Transcript
D
SILICON MMIC UPCONVERTER UPC8104GR AND QUADRATURE MODULATOR FUNCTIONAL BLOCK DIAGRAM
FEATURES • WIDE SUPPLY VOLTAGE RANGE: 2.7 ~ 5.5 V
LO1
LO2
UE
• BROADBAND OPERATION: RFOUT = 0.8 - 2.4 GHz MODOUT = 100 - 400 MHz, I/Q = DC to 10 MHz • INTERNAL 90° PHASE SHIFTER
I I
0˚
φ
RF
• PORTS FOR EXTERNAL IF FILTER
90˚
• LOW POWER CONSUMPTION: 28 mA AT 3 VOLT TYPICAL
Q Q
Filter
• SMALL SSOP 20 PACKAGE
IN
• TAPE AND REEL PACKAGING AVAILABLE
DESCRIPTION
as 900 MHz Digital Cordless Phones, WLAN and PCN/PCS Handset Transmitters. NEC's stringent quality assurance and test procedures ensure the highest reliability and performance.
NT
The UPC8104GR Silicon MMIC Frequency Upconverter with I/Q Modulator is manufactured using the NESAT III MMIC process. The NESAT III process produces transistors with fT approaching 20 GHz. The device was designed for use in 800 MHz to 2.4 GHz Digital Mobile Communications circuits such
ELECTRICAL CHARACTERISTICS (TA = 25°C, VCC = 3.0 V, VPS ≥1.8 V) PART NUMBER PACKAGE OUTLINE
SYMBOLS
PARAMETERS AND CONDITIONS Total Circuit Current (no signal)
VPS ≥ 1.8 V VPS ≤ 1.0 V
SC O
Up Converter
Total
ICC
Total Output Power1,2 Upconverter LO Carrier Leakage1 Image Rejection1 (Side Band Leakage) Circuit Current - Upconverter (no signal)
PRF LOL ImR ICC CG
VPS ≥ 1.8 V VPS ≤ 1.0 V Conversion Gain1 fRF = 900 MHz, fIF = 240 MHz, fLO = 1140 MHz fRF = 1900 MHz, fIF = 240 MHz, fLO = 1660 MHz fRF = 2450 MHz, fIF = 240 MHz, fLO = 2210 MHz Maximum Output Power - Upconverter fRF = 900 MHz, fIF = 240 MHz fRF = 1900 MHz, fIF = 240 MHz Output 3rd Order Intercept Point fRFOUT = 1.9 GHz fIF = 240.0 MHz/240.2 MHz Circuit Current - Modulator (no signal) VPS ≥ 1.8 V VPS ≤ 1.0 V Output Power - Modulator2 Local Oscillator Leakage2 Image Rejection2
PRF (SAT) OIP3 ICC
Modulator
DI
PMOD LOLEAK ImR IM3 I/Q
RLIN ZI/Q II/Q TPS(RISE) TPS (FALL)
I/Q 3rd Order Intermodulation Distortion2 I/Q LO Input Return Loss Input Impedance I and Q Ports2 I/Q Bias Current Power Save Rise Time VPS ≤ 1.0 V to VPS ≥ 1.8V Power Save Fall Time VPS ≥1.8 V to VPS ≤1.0 V
Notes: 1. PIFIN = -20 dBm
2. VI/Q = 1.5 V (DC) +0.5 Vp-p (AC)
UPC8104GR S20 (SSOP 20) UNITS
MIN
TYP
MAX
mA µA dBm dBc dBc mA µA dB dB dB dBm dBm
18
28 0.1 -13.5 -40 -40 12
37 10 -8.5 -30 -30
dBm mA µA dBm dBc dBc dBc dB kΩ µA µS µS
-18.5
5 10 4.5 4 -2 -6
10
0 16
21 5
-17.5 -40 -40
-30 -30
-50 20 20 5 2.0 2.0
5.0 5.0
California Eastern Laboratories
UPC8104GR
SYMBOLS
UNITS
RATINGS
VCC
Supply Voltage
PARAMETERS
V
6.0
VPS
Enable Voltage for Power Save
V
6.0
PD
Power Dissipation2
mW
530
TOP
Operating Temperature
°C
-40 to +85
TSTG
Storage Temperature
°C
-65 to +150
RECOMMENDED OPERATING CONDITIONS SYMBOLS
UNITS MIN TYP MAX
VCC
Supply Voltage
V
2.7
3.0
TOP
Operating Temperature
°C
-40
+25 +85
fRF
Up Converter RF Frequency GHz
0.9
2.4
fIF
IF
fLO2
Notes: 1. Operation in excess of any one of these parameters may result in permanent damage. 2. Mounted on a 50x50x1.6 mm epoxy glass PWB (TA = 85°C).
PARAMETERS
fI/Q
Frequency1
MHz
100
400
Up Converter LO Frequency GHz
0.9
2.2
DC
10
I/Q Input
Frequency2
MHz
UE
Notes: 1. IF frequency range includes Up-Converter IF input, Modulator IF Output and Modulator LO Input Frequency (LO1). 2. VI/QIN = 600 mVp-p maximum.
TYPICAL PERFORMANCE CURVES (TA = 25°C, VCC = VPS = 3 V, I/Q DC Offset = I/Q DC Offset = 1.5 V, I/Q Input Signal = 500 mVp-p (Single Ended), PLO1IN = -10 dBm, PLO2IN = -10 dBm unless otherwise specified)
UPCONVERTER CONVERSION GAIN vs. VOLTAGE
CURRENT vs. VOLTAGE
10
IN
35
Conversion Gain, CG (dB)
25 20
15 10
RF = 1.9 GHz LO2 = 1.66 GHz, -20 dBm IF = 240 MHz, -20 dBm VPS = VCC = 3 V
5
NT
Circuit Current, ICC (mA)
30
VCC = VPS = 3 V
RF None ICC Total ICC Modulator ICC Upconverter
5
0
-5
0 1
2
3
0
6
5
4
1
2
6
5
UPCONVERTER INPUT POWER vs. OUTPUT POWER
UPCONVERTER INPUT POWER vs. OUTPUT POWER +10
OIP3 = +7 dBm
OIP3 = +0.2 dBm 0
-10
-10
-20
PRF OUT
-30
IM3
-40
-50 -60
-70
-30
-20
fRF OUT = 900 MHz fLO2 IN = 1140 MHz PLO2 IN = -10 dBm fIF IN1 = 240.0 MHz fIF IN2 = 240.2 MHz VCC = VPS = 3 V
-10
Input Power , PIN (dBm)
0
+10
Output Power, IM3 (dBm)
0
DI
Output Power, IM3 (dBm)
4
Supply Voltage, VCC (V)
+10
-80 -40
3
Supply Voltage, VCC (V)
SC O
0
5.5
D
ABSOLUTE MAXIMUM RATINGS1 (TA = 25°C)
-20 -30 PRF OUT -40 IM3 -50
fRF OUT = 1.9 GHz fLO2 IN = 1.66 GHz PLO2 IN = -10 dBm fIF IN1 = 240.0 MHz fIF IN2 = 240.2 MHz VCC = VPS = 3 V
-60 -70 -80 -40
-30
-20
-10
Input Power , PIN (dBm)
0
+10
UPC8104GR TYPICAL PERFORMANCE CURVES (TA = 25°C) UPCONVERTER CONVERSION GAIN vs. LO POWER
UPCONVERTER CONVERSION GAIN vs. LO POWER
5
fRF OUT = 900 MHz fLO2 IN = 1140MHz fIF IN = 240 MHz PIF IN = -20 dBm VCC = VPS = 3 V
0
fRF OUT = 1.9 GHz fLO2 IN = 1.66 GHz fIF IN = 240 MHz PIF IN = -20 dBm VCC = VPS = 3 V
5
-40
-30
-20
0
-10
-40
+10
LO2 Input Power, PLO2IN (dBm)
-20
IN
-10
POUT
NT
5
SC O
RF = 900 MHz LO2 IN = 1140MHz, -20 dBm IF = 240 MHz, -20 dBm PIF IN = -20 dBm VPS = VCC
1
2
4
3
5
6
-20
-40
∆M
5
∆A
3
∆φ
IM3 I/O
7
5
I/Q Input Signal, PI/QIN (mVp-p)
1500
∆M
3
1
1000
-50 +10
0
VCC = 3 V LO1 = -15 dBm I/Q DC 1500 mV AC 430 mVp-p
10
1 500
-10
-20
VECTOR ERROR, MAGNITUDE ERROR, PHASE ERROR vs. LO1 INPUT FREQUENCY
2
0
-40
-60
2
0
IMR
LO1 Input Power, PLO1IN (dBm)
Phase Error, ∆φ (deg.) Magnitude Error, ∆A (%) Vector Error, ∆M (%)
DI 7
-30
-50
VECTOR ERROR, MAGNITUDE ERROR, PHASE ERROR vs. I/Q INPUT SIGNAL
10
LOL
-30
Supply Voltage, VCC (V)
VCC = 3 V LO1: 240 MHz -10 dBm LO2: 1,660 MHz -8 dBm I/Q DC 1,500 mV
-20
-10
-70 -30
0
0
+10
∆A ∆φ
0 0
100
200
300
400
500
LO1 Input Frequency, fLO1 (MHz)
Modulator Output Power, PMODOUT (dBm)
10
0
-10
MODULATOR OUTPUT POWER, LO LEAKAGE , IMAGE REJECTION AND I/Q 3rd ORDER INTERMODULATION DISTORTION vs. LO1 INPUT POWER
15
Phase Error, ∆φ (deg.) Magnitude Error, ∆A (%) Vector Error, ∆M (%)
-30
LO2 Input Power, PLO2IN (dBm)
UPCONVERTER CONVERSION GAIN vs. VOLTAGE
Conversion Gain, CG (dB)
0
UE
10
D
Conversion Gain, CG (dB)
5
LO Leakage, LOL ; Image Rejection, ImR; IM3 I/Q (dBc)
Conversion Gain, CG (dB)
15
UPC8104GR TYPICAL PERFORMANCE CURVES (TA = 25°C) MODULATOR OUTPUT POWER, LO LEAKAGE, IMAGE REJECTION AND I/Q 3rd ORDER INTERMODULATION DISTORTION vs. LO1 INPUT FREQUENCY
MODULATOR OUTPUT POWER, LO LEAKAGE , IMAGE REJECTION AND I/Q 3rd ORDER INTERMODULATION DISTORTION vs. I/Q INPUT SIGNAL
-30
-30 LOL -40
IMR
-40
-50 -60
IM3 I/Q -50
-70 0
-40
D -40
LOL
-50
-50
IM3 I/O
-60
-60
-70
100
500
200
IN
MODULATOR TYPICAL SINE WAVE MODULATION OUTPUT SPECTRUM
0
Pout
-20 -30 -40
Output Power, POUT (dBm)
384 kbps Data Rate
LO1
-50 ImR -60 IM3 -70
IM3
-80
SC O
-90
1.900
Frequency, f (GHz)
DI
-10
NT
0
Output Power, POUT (dBm)
-30
LO1 Input Frequency, fLO1 (MHz)
MODULATOR AND UPCONVERTER TYPICAL SINE WAVE MODULATION OUTPUT SPECTRUM
1.899
-30
50
I/Q Input Signal, P I/QIN (Vp-p)
-10
-20
IMR
-70
1
0.5
-20
UE
-20
LO Leakage, LOL ; Image Rejection, ImR; IM3 I/Q (dBc)
-20
-10 POUT
1.901
384 kbps Data Rate Pout
-20
-30
-40
LO LEAK
-50
ImR
-60
-70
-80
IM3
-90
239.9
Modulator Output Power, PMODOUT (dBm)
POUT -10
-10
Modulator Output Power, PMODOUT (dBm)
LO Leakage, LOL; Image Rejection, ImR; IM3 I/Q (dBc)
-10
240
Frequency, f (MHz)
240.1
UPC8104GR TYPICAL PERFORMANCE CURVES (TA = 25°C)
LO2IN INPUT IMPEDANCE
Impedance at Marker 2: 49.224 - j13.58 Ω
D
MODOUT OUTPUT IMPEDANCE
Impedance at Marker 2: 20.184 - j113.66 Ω
UE
2
3
1
2
LO2IN Marker 1. 900 MHz 2. 1.66 GHz 3. 1.8 GHz
1
MODOUT (IFOUT) Marker 1. 100 MHz 2. 240 MHz 3. 400 4Hz
3
800 MHz 1900 MHz
Start Stop
IN
Start Stop
Upconverter Input Impedance
50 MHz 500 MHz
LOIN Input Impedance
Impedance at Marker 2: 51.727 - j2 Ω
NT
Impedance at Marker 2: 262.19 - j394.97 Ω
2
2
3 1
1
3
SC O
UPCONIN (IFIN) Marker 1. 100 MHz 2. 240 MHz 3. 400 MHz
50 MHz 500 MHz
DI
Start Stop
LO1iN Marker 1. 100 MHz 2. 240 MHz 3. 400 MHz
Start Stop
50 MHz 500 MHz
UPC8104GR PIN FUNCTIONS Pin No.
Symbol
Supply Voltage
Pin Voltage
1
LO1IN (Modulator)
—
0
4
I
Bypass of the LO1 input.This pin is grounded through an internal capacitor. For a single-ended design this pin should be left open.
—
VCC/2*2
VCC/2*2
6
Q
VCC/2*2
7
Q
VCC/2*2
—
—
Input for I signal. This input impedance is larger than 20 kΩ. The relationship between the amplitude and the DC bias of the input signal are as follows: *1 VCC/2 (V) Amp. (mVp-p) ≥1.35 400 ≥1.5 600 ≥1.75 1000
—
—
—
4
Input for Q signal. This input impedance is larger than 20 kΩ. VCC/2 biased DC signal should be input. Input for Q signal. This input impedance is larger than 20 kΩ. The relationship between the amplitude and the DC bias of the input signal are as follows: VCC/2 (V) ≥1.35 ≥1.5 ≥1.75
7
6
*1
Amp. (mVp-p) 400 600 1000
Output from the modulator. This is emitter follower output. Connect around 15 Ω in series to match to 50 Ω.
16
*1: In case I/Q input signals are single ended. I/Q signal inputs can be used either single-ended or differentially with proper terminations. *2: VCC/2 DC bias must be supplied to I, I, Q, Q.
DI
5
Input for I signal. This input impedance is larger than 20 kΩ. VCC/2 biased DC signal should be input.
SC O
I
MODOUT
2
Connect to ground with minimum inductance. Track length should be kept as short as possible.
5
16
50 Ω
D
GND (Modulator)
1
UE
3
Equivalent Circuit
IN
LO1IN (Bypass)
NT
2
Description LO1 input for the phase shifter. This input impedance is internally matched to 50 Ω.
UPC8104GR PIN FUNCTIONS Pin Voltage
8 10
GND (Upconverter))
0
-
LO2IN (Bypass)
—
2.0
12
LO2IN (Upconverter)
-—
0
13
VCC (Upconverter)
2.7~5.5
—
9
RFOUT
VCC
—
14
Upconverter in
—
2.0
15
Upconverter in (Bypass)
—
2.0
17
GND
0
Connect to ground with minimum inductance. Track length should be kept as short as possible. Bypass of the LO2 input. Requires grounding through an external capacitor. LO2 input for the Upconverter. This pin is a high impedance input.
—
19
VCC (Modulator)
VPS
2.7~5.5
DI
20
VPS (Power Save)
—
—
12
11
Supply voltage pin for the Upconverter.
RF output from the Upconverter. This pin is an open collector output. IF input for the Upconverter. This pin is a high impedance input. Bypass of the IF input. Requires grounding through an external capacitor.
15
14
Connect to ground with minimum inductance. Track length should be kept as short as possible.
Power save control pin can control the On/Sleep state with bias as follows:
SC O
18
Equivalent Circuit
NT
11
Description
D
Supply Voltage
UE
Symbol
IN
Pin No.
VPS (V) 1.8~5.5 0~1.0
STATE ON SLEEP
Supply voltage pin for the modulator. An internal regulator helps keep the device stable against temperature or VCC variation.
19
9
UPC8104GR MODULATOR INTERNAL FUNCTIONS Block
Function/Operation
Block Diagram from LO1in
D
UE
Buffer amplifiers for each phase signal are sent to each mixer.
Each signal from the buffer amps is quadrature modulated with two doublebalanced mixers. High accurate phase and amplitude inputs are realized to provide excellent image rejection.
Mixer
Adder
.. 2 F / F
I
I
IN
Buffer Amplifier
x2
Q Q
Output signal from each mixer is added and sent through a final amplifier stage to pin 16 for further off-chip filtering if necessary.
NT
90° Phase Shifter
Input signal from LO1 is sent to a T-type flip-flop through a frequency doubler. The output signal from the T-type F/F is changed to the same frequency as LO1 with a quadrature phase shift of 0°, 90°, 180°, or 270°. These circuits provide self phase correction for proper quadrature signals.
TEST CIRCUIT
To MODout
SC O
2.7 ~ 5.5 V
fLO1 = 100 to 400 MHz PIN = -10 dBm
1 LO1 IN
(OPEN) 2
LO1 IN
3 GND
4 I
I/Q SIGNAL GENERATOR
5
8.2 nH
1.8 pF
I
19
GND 17 MOD OUT 16 UP CON IN 15 UP CON IN 14
8 GND
10 kΩ
GND 18
7 Q
~ 100 to 400 MHz 100 pF ~ 100 to 400 MHz PIN = -15 dBm
VCC 13
L
9 RF OUT
DI
VENABLE
6 Q
10 GND
For 900 MHz match L = 2 nH or Microstripline equivalent
Desired Matching Network Impedance, Based On Load Pull Measurements Frequency
VCC 20
ΓLoad (Mag)
ΓLoad (Ang) 67.7°
900 MHz
0.614
1900 MHz
0.606
169°
2450 MHz
0.318
-127°
LO2 IN 12 LO2 IN 11
100 pF
All capacitor values are 1000 pF unless otherwise specified.
UPC8104GR INTERNAL BLOCK DIAGRAM
OUTLINE DIMENSIONS (Units in mm) PACKAGE OUTLINE SSOP 20
1
90˚ Phase Shifter
11
REG 19 V PS
LO1 IN
2
GND (MOD)
3
18 GND
I
4
17 GND
I
5
16 MOD OUT
6
15 UP CON IN
(POWER SAVE)
1
7.00 MAX
XXX = Lot/Date Code
10
6.4±0.2
UE
Q
N
NEC C8104G XXXXX
D
LO1 IN
20
20 VCC (MOD)
4.4±0.1
1.0
1.5 ±0.1
Q
7
14 UP CON IN
+0.10 0.15 -0.05
1.8 MAX
GND (UP CON)
8
RF OUT
9
12 LO2 IN
GND 10 (UP CON)
11 LO2 IN
+0.10 0.22 - 0.05
13 VCC (UP CON)
QUANTITY
UPC8104GR-E1
2500/Reel
NT
PART NUMBER
LEAD CONNECTIONS 1. LO1IN (Modulator) 2. LO1IN (Bypass) 3. GND (Modulator) 4. I Input 5. I Input 6. Q Input 7. Q Input 8. GND (Up Converter) 9. RF OUT 10. GND (Up Converter)
IN
ORDERING INFORMATION
0.5±0.2
0.65
0.575 MAX
11. LO2IN (Bypass) 12. LO2IN (Upconverter) 13. VCC (Up Converter) 14. Up Converter Input 15. Up Converter Input (Bypass) 16. MOD Out 17. GND 18. GND 19. VPS (Power Save) 20. VCC (Modulator)
DI
SC O
All dimensions are typical unless specified otherwise.
EXCLUSIVE NORTH AMERICAN AGENT FOR
RF, MICROWAVE & OPTOELECTRONIC SEMICONDUCTORS
CALIFORNIA EASTERN LABORATORIES • Headquarters • 4590 Patrick Henry Drive • Santa Clara, CA 95054-1817 • (408) 988-3500 • Telex 34-6393 • FAX (408) 988-0279 24-Hour Fax-On-Demand: 800-390-3232 (U.S. and Canada only) • Internet: http://WWW.CEL.COM PRINTED IN USA ON RECYCLED PAPER -11/97 DATA SUBJECT TO CHANGE WITHOUT NOTICE