&D team for Ipswich MFG. First product release: first 10G DFB and first 10G PIN for Xenpak – first 10G uncooled hot pluggable transceiver in the market • DFB uncooled PNiP buried lasers, InGaAsP based 10G PIN 45 20 °C 40 40 °C 35 60°C Power (mW) 30 25 20 80 °C 15 90 °C 10 100 °C 5 0 0 70C module 10 20 30 40 50 60 70 80 90 100 Current (mA); - 09-Aug-2002 Uncooled 10G DFB laser Post deadline at ECOC 2001 R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation 10 Gb/s uncooled InGaAlAs ridge FP laser fa021a 113: Optical Power (T=20, 40, 60, 80, 85, 90, 95 °C) Key points: • High optical power enable high coupling loss • Small threshold increasing up to 95 C since high T0 • Small bias variation over T • Small efficiency degradation over T ⇒ Constant eye quality with constant modulation current! Paoletti et al, Post deadline at OFC 2005 20 Ith+30 8.9mW; P = 23.8mW max 8.5mW, P =0.95; P = 22.4mW ratio,Ith+30 max 7.8mW, P =0.88; P = 20.0mW ratio,Ith+30 max 7.1mW, P =0.80; P = 17.4mW ratio,Ith+30 max 6.9mW, P =0.78; P = 16.8mW ratio,Ith+30 max 7.0mW, P =0.78; P = 15.9mW ratio,Ith+30 max 6.7mW, P =0.76; P = 15.3mW ratio,Ith+30 max 15 Power (mW) 20 °C base chip temperature: • Threshold 7.6 mA • High power 23 mW 85 °C base chip temperature: • threshold 15.6 mA • power 16.8 mW 95 °C base chip temperature: • threshold as low as 18 mA • Still more than 15 mW 25 k T=20ºC; Ith= 7.6mA; P = Ith+30 T=40ºC; Ith= 9.3mA; P = 110 Ith+30 T=60ºC; Ith=11.5mA; P = Ith+30 °C T=80ºC; Ith=14.5mA; P = Ith+30 T=85ºC; Ith=15.6mA; P = Ith+30 T=90ºC; Ith=16.6mA; P = Ith+30 T=95ºC; Ith=17.9mA; P = Slope eff. ratio= 80% 10 Centre of eye power 5 Bias variation (0-85 °C) 0 0 10 20 30 40 50 60 70 Current (mA); - 23-Dec-2004 R. Paoletti, 11/2011 80 90 100 III-V Devices Torino Your Imagination, Our Innovation OC48 (4CG4), 10GbE (4CG5), 10Gb Sonet (4CG3) Uncooled DFB Laser for XFP, SFP and SFP+ platform (2005 – 2006) 70C -5C Grating, λ/4 phase shift centered 10 G Sonet on XFP module L L/2 L/2 Phase shifted grating R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation Semiconductor lasers for optical communication • Laser sources for “pluggable transceiver world” • Design for performances • Fast lasers • Transceiver for next generation networks • Torino Technology Center - Avago Technologies Italy R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation What next? 40 and 100 Gb/s Ethernet, 16-32Gb FC standards • for 40Gb/s • 40GBASE – SR4, 850nm, 4 x 10GbE; 40GBASE – LR4, 1300nm, 4 x 10GbE CWDM • for 100 Gb/s • 100GBASE – SR10, 850 nm, 10 x 10GbE; 100GBASE – LR4, 1300 nm, 4 x 25GbE, LAN WDM 4.5 nm spaced or PSM4 (4 single mode fiber for short reach driven by datacenter) • 16G FC – 32G FC standard for Fiber channel • Standard and MSA have focused the technology development: • 16G FC transceiver SFP+ commercially available • First 40Gb/s and 100Gb/s CFP MSA …but form factor is the key development OFC 2009-2010 R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation Area and Power Dissipation: the competition on optical modules R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation Next Gen 100G SMF Optical Module Power Dissipation: data center driving force toward low power dissipation R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation Sources for 100Gb: 4× ×25-Gbit/s, 1.3-um, Monolithically Integrated Light source Takeshi Fujisawa (NTT Corporation, Japan); ECOC 2010, invited • Application: 100GbaseLR4 and ER4 (10 and 40 km) 1300nm • Now CFP with 4 TOSAs, WDM filter • To move from CFP to smaller size (CFP2/?): • integration • Low power consumption • Then NTT approach • Monolithic integration of EADFB and MUX (MMI) • 2×2.6 mm2 • Quarter wavelength shift DFB • Ridge, buried in BCB • Shallow ridge EADFB, deep ridge MUX • InGaAlAs • Double “ butt join” (one also fro the low doping cladding in the MMI…) Complicated/high cost/high power dissipation R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation Sources for 100Gb: DFB technology: best as cost and power dissipation…. OFC 2007 session: Uncooled and semicooled DFB laser sources at 25 and 40 Gb/s • Avago: best eye quality up to 70C, 25Gb/s Paoletti et al, OFC 2007 R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation Next steps: revolution on active material? Is Quantum Dot ready to go? OFC2009, OWJ1, “High“High-Speed and TemperatureTemperatureInsensitive Operation in 1.31.3-µm InAs InAs//GaAs High--Density Quantum Dot Lasers” , Fujitsu High 200 um long 1.3um ridge FP laser, with amazing performances… on GaAs . Announced to be “ready for production”…. R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation … Or real revolution will be Silicon Photonics? ECOC 2010, John Bowers, Dept of Electrical and Computer Engineering, UCSB R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation Silicon Photonics EPI: Ge on Silicon State-ofStateof-thethe-art performances by Ge on Silicon on detectors, improving on modulators ECOC 2010, Lionel C. Kimerling Kimerling,, MIT R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation Silicon Photonics; Hybrid approach: die level III-V material for gain (hybrid approach), Si for waveguides and modulators • Bonding: Die level • Flip-chip (Luxtera) Taking the best from IIIIII-V and Si world… Smart guys! Promising solution for advanced modulation format and parallel approach (PSM4) ECOC 2010 - 2012 R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation And electronics can boost optics to higher datarates! • Using pre-emphasys: 25 Gb VCSEL, 44 Gb using FFE at driver and good electrical matching... (ISLC 2012) • Using Multilevel coding (IEEE 802 committee) Multisegmented MZI on SiP • Or using FEC • limiting to 10-5 BER and allowing low cost optics: power budget, reflection sensitivity, etc… Page 35 R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation Via G. Schiaparelli 12 10148 Torino Italy Avago Technologies Italy Acquisition by Agilent Technologies 19 April 2000 Former technology dept. of CSELT; Today XX Eng YY OPer. Activity: R&D and Production (III-V Team) • Short term Development projects (transceivers @ 10 Gbit/s and higher) • Medium term Research projects for active and passive devices • Development and Production of 10G FP/DFB/EML laser source Activity: Transceiver R&D (Product Team) • Design of next generation single mode transceiver Facilities (III-V team) • 1350 m2 of clean room: class 10-10000 (plus R&D Lab, officies). • EPI (2 MOCVD), material characterization, processing (including EBL), die fab (singulation, coating, testing, assembly and reliability tests) Expertise: optoelectronic and photonic technologies • New transceiver, devices and components conception and design • Semiconductors • Device design, prototyping and characterisation R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation Technology platform for high yield manufacturing established from 2003 on • Aluminum based MQW material • Superior high T performances • high yield • Ridge waveguide • easy to manufacture • • high performance • 100% SMSR yield High yield; compatible with Al MQW material • Quarter wavelength grating Proven reliability, with > 50 M devices x hours in 3 years production R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation How we did it……The III-V Technology in Turin .. advanced lasers? A teamwork .. …advanced technologies! R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation How we did it…… (1) Design/Modeling 1. Material properties (Q.M.) MQW band profile and levels Optical properties: n+ik (l, F, T) B A NDS P ROFILE 0.15 0.1 E nergy E (eV ) 0.05 0 -0.05 -0.1 -0.15 1. -0.2 -600 E.M. -400 -200 0 z (A) 200 400 600 Beam Propagation Method Waveguiding properties RF: ADS equivalent circuit VtStep SRC6 Vlow=0 mV Vhigh=100 mV Delay=0 nsec Rise=100 msec Pout 0.022 Catode Pout Vs Vs Eqn A=eye(Pf,10.312GHz,2,0ps) Da29 X1 Da29 T 20C I_Probe I_Probe1 Anode Vin t Vn 0.020 0.018 Vn 0.016 VCCS SRC5 G=-1 S T=0 nsec R1=1e100 Ohm R2=1e100 Ohm 0.014 A S (2 ,2) S (1 ,1) 2. 0.012 0.010 TRANSIENT OPTIONS 0.008 Tran Tran1 StopTime=100 msec MaxTimeStep=1 msec Options Options1 Temp=25 Tnom=25 TopologyCheck=yes MaxDeltaV=1e-6 V_RelTol=1e-9 V_AbsTol=1e-18 I_RelTol=1e-9 I_AbsTol=1e-18 GiveAllWarnings=yes freq (130.0MHz to 13.00GHz) 0.006 0.004 0 50 100 150 200 time, psec R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation How we did it…… (2) Epitaxial growth InP:p <10 nm MULTI QUANTUM WELL substrate: InP:n Epi growth Epi layer substrate MOCVD reactor R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation ⇒ How we did it…… (3) Material characterization X-Ray diffraction: crystal quality +composition Scanning Electron Microscope (SEM) Photoluminescence: alloy composition C-V profilers: doping profile R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation How we did it…… (4) Processing Photolithography UV Electron Beam Lithography mask photoresist  70 nm line in 75 nm thick resist  200 nm pitch lines SiN 1) photolithography 2) Chemical etch R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation How we did it…… (5) Scribing: from wafer to chip Wafer bars Coating /cleave Scribing Dies Dicing From 2” wafer: up to 20.000 lasers (Yield!!) R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation How we did it…… (6) Automatic testing What are LDIs? Laser Device Inspectors are automatic systems for 100% device testing and screenings. System capabilities and scope: •Test: pulsed measurements on chip @ R.T.: •F/B LIV, spectrum, rev. leakage, chip size and tilt FF Threshold Current •10G FP, 10G DFB, EML 40 35 Ith [mA] 30 25 20 15 10 5 0 0 MOV001 50 100 150 Statistics of main parameters R. Paoletti, 11/2011 200 III-V Devices Torino Your Imagination, Our Innovation How we did it…… (7) R&D lab characterizations (new products dev.) • Dedicated area (130m2), large set of characterization techniques • Measurement benches for: • FP and DFB lasers; Multi-electrodes (EML, Tunable) lasers • Static measurements on tile (10 - 100 C) and Headers • F/B LIV, spectrum, low current, rev. leakage, Far Field, ... • Dynamic characterization: “directly on chip” probing (10 - 100 C) • Small signal S21, S11, parasitics and active dynamics up to 20 GHz • Large signal dynamic characterization: • Pattern generators at 1-12 Gb/s and 4-60 Gb/s (SHF); up to 32GFC complete eye diagram measurement set-up (including optical receiver) • Up to 12 Gb/s BERT test (200 km fiber) • …plus standard production testing / validation line • LDI for screening, statistic and process debug purposes • Stress tests (BI/ESD/ALT) for reliability assessment and qualification R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation From R&D to production Developing a reliable technology…. • Reliability has always been the key strength in a III-V world • Customer reliability expectation is almost compared to the ‘telecom” field, but for low cost – consumer products ⇒ Reliability is the key investment in the III-V area DFB (SFP+, XFP) qualified for Cisco: • many million devices* hours • Long endurance test Enormous investments… Example: DFB (SFP+, XFP) qualified for Cisco: Long endurance test (45000 h; 10 years at worst case operating conditions) R. Paoletti, 11/2011 FA FA0 45 _ FA0 52 _ J _ 1 FA0 68 _ J 1 FA0 72__ J _ 1 FA0 74 _ J _ 1 FA0 79 _ J _ 1 FA0 85 _ J _ 1 FA0 90 _ J 1 FA0 91__ J _ 1 FA0 93 _ J __ 1 1 FA 10 J _ 1 FA1 12 _ J _ 1 FA1 18 _ J 1 FA1 18__ J _ 1 FA1 18 _ J _ 1 FA1 24 _ J _8 _ 1 FA1 31 _ J _LD _ 1 I8 FA1 32 _ J 1 FA1 32__ J _ 1 FA1 34 J 1 __ 1 FA 35 J _ 1 FA1 40 _ J _ 1 FA1 42 _ J _ 1 1 FA 43 _ J _ 1 FA1 44 _ J _ 1 FA1 45 _ J _ 1 FA1 46 _ J _ 1 FA1 49 _ J _ 1 FA1 50 _ J _ 1 FA1 52 _ J _ 1 FA1 53 _ J _ 1 FA1 57 _ J _ 1 FA1 59 _ J _ 1 FA1 60 _ J _ 1 FA1 61 _ J __ 1 1 FA 63 J _ 1 FA1 64 _ J _ 1 FA1 66 _ J _ 1 1 FA 67 _ J _ 1 FA1 70 _ J 1 FA1 72__ J _ 1 FA1 73 _ J __ 1 1 FA 74 J _ 1 FA1 79 _ J _ 1 FA1 85 _ J __ 1 1 FA 88 J _ 1 FA2 03 _ J 1 FA2 03__ H _ 1 2 FA 11 _ J _ 1 FA2 12 _ J _ 1 FA2 12 _ H _ 1 FA2 13 _ J 1 FA2 13__ H _ 1 FA2 15 _ J __ 1 2 FA 31 J _ 1 FA2 32 _ J _ 1 FA2 35 _ J 1 2 FA 38__ J _ 1 FA2 42 _ H _ 1 FA2 42 _ J P 1 FA2 51 _J _ 1 FA2 62 _ J 1 FA2 63__ H _ 1 FA2 64 _ H __ 1 2 FA 70 H 2 7 __ 1 1_ J1 _J 1 Plast III-V Devices Torino Your Imagination, Our Innovation From R&D to production Testing a production volume…. • Testing is one of the most expensive part in the III-V production, which require 100% testing of laser chip! 40 BoxPlot of Plast R&D Avago VCSEL Tester: 1 sec/die • Only key team have testing capability suitable for mass-production (not for start up..) ⇒ R&D design for Testing R&D Avago DFB Tester: 20 sec/die 35 Example: new FP qualification • oput power compared to 3 years production!! 30 25 20 15 10 lot R. Paoletti, 11/2011 III-V Devices Torino Your Imagination, Our Innovation The end! Books • Ramo Winnery Van Duzer, “Fields and waves in communication electronics”, John Wiley., • G. Guekos, Photonic Devices, Springer, 1999, ISBN 3-540-64318-4 • L. A. Coldren, S. W. Corzine, “Diode lasers and photonic integrated circuits”, John Wiley and sons, inc., • P. Vasil’ev, “Ultrafast diode laser”, Artec House Boston-London • K. Petermann, “Laser Diode Modulation” and Noise, Dordrecht, The Netherlands: Kluwer Academic Publishers Application Notes • Application Note 1550-6, HP • Application Note 1287-1 • Network Analyzer Basics • The Art of Measuring 40G Eye Patterns Related published paper • F. Delpiano, R. Paoletti, P. Audagnotto and R. Puleo, "High Frequency Modelling and Characterisation of High Performance DFB Laser Modules", IEEE Transaction on Components, Hybrids, and Manufacturing Technology, Part B, Vol. 17, No 3, pp. 412-417, august 1994. • R. Paoletti, D. Bertone, A. Bricconi, R. Fang, L. Greborio, G. Magnetti, M. Meliga, "Comparison of Optical and Electrical Modulation Bandwidths in three different 1.55 µm InGaAsP Buried Laser Structures", SPIE'S International Symposia - Photonics West '96, pp. 296-305, 30 Jan. - 1 Febr. 1996, S. Josè, CA, USA. • R. Paoletti, M. Meliga, I. Montrosset, “Optical Modulation Technique for Carrier Lifetime Measurement in Semiconductor Lasers”, IEEE Photonics Technology Letters, Vol. 8, No. 11, pp. 1447-1449, November 1996. • R. Paoletti, M. Meliga, G. Oliveti, M. Puleo, G. Rossi, L. Senepa, “10 Gbit/S Ultra-Low Chirp 1.55µ µM Directly Modulated Hybrid Fiber Grating - Semiconductor Laser Source”, 23rd European Conference on Optical Communication ECOC '97, Mo 3B. 22-25 September 1997, Edimburgh (UK). • G. Rossi, R. Paoletti, M. Meliga, “SPICE simulation for analysis and design of fast 1.55 µm MQW laser diodes”, IEEE Journal of Lightwave Technology, Vol. 16, No. 7, July 1998. • R. Paoletti, M. Agresti, G. Burns, G. Berry, D. Bertone. P. Charles, P. Crump, A. Davies, R.Y. Fang, R. Ghin, P. Gotta, M. Holm, C. Kompocholis, G. Magnetti, J. Massa, G. Meneghini, G. Rossi, P. Ryder, A. Taylor, P. Valenti and M. Meliga, "100 °C, 10 Gb/s directly modulated InGaAsP DFB lasers for uncooled Ethernet applications", post-deadline at European Conference on Optical Communication ECOC '2001, October 2001,Amstedam (NL). • R. Paoletti, M. Meliga, "Uncooled, high speed DFB lasers for Gigabit Ethernet applications", invited paper at SPIE'S International Symposia - Photonics West Optoelectronics 20021, 19 - 25 Jan. 2002, S. Josè, CA, USA. • R. Paoletti, M. Agresti, D. Bertone, L. Bianco, C. Bruschi, A. Buccieri, R. Campi, C.Dorigoni, P. Gotta, M. Liotti, G. Magnetti, P. Montangero, G. Morello, C. Rigo, E. Riva, D. Soderstrom, S. Stano, P. Valenti, M. Vallone, M. Meliga" Highly reliable and high yield 1300 nm InGaAlAs directly modulated ridge Fabry-Perot lasers, operating at 10 Gb/s, up to 110 ºC, with constant current swing ", Post deadline at Optical Fiber Conference OFC 2005, Anaheim (CA) • R. Paoletti, M. Agresti, D. Bertone, C. Bruschi, S. Codato, C. Coriasso, R. Defranceschi, P. Dellacasa, M. Diloreto, R. Y. Fang, P. Gotta, G. Meneghini, C. Rigo, E. Riva, G.Roggero, A. Stano, M. Meliga, ‘Uncooled 20 Gb/s Direct Modulation of High Yield, Highly Reliable 1300 nm InGaAlAs Ridge DFB Lasers”, Optical Fiber Conference OFC 2009 R. Paoletti, 11/2011