Transcript
III-V Devices Torino
Your Imagination, Our Innovation
Semiconductor lasers for optical communication Roberto Paoletti R&D, Testing and Reliability Manager Avago Technologies Italy
• Laser sources for “pluggable transceiver world” • Design for performances • Fast lasers
• Transceiver for next generation networks • Torino Technology Center - Avago Technologies Italy R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
Pluggability: a keyword… From transceiver cards to hot-pluggable transceiver modules XENPAK (100 x 50mm)
LASER Evolution (since 2000) PLUGGABILITY: PAY AS YOU GO ~250 x 250 mm
• Strong limits in space available and power budget • Wide temperature operation (0÷85oC) ⇒ Requirement on lasers: • High temperature operation (preferably uncooled) • Low cost, high manufacturing yield, high reliability • no compromise on High performance (high bit rate, high optical power, high spectral purity, …) • Roberto Paoletti,
R. Paoletti, 11/2011
X2
XFP (78 x 18mm)
III-V Devices Torino
Your Imagination, Our Innovation
Semiconductor Laser is:
Active material
Semiconductor layer with optical gain
Carrier population generation Cavity
Electrical injection
Crystal Mirrors (FP) or Grating (DFB – DBR) electrical
Heterojunction
optical
Optical waveguide
Confinements:
R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
Lasers for Optical Networks 10m
100m
1km
10km
100km
Long Haul Storage
Enterprise
2-20 km
20-100 km
Metro
DATACOM FP
TELECOM DFB EML
VCSEL
10 Gb/s LASER Sources R. Paoletti, 11/2011
Tunable
III-V Devices Torino
Your Imagination, Our Innovation
Design for performance (ridge ) Uncooled Avago FP (2005) Au plated pad Heat path
SiO2
TiTi-Pt Pt--Au metal
Ridge structure Optimised facet cleavage / coating
No lateral blocking layers • Very simple technological process (onestep epi-growth) • Suitable for Al-based lasers and low cost devices
Metal Dielectric
Narrow reverse mesa (Low Rs, small cavity, fast chips) R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
Active material: long path of performance improvement 10 years of active material engineering40 leads to massive improvement of 35 temperature performance
40 40
T0=48 K
35 35
30 30
30
T=20-100 ºC
20
15
15 15
55
5
0 0
20 20
10 10
10
InGaAsP Bulk material (50 mA Threshold at 80C, CSELT, 1995)
T=20-100 ºC
25 25
Power (mW)
Power (mW)
25
T0=95 K
10 20 30 40 50 60 70 80 90 100
000 0
10 10
20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100
Current (mA)
InGaAsP-based MQW (Agilent, 2001)
Current (mA)
InGaAsAl-based MQW (Avago, 2005) R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
Modulation schemes for datacom/transport NW Transmit information: ⇒ Frequency/Phase Modulation of laser source: transport NW. ⇒ Intensity modulation of laser source
☺☺
• Intensity modulation by: • External modulator:
⇒ expensive
(long haul only) • Direct modulation: ⇒ cheap/simple ⇒ short haul
☺☺
(1.55um <200 km @ 2.5 Gb, 30 km @ 10Gb; <25 km 1300nm)
⇒ need high speed devices
So we want uncooled, low cost laser … and fast!!! R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
Direct Modulation of Laser Module Butterfly Laser Module, (1990 – 2000) Back detector
Electrical / RF connections Optical coupling: Lens+Optical Isolator + pigtailed fiber
Temperature control
RF
Chip laser
R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
Intensity modulation of laser sources • Laser chip equivalent circuit
f r ∝ I − I th
10
Parasitics
f r ∝ I − I th Active material
Rel. Amplitude (dB)
5 0 -5 -10 -15 -20 -25 0
Increasing I-Ith Ith + 10 mA: th (I = 6 mA);-3dB f = 7.93 GHz Ith + 30 mA: th (I = 6 mA);-3dB f = 13.29 GHz Ith + 50 mA: th (I = 6 mA);-3dB f = 16.47 GHz Ith + 70 mA: th (I = 6 mA);-3dB f = 18.56 GHz Ith + 90 mA: th (I = 6 mA);-3dB f = 19.95 GHz
5
10 Frequency (GHz)
R. Paoletti, 11/2011
15
20
III-V Devices Torino
Your Imagination, Our Innovation
Direct Modulation of Laser Module Electro-optical measurement and simulation (1994) for bandwidth E/O S21 optimization
Elec. S11
RIN, Optical S21
F. Delpiano, R. Paoletti, P. Audagnotto and M. Puleo; High Frequency Modeling and Characterization of High Performance DFB Laser Modules; IEEE TRANS ON COMPONENTS, PACKAGING, AND MANUFACTURING TECHNOLOGY, VOL. 17, NO. 3, AUGUST 1994 R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
Laser chip optimization On-chip static and dynamic characterizations, on dedicated optical benches. Electrical reflection measurements (S11), parasitics
Small-signal modulation bandwidth measurements f-3dB , parasitics
Optical modulation bandwidth Intrinsic bw
α , ∆ν Eye-diagrams MM, er, tr, tf,, ..
Dynamic measurements
Chip Laser
BER DP, …
Static measurements Low-current measurements (junction leakage)
Chip Parasitics
Active region
Out
In
Hakki - Paoli characterization (Gain and loss)
Adiabatic & timeresolved chirp m.
Differential carrier lifetime measurements D,
τ N
P-I, V-I measurements Ith, Pmax, Eff% ,T0
List of on chip characterizations Far-Field measurements FWHM
• set-up using RF or static probe, directly contacting chip-on carrier
R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
Direct RF Probing of laser chip: Chip parasitics analysis on SI-BH (1995)
• Parasitics analysis by S11 measurement: a long story … RF Probe: GND
First 0-20GHz S11 – S21 measurements by custom designed RF probe (1995)
RF Probe
RF Probe: Signal dp06 - ab10scT15 : S11
• RF Probes; • Accurate calibration Im
Rc
Id
Rs
Imped. at 1.089 GHz (o): 0.3 j -30.8 Ohm Meas. capacitance at 1.089 GHz: 4.7 pF
Rel. Intensity (dB)
Key points: SI-BH
PBH BRS
Il Cp
Equivalent Circuit (Chip Parasitics)
Active Region I = 0 mA
Frequency (GHz) Rc
0 .5 O h m
Rs
∞
Cp
4 .7 p F
Frequency: *: 0.297 - +: 19.901 GHz
Paoletti et al, SPIE'S International Symposia - Photonics West '96 R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
Laser chip RF optimization: direct RF probing of laser chip Chip parasitics on Ridge Structure, ADS model, S11 measurements
Geometrical analysis
Simulation and experimental results
Equivalent circuit
R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation S-PARAMETERS
Direct RF Probing of laser chip: VCSEL S11 modeling (ADS)
S_Param SP1 Start=.130 GHz Stop=25.0 GHz Step=.1 GHz R R RP RS R=0 Ohm R=19 Ohm {t}
Term Term1 Num=1 Z=50 Ohm
Term Term2 Num=2 Z=50 Ohm CCVS SRC1 G=1 Ohm
1
S1P SNP1 File="C:\work_pod\laser\cad_data_files\ads_data_files\new_VCSEL_9_2009_prj\data\test_16G_2012_5\4c17\S11_25C_4mA
S(3,3) S(1,1)
Ref
4 mA S11 parameter extraction
freq (130.0MHz to 25.00GHz)
8 mA S11 parameter extraction
freq (130.0MHz to 25.00GHz)
-38.0 -36.0 -36.5
-39.0
-37.0
-39.5
-37.5
dB(S(2,1))
dB(S(2,1))
-38.5
-40.0
-38.0 -38.5
-40.5 -39.0
-41.0 -41.5 1E8
R G2 R=92 Ohm {t}
C Cp C=0.0 pF
Term Term3 Num=3 Z=50 Ohm
S(3,3) S(1,1)
C CJ C=0.164 pF {t}
1E9
1E10
3E10
Expected parasitic S21 >25 GHz
freq, Hz
-39.5 -40.0 1E8
1E9
1E10
freq, Hz
Set up: N4376B. Cascade probe + substrate calibration R. Paoletti, 11/2011
3E10
III-V Devices Torino
Your Imagination, Our Innovation
Intensity modulation of laser sources: MQW active layer ADS model SCH
quasi 2D
quasi 2D
quasi 2D
2D
2D
2D
SCH
lasing mode
Iinj SCH
Quasi-2D1
Quasi-2D2 injection recombination diffusion Lasing mode
Well1
capture Well1 escape
Sout
emission
G. Rossi, R. Paoletti, M. Meliga, “SPICE simulation for analysis and design of fast 1.55 µm MQW laser diodes”, IEEE Journal of Lightwave Technology, Vol. 16, No. 7, July 1998 R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
ADS model: simulation (red) vs. measurements (blue) LIV curves
S parameters (bandwidth and dynamic impedance)
Simulated eye diagram
Bias = 28mA Bias = 58mA
R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
Direct Modulation of TOSA Electro-optical measurement and simulation
R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
Intensity modulation of laser sources: Package parasitics (Module + TOSA)
RF
RF
XFP Transceiver, 2005 R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
Large Signal modulation Recalls of digital communications
A bit stream like this
can be heavily distorted passing through a non ideal channel; bit shape can be broadened and spread out of its time slot, overlapping on its neighbours : this is called “InterSymbol Interference (ISI)” R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
Recalls of digital communications (2) A picture like this gives little information on signal distortion Bit 1
2
3
4
5
6
7
Bit 1&2
Bit 1…12
8
9
10
First 32 bits of a longer bit sequence
Bit 1&2&3
Bit 1&2&3&4
Bit 1…18
Bit 1…24
Bit 1…5
Bit 1…32
Bit 1…8
Bit 1…127
To better evaluate signal distortion an “Eye Diagram” is built The eye diagram is obtained by slicing the bit sequence in one (or more) bit time slots and overlapping them. R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
Main parameters of an eye diagram simulated
Eye aperture
Eye amplitude experimental Eye mask
Jitter : DJ deterministic or pattern dependent jitter RJ random jitter
R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
Agilent uncooled InGaAsP BH 10Gb DFB/PIN for 10GBASE-LR product • Torino R&D team for Ipswich MFG. First product release: first 10G DFB and first 10G PIN for Xenpak – first 10G uncooled hot pluggable transceiver in the market • DFB uncooled PNiP buried lasers, InGaAsP based 10G PIN
45
20 °C 40
40 °C 35
60°C
Power (mW)
30 25 20
80 °C
15
90 °C
10
100 °C
5 0 0
70C module
10
20 30 40 50 60 70 80 90 100 Current (mA); - 09-Aug-2002
Uncooled 10G DFB laser
Post deadline at ECOC 2001
R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
10 Gb/s uncooled InGaAlAs ridge FP laser fa021a 113: Optical Power (T=20, 40, 60, 80, 85, 90, 95 °C)
Key points: • High optical power enable high coupling loss • Small threshold increasing up to 95 C since high T0 • Small bias variation over T • Small efficiency degradation over T ⇒ Constant eye quality with constant modulation current! Paoletti et al, Post deadline at OFC 2005
20
Ith+30
8.9mW; P = 23.8mW max 8.5mW, P =0.95; P = 22.4mW ratio,Ith+30 max 7.8mW, P =0.88; P = 20.0mW ratio,Ith+30 max 7.1mW, P =0.80; P = 17.4mW ratio,Ith+30 max 6.9mW, P =0.78; P = 16.8mW ratio,Ith+30 max 7.0mW, P =0.78; P = 15.9mW ratio,Ith+30 max 6.7mW, P =0.76; P = 15.3mW ratio,Ith+30
max
15 Power (mW)
20 °C base chip temperature: • Threshold 7.6 mA • High power 23 mW 85 °C base chip temperature: • threshold 15.6 mA • power 16.8 mW 95 °C base chip temperature: • threshold as low as 18 mA • Still more than 15 mW
25
k T=20ºC; Ith= 7.6mA; P = Ith+30 T=40ºC; Ith= 9.3mA; P = 110 Ith+30 T=60ºC; Ith=11.5mA; P = Ith+30 °C T=80ºC; Ith=14.5mA; P = Ith+30 T=85ºC; Ith=15.6mA; P = Ith+30 T=90ºC; Ith=16.6mA; P = Ith+30 T=95ºC; Ith=17.9mA; P =
Slope eff. ratio= 80% 10 Centre of eye power
5
Bias variation (0-85 °C) 0 0
10
20
30
40 50 60 70 Current (mA); - 23-Dec-2004 R. Paoletti, 11/2011
80
90
100
III-V Devices Torino
Your Imagination, Our Innovation
OC48 (4CG4), 10GbE (4CG5), 10Gb Sonet (4CG3) Uncooled DFB Laser for XFP, SFP and SFP+ platform (2005 – 2006) 70C
-5C
Grating, λ/4 phase shift centered
10 G Sonet on XFP module L
L/2
L/2
Phase shifted grating R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
Semiconductor lasers for optical communication • Laser sources for “pluggable transceiver world” • Design for performances • Fast lasers
• Transceiver for next generation networks • Torino Technology Center - Avago Technologies Italy
R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
What next? 40 and 100 Gb/s Ethernet, 16-32Gb FC standards • for 40Gb/s • 40GBASE – SR4, 850nm, 4 x 10GbE; 40GBASE – LR4, 1300nm, 4 x 10GbE CWDM • for 100 Gb/s • 100GBASE – SR10, 850 nm, 10 x 10GbE; 100GBASE – LR4, 1300 nm, 4 x 25GbE, LAN WDM 4.5 nm spaced or PSM4 (4 single mode fiber for short reach driven by datacenter)
• 16G FC – 32G FC standard for Fiber channel • Standard and MSA have focused the technology development: • 16G FC transceiver SFP+ commercially available • First 40Gb/s and 100Gb/s CFP MSA …but form factor is the key development
OFC 2009-2010
R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
Area and Power Dissipation: the competition on optical modules
R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
Next Gen 100G SMF Optical Module Power Dissipation: data center driving force toward low power dissipation
R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
Sources for 100Gb: 4× ×25-Gbit/s, 1.3-um, Monolithically Integrated Light source Takeshi Fujisawa (NTT Corporation, Japan); ECOC 2010, invited • Application: 100GbaseLR4 and ER4 (10 and 40 km) 1300nm • Now CFP with 4 TOSAs, WDM filter •
To move from CFP to smaller size (CFP2/?): •
integration
•
Low power consumption
• Then NTT approach •
Monolithic integration of EADFB and MUX (MMI)
•
2×2.6 mm2
•
Quarter wavelength shift DFB
•
Ridge, buried in BCB
•
Shallow ridge EADFB, deep ridge MUX
•
InGaAlAs
•
Double “ butt join” (one also fro the low doping cladding in the MMI…)
Complicated/high cost/high power dissipation R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
Sources for 100Gb: DFB technology: best as cost and power dissipation…. OFC 2007 session: Uncooled and semicooled DFB laser sources at 25 and 40 Gb/s • Avago: best eye quality up to 70C, 25Gb/s
Paoletti et al, OFC 2007 R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
Next steps: revolution on active material? Is Quantum Dot ready to go? OFC2009, OWJ1, “High“High-Speed and TemperatureTemperatureInsensitive Operation in 1.31.3-µm InAs InAs//GaAs High--Density Quantum Dot Lasers” , Fujitsu High
200 um long 1.3um ridge FP laser, with amazing performances… on GaAs . Announced to be “ready for production”…. R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
… Or real revolution will be Silicon Photonics?
ECOC 2010, John Bowers, Dept of Electrical and Computer Engineering, UCSB R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
Silicon Photonics EPI: Ge on Silicon
State-ofStateof-thethe-art performances by Ge on Silicon on detectors, improving on modulators ECOC 2010, Lionel C. Kimerling Kimerling,, MIT R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
Silicon Photonics; Hybrid approach: die level III-V material for gain (hybrid approach), Si for waveguides and modulators • Bonding: Die level • Flip-chip (Luxtera)
Taking the best from IIIIII-V and Si world… Smart guys! Promising solution for advanced modulation format and parallel approach (PSM4) ECOC 2010 - 2012 R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
And electronics can boost optics to higher datarates! • Using pre-emphasys: 25 Gb VCSEL, 44 Gb using FFE at driver and good electrical matching... (ISLC 2012) • Using Multilevel coding (IEEE 802 committee)
Multisegmented MZI on SiP
• Or using FEC • limiting to 10-5 BER and allowing low cost optics: power budget, reflection sensitivity, etc… Page 35
R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
Via G. Schiaparelli 12 10148 Torino Italy
Avago Technologies Italy Acquisition by Agilent Technologies 19 April 2000 Former technology dept. of CSELT; Today XX Eng YY OPer. Activity: R&D and Production (III-V Team) • Short term Development projects (transceivers @ 10 Gbit/s and higher) • Medium term Research projects for active and passive devices • Development and Production of 10G FP/DFB/EML laser source Activity: Transceiver R&D (Product Team) • Design of next generation single mode transceiver Facilities (III-V team) • 1350 m2 of clean room: class 10-10000 (plus R&D Lab, officies).
• EPI (2 MOCVD), material characterization, processing (including EBL), die fab (singulation, coating, testing, assembly and reliability tests) Expertise: optoelectronic and photonic technologies • New transceiver, devices and components conception and design • Semiconductors • Device design, prototyping and characterisation R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
Technology platform for high yield manufacturing established from 2003 on
• Aluminum based MQW material •
Superior high T performances
• high yield
• Ridge waveguide
• easy to manufacture
•
• high performance
• 100% SMSR yield
High yield; compatible with Al MQW material
• Quarter wavelength grating
Proven reliability, with > 50 M devices x hours in 3 years production R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
How we did it……The III-V Technology in Turin
.. advanced lasers? A teamwork ..
…advanced technologies!
R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
How we did it…… (1) Design/Modeling 1.
Material properties (Q.M.) MQW band profile and levels
Optical properties: n+ik (l, F, T)
B A NDS P ROFILE
0.15
0.1
E nergy E (eV )
0.05
0
-0.05
-0.1
-0.15
1.
-0.2 -600
E.M.
-400
-200
0 z (A)
200
400
600
Beam Propagation Method
Waveguiding properties
RF: ADS equivalent circuit VtStep SRC6 Vlow=0 mV Vhigh=100 mV Delay=0 nsec Rise=100 msec
Pout
0.022
Catode
Pout Vs
Vs
Eqn A=eye(Pf,10.312GHz,2,0ps)
Da29 X1
Da29 T 20C
I_Probe I_Probe1
Anode
Vin
t
Vn
0.020
0.018
Vn 0.016
VCCS SRC5 G=-1 S T=0 nsec R1=1e100 Ohm R2=1e100 Ohm
0.014
A
S (2 ,2) S (1 ,1)
2.
0.012
0.010
TRANSIENT
OPTIONS 0.008
Tran Tran1 StopTime=100 msec MaxTimeStep=1 msec
Options Options1 Temp=25 Tnom=25 TopologyCheck=yes MaxDeltaV=1e-6 V_RelTol=1e-9 V_AbsTol=1e-18 I_RelTol=1e-9 I_AbsTol=1e-18 GiveAllWarnings=yes
freq (130.0MHz to 13.00GHz)
0.006
0.004 0
50
100
150
200
time, psec
R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
How we did it…… (2) Epitaxial growth
InP:p
<10 nm
MULTI QUANTUM WELL substrate: InP:n
Epi growth Epi layer
substrate
MOCVD reactor
R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
⇒ How we did it…… (3) Material characterization
X-Ray diffraction: crystal quality +composition
Scanning Electron Microscope (SEM)
Photoluminescence: alloy composition
C-V profilers: doping profile R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
How we did it…… (4) Processing
Photolithography UV
Electron Beam Lithography mask photoresist
70 nm line in 75 nm thick resist 200 nm pitch lines
SiN
1) photolithography
2) Chemical etch R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
How we did it…… (5) Scribing: from wafer to chip Wafer
bars Coating /cleave Scribing
Dies
Dicing
From 2” wafer: up to 20.000 lasers (Yield!!) R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
How we did it…… (6) Automatic testing What are LDIs? Laser Device Inspectors are automatic systems for 100% device testing and screenings. System capabilities and scope: •Test: pulsed measurements on chip @ R.T.: •F/B LIV, spectrum, rev. leakage, chip size and tilt
FF Threshold Current
•10G FP, 10G DFB, EML
40 35
Ith [mA]
30 25 20 15 10 5 0 0
MOV001
50
100
150
Statistics of main parameters R. Paoletti, 11/2011
200
III-V Devices Torino
Your Imagination, Our Innovation
How we did it…… (7) R&D lab characterizations (new products dev.) • Dedicated area (130m2), large set of characterization techniques • Measurement benches for: • FP and DFB lasers; Multi-electrodes (EML, Tunable) lasers • Static measurements on tile (10 - 100 C) and Headers • F/B LIV, spectrum, low current, rev. leakage, Far Field, ... • Dynamic characterization: “directly on chip” probing (10 - 100 C) • Small signal S21, S11, parasitics and active dynamics up to 20 GHz • Large signal dynamic characterization: • Pattern generators at 1-12 Gb/s and 4-60 Gb/s (SHF); up to 32GFC complete eye diagram measurement set-up (including optical receiver) • Up to 12 Gb/s BERT test (200 km fiber)
• …plus standard production testing / validation line • LDI for screening, statistic and process debug purposes • Stress tests (BI/ESD/ALT) for reliability assessment and qualification R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
From R&D to production Developing a reliable technology…. • Reliability has always been the key strength in a III-V world • Customer reliability expectation is almost compared to the ‘telecom” field, but for low cost – consumer products
⇒ Reliability is the key investment in the III-V area DFB (SFP+, XFP) qualified for Cisco: • many million devices* hours • Long endurance test Enormous investments…
Example: DFB (SFP+, XFP) qualified for Cisco: Long endurance test (45000 h; 10 years at worst case operating conditions)
R. Paoletti, 11/2011
FA FA0 45 _ FA0 52 _ J _ 1 FA0 68 _ J 1 FA0 72__ J _ 1 FA0 74 _ J _ 1 FA0 79 _ J _ 1 FA0 85 _ J _ 1 FA0 90 _ J 1 FA0 91__ J _ 1 FA0 93 _ J __ 1 1 FA 10 J _ 1 FA1 12 _ J _ 1 FA1 18 _ J 1 FA1 18__ J _ 1 FA1 18 _ J _ 1 FA1 24 _ J _8 _ 1 FA1 31 _ J _LD _ 1 I8 FA1 32 _ J 1 FA1 32__ J _ 1 FA1 34 J 1 __ 1 FA 35 J _ 1 FA1 40 _ J _ 1 FA1 42 _ J _ 1 1 FA 43 _ J _ 1 FA1 44 _ J _ 1 FA1 45 _ J _ 1 FA1 46 _ J _ 1 FA1 49 _ J _ 1 FA1 50 _ J _ 1 FA1 52 _ J _ 1 FA1 53 _ J _ 1 FA1 57 _ J _ 1 FA1 59 _ J _ 1 FA1 60 _ J _ 1 FA1 61 _ J __ 1 1 FA 63 J _ 1 FA1 64 _ J _ 1 FA1 66 _ J _ 1 1 FA 67 _ J _ 1 FA1 70 _ J 1 FA1 72__ J _ 1 FA1 73 _ J __ 1 1 FA 74 J _ 1 FA1 79 _ J _ 1 FA1 85 _ J __ 1 1 FA 88 J _ 1 FA2 03 _ J 1 FA2 03__ H _ 1 2 FA 11 _ J _ 1 FA2 12 _ J _ 1 FA2 12 _ H _ 1 FA2 13 _ J 1 FA2 13__ H _ 1 FA2 15 _ J __ 1 2 FA 31 J _ 1 FA2 32 _ J _ 1 FA2 35 _ J 1 2 FA 38__ J _ 1 FA2 42 _ H _ 1 FA2 42 _ J P 1 FA2 51 _J _ 1 FA2 62 _ J 1 FA2 63__ H _ 1 FA2 64 _ H __ 1 2 FA 70 H 2 7 __ 1 1_ J1 _J 1
Plast
III-V Devices Torino Your Imagination, Our Innovation
From R&D to production
Testing a production volume….
• Testing is one of the most expensive part in the III-V production, which require 100% testing of laser chip!
40 BoxPlot of Plast
R&D Avago VCSEL Tester: 1 sec/die
• Only key team have testing capability suitable for mass-production (not for start up..)
⇒ R&D design for Testing
R&D Avago DFB Tester: 20 sec/die
35
Example: new FP qualification • oput power compared to 3 years production!!
30
25
20
15
10
lot
R. Paoletti, 11/2011
III-V Devices Torino
Your Imagination, Our Innovation
The end! Books •
Ramo Winnery Van Duzer, “Fields and waves in communication electronics”, John Wiley.,
•
G. Guekos, Photonic Devices, Springer, 1999, ISBN 3-540-64318-4
•
L. A. Coldren, S. W. Corzine, “Diode lasers and photonic integrated circuits”, John Wiley and sons, inc.,
•
P. Vasil’ev, “Ultrafast diode laser”, Artec House Boston-London
•
K. Petermann, “Laser Diode Modulation” and Noise, Dordrecht, The Netherlands: Kluwer Academic Publishers
Application Notes •
Application Note 1550-6, HP
•
Application Note 1287-1
•
Network Analyzer Basics
•
The Art of Measuring 40G Eye Patterns
Related published paper • F. Delpiano, R. Paoletti, P. Audagnotto and R. Puleo, "High Frequency Modelling and Characterisation of High Performance DFB Laser Modules", IEEE Transaction on Components, Hybrids, and Manufacturing Technology, Part B, Vol. 17, No 3, pp. 412-417, august 1994. • R. Paoletti, D. Bertone, A. Bricconi, R. Fang, L. Greborio, G. Magnetti, M. Meliga, "Comparison of Optical and Electrical Modulation Bandwidths in three different 1.55 µm InGaAsP Buried Laser Structures", SPIE'S International Symposia - Photonics West '96, pp. 296-305, 30 Jan. - 1 Febr. 1996, S. Josè, CA, USA. •
R. Paoletti, M. Meliga, I. Montrosset, “Optical Modulation Technique for Carrier Lifetime Measurement in Semiconductor Lasers”, IEEE Photonics Technology Letters, Vol. 8, No. 11, pp. 1447-1449, November 1996.
• R. Paoletti, M. Meliga, G. Oliveti, M. Puleo, G. Rossi, L. Senepa, “10 Gbit/S Ultra-Low Chirp 1.55µ µM Directly Modulated Hybrid Fiber Grating - Semiconductor Laser Source”, 23rd European Conference on Optical Communication ECOC '97, Mo 3B. 22-25 September 1997, Edimburgh (UK). •
G. Rossi, R. Paoletti, M. Meliga, “SPICE simulation for analysis and design of fast 1.55 µm MQW laser diodes”, IEEE Journal of Lightwave Technology, Vol. 16, No. 7, July 1998.
• R. Paoletti, M. Agresti, G. Burns, G. Berry, D. Bertone. P. Charles, P. Crump, A. Davies, R.Y. Fang, R. Ghin, P. Gotta, M. Holm, C. Kompocholis, G. Magnetti, J. Massa, G. Meneghini, G. Rossi, P. Ryder, A. Taylor, P. Valenti and M. Meliga, "100 °C, 10 Gb/s directly modulated InGaAsP DFB lasers for uncooled Ethernet applications", post-deadline at European Conference on Optical Communication ECOC '2001, October 2001,Amstedam (NL). • R. Paoletti, M. Meliga, "Uncooled, high speed DFB lasers for Gigabit Ethernet applications", invited paper at SPIE'S International Symposia - Photonics West Optoelectronics 20021, 19 - 25 Jan. 2002, S. Josè, CA, USA. • R. Paoletti, M. Agresti, D. Bertone, L. Bianco, C. Bruschi, A. Buccieri, R. Campi, C.Dorigoni, P. Gotta, M. Liotti, G. Magnetti, P. Montangero, G. Morello, C. Rigo, E. Riva, D. Soderstrom, S. Stano, P. Valenti, M. Vallone, M. Meliga" Highly reliable and high yield 1300 nm InGaAlAs directly modulated ridge Fabry-Perot lasers, operating at 10 Gb/s, up to 110 ºC, with constant current swing ", Post deadline at Optical Fiber Conference OFC 2005, Anaheim (CA) • R. Paoletti, M. Agresti, D. Bertone, C. Bruschi, S. Codato, C. Coriasso, R. Defranceschi, P. Dellacasa, M. Diloreto, R. Y. Fang, P. Gotta, G. Meneghini, C. Rigo, E. Riva, G.Roggero, A. Stano, M. Meliga, ‘Uncooled 20 Gb/s Direct Modulation of High Yield, Highly Reliable 1300 nm InGaAlAs Ridge DFB Lasers”, Optical Fiber Conference OFC 2009
R. Paoletti, 11/2011