Preview only show first 10 pages with watermark. For full document please download

Updated Second Edition Slides

   EMBED


Share

Transcript

Fundamentals of Power Electronics Second edition Robert W. Erickson Dragan Maksimovic University of Colorado, Boulder Fundamentals of Power Electronics 1 Chapter 1: Introduction Chapter 1: Introduction 1.1. Introduction to power processing 1.2. Some applications of power electronics 1.3. Elements of power electronics Summary of the course Fundamentals of Power Electronics 2 Chapter 1: Introduction 1.1 Introduction to Power Processing Power input Switching converter Power output Control input Dc-dc conversion: Ac-dc rectification: Dc-ac inversion: Change and control voltage magnitude Possibly control dc voltage, ac current Produce sinusoid of controllable magnitude and frequency Ac-ac cycloconversion: Change and control voltage magnitude and frequency Fundamentals of Power Electronics 3 Chapter 1: Introduction Control is invariably required Power input Switching converter Power output Control input feedforward feedback Controller reference Fundamentals of Power Electronics 4 Chapter 1: Introduction High efficiency is essential 1 η= Pout Pin η 0.8 1 –1 Ploss = Pin – Pout = Pout η 0.6 High efficiency leads to low power loss within converter Small size and reliable operation is then feasible Efficiency is a good measure of converter performance 0.4 0.2 0 0.5 1 1.5 Ploss / Pout Fundamentals of Power Electronics 5 Chapter 1: Introduction A high-efficiency converter Pin Converter Pout A goal of current converter technology is to construct converters of small size and weight, which process substantial power at high efficiency Fundamentals of Power Electronics 6 Chapter 1: Introduction + – Devices available to the circuit designer DT Resistors Capacitors Fundamentals of Power Electronics Magnetics 7 T s s Linearmode Switched-mode Semiconductor devices Chapter 1: Introduction + – Devices available to the circuit designer DT Resistors Capacitors Magnetics T s s Linearmode Switched-mode Semiconductor devices Signal processing: avoid magnetics Fundamentals of Power Electronics 8 Chapter 1: Introduction + – Devices available to the circuit designer DT Resistors Capacitors Magnetics T s s Linearmode Switched-mode Semiconductor devices Power processing: avoid lossy elements Fundamentals of Power Electronics 9 Chapter 1: Introduction Power loss in an ideal switch Switch closed: Switch open: v(t) = 0 + i(t) = 0 In either event: p(t) = v(t) i(t) = 0 Ideal switch consumes zero power Fundamentals of Power Electronics 10 i(t) v(t) – Chapter 1: Introduction A simple dc-dc converter example I 10A + Vg 100V Dc-dc converter + – R 5Ω V 50V – Input source: 100V Output load: 50V, 10A, 500W How can this converter be realized? Fundamentals of Power Electronics 11 Chapter 1: Introduction Dissipative realization Resistive voltage divider I 10A + Vg 100V + – + 50V – Ploss = 500W R 5Ω V 50V – Pin = 1000W Fundamentals of Power Electronics Pout = 500W 12 Chapter 1: Introduction Dissipative realization Series pass regulator: transistor operates in active region + I 10A 50V – + Vg 100V + – linear amplifier and base driver Ploss ≈ 500W Pin ≈ 1000W Fundamentals of Power Electronics –+ Vref R 5Ω V 50V – Pout = 500W 13 Chapter 1: Introduction Use of a SPDT switch I 10 A 1 + Vg 100 V + 2 + – vs(t) R – vs(t) v(t) 50 V – Vg Vs = DVg switch position: Fundamentals of Power Electronics DTs 0 (1 – D) Ts t 1 2 1 14 Chapter 1: Introduction The switch changes the dc voltage level vs(t) switch position: Vg Vs = DVg D = switch duty cycle 0≤D≤1 DTs 0 (1 – D) Ts t Ts = switching period 1 2 1 fs = switching frequency = 1 / Ts DC component of vs(t) = average value: Vs = 1 Ts Ts vs(t) dt = DVg 0 Fundamentals of Power Electronics 15 Chapter 1: Introduction Addition of low pass filter Addition of (ideally lossless) L-C low-pass filter, for removal of switching harmonics: i(t) 1 + Vg 100 V + – + L 2 vs(t) C R v(t) – Pin ≈ 500 W – Ploss small Pout = 500 W • Choose filter cutoff frequency f0 much smaller than switching frequency fs • This circuit is known as the “buck converter” Fundamentals of Power Electronics 16 Chapter 1: Introduction Addition of control system for regulation of output voltage Power input Switching converter Load + vg + – i v H(s) – Transistor gate driver Error signal ve δ(t) dTs Ts Fundamentals of Power Electronics –+ Pulse-width vc G (s) c modulator Compensator δ Sensor gain Hv Reference vref input t 17 Chapter 1: Introduction The boost converter 2 + L 1 Vg + – C R V – 5Vg 4Vg V 3Vg 2Vg Vg 0 0 0.2 0.4 0.6 0.8 1 D Fundamentals of Power Electronics 18 Chapter 1: Introduction A single-phase inverter vs(t) 1 Vg + – + 2 – + v(t) – 2 1 load “H-bridge” vs(t) t Fundamentals of Power Electronics 19 Modulate switch duty cycles to obtain sinusoidal low-frequency component Chapter 1: Introduction 1.2 Several applications of power electronics Power levels encountered in high-efficiency converters • less than 1 W in battery-operated portable equipment • tens, hundreds, or thousands of watts in power supplies for computers or office equipment • kW to MW in variable-speed motor drives • 1000 MW in rectifiers and inverters for utility dc transmission lines Fundamentals of Power Electronics 20 Chapter 1: Introduction A laptop computer power supply system Inverter iac(t) vac(t) Display backlighting Charger Buck converter PWM Rectifier ac line input 85–265 Vrms Fundamentals of Power Electronics Boost converter Lithium battery 21 Microprocessor Power management Disk drive Chapter 1: Introduction Power system of an earth-orbiting spacecraft Dissipative shunt regulator + Solar array vbus – Battery charge/discharge controllers Dc-dc converter Dc-dc converter Payload Payload Batteries Fundamentals of Power Electronics 22 Chapter 1: Introduction An electric vehicle power and drive system ac machine Inverter ac machine Inverter control bus battery µP system controller + 3øac line Battery charger 50/60 Hz DC-DC converter vb – Low-voltage dc bus Inverter Inverter ac machine ac machine Vehicle electronics Variable-frequency Variable-voltage ac Fundamentals of Power Electronics 23 Chapter 1: Introduction 1.3 Elements of power electronics Power electronics incorporates concepts from the fields of analog circuits electronic devices control systems power systems magnetics electric machines numerical simulation Fundamentals of Power Electronics 24 Chapter 1: Introduction Part I. Converters in equilibrium Inductor waveforms vL(t) Averaged equivalent circuit RL t –V 1 iL(t) 2 0 + Vg – V L Vg + – R – ∆iL Predicted efficiency 100% –V L DTs V I 1 iL(DTs) I iL(0) D' : 1 D'Ts DTs switch position: D' RD + – Vg – V D' VD D Ron 0.002 90% 0.01 Ts 80% t 0.02 70% 0.05 60% η 50% RL/R = 0.1 40% Discontinuous conduction mode 30% 20% Transformer isolation 10% 0% 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 D Fundamentals of Power Electronics 25 Chapter 1: Introduction Switch realization: semiconductor devices The IGBT collector Switching loss iA(t) transistor waveforms Qr Vg gate iL vA(t) 0 0 emitter t Emitter diode waveforms iL iB(t) vB(t) Gate 0 0 t n p n n n- p area –Qr n –Vg minority carrier injection tr p pA(t) = vA iA area ~QrVg Collector area ~iLVgtr t0 Fundamentals of Power Electronics 26 t1 t2 t Chapter 1: Introduction Part I. Converters in equilibrium 2. Principles of steady state converter analysis 3. Steady-state equivalent circuit modeling, losses, and efficiency 4. Switch realization 5. The discontinuous conduction mode 6. Converter circuits Fundamentals of Power Electronics 27 Chapter 1: Introduction Part II. Converter dynamics and control Closed-loop converter system Power input Averaging the waveforms Switching converter Load gate drive + vg(t) + – v(t) R feedback connection – δ(t) compensator pulse-width vc G (s) c modulator δ(t) v averaged waveform Ts with ripple neglected voltage reference vref vc(t) dTs Ts actual waveform v(t) including ripple –+ transistor gate driver t t t t Controller L Small-signal averaged equivalent circuit + – 1:D Vg – V d(t) D' : 1 + vg(t) Fundamentals of Power Electronics + – I d(t) I d(t) C v(t) R – 28 Chapter 1: Introduction Part II. Converter dynamics and control 7. Ac modeling 8. Converter transfer functions 9. Controller design 10. Input filter design 11. Ac and dc equivalent circuit modeling of the discontinuous conduction mode 12. Current-programmed control Fundamentals of Power Electronics 29 Chapter 1: Introduction Part III. Magnetics n1 : n2 transformer design iM(t) i1(t) i2(t) the proximity effect LM R1 R2 3i layer 3 –2i 2Φ layer 2 2i –i ik(t) Φ layer 1 Rk d current density J : nk i 4226 Pot core size 3622 0.1 2616 2616 2213 2213 1811 0.08 0.06 1811 0.04 Bmax (T) transformer size vs. switching frequency 0.02 0 25kHz 50kHz 100kHz 200kHz 250kHz 400kHz 500kHz 1000kHz Switching frequency Fundamentals of Power Electronics 30 Chapter 1: Introduction Part III. Magnetics 13. Basic magnetics theory 14. Inductor design 15. Transformer design Fundamentals of Power Electronics 31 Chapter 1: Introduction Part IV. Modern rectifiers, and power system harmonics Pollution of power system by rectifier current harmonics A low-harmonic rectifier system boost converter i(t) ig(t) + iac(t) vac(t) L vg(t) Q1 – vcontrol(t) vg(t) multiplier X + D1 C v(t) R – ig(t) Rs PWM va(t) v (t) +– err Gc(s) vref(t) = kx vg(t) vcontrol(t) compensator controller Harmonic amplitude, percent of fundamental 100% 100% 91% 80% THD = 136% Distortion factor = 59% 73% 60% iac(t) + 52% 40% 32% 19% 15% 15% 13% 9% 20% 0% 1 3 5 7 Ideal rectifier (LFR) 9 11 13 15 17 19 Model of the ideal rectifier vac(t) 2 p(t) = vac / Re Re(vcontrol) + v(t) – – ac input Harmonic number i(t) dc output vcontrol Fundamentals of Power Electronics 32 Chapter 1: Introduction Part IV. Modern rectifiers, and power system harmonics 16. Power and harmonics in nonsinusoidal systems 17. Line-commutated rectifiers 18. Pulse-width modulated rectifiers Fundamentals of Power Electronics 33 Chapter 1: Introduction Part V. Resonant converters The series resonant converter Q1 L Q3 D1 C 1:n D3 + Vg + – R Q2 – Q4 D2 V Zero voltage switching D4 1 vds1(t) Q = 0.2 Vg 0.9 Q = 0.2 0.8 0.35 M = V / Vg 0.7 0.75 0.5 0.2 0.1 0 1 0.5 0.4 0.3 Dc characteristics 0.5 0.35 0.6 0.75 1 1.5 2 3.5 5 10 Q = 20 0 1.5 conducting devices: Q1 Q4 turn off Q 1, Q 4 X D2 D3 t commutation interval 2 3.5 5 10 Q = 20 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 F = fs / f0 Fundamentals of Power Electronics 34 Chapter 1: Introduction Part V. Resonant converters 19. 20. Resonant conversion Soft switching Fundamentals of Power Electronics 35 Chapter 1: Introduction Appendices RMS values of commonly-observed converter waveforms Simulation of converters Middlebrook’s extra element theorem L 1 2 Magnetics design tables 50 µH 2 CCM-DCM1 + – 5 28 V 20 dB || Gvg || 1 Vg Open loop, d(t) = constant –20 dB –60 dB –80 dB 5 Hz 8 R = 25 Ω Closed loop vx 50 Hz 500 Hz 5 kHz 85 kΩ R3 C3 120 kΩ 6 vz –vy LM324 1.1 nF +12 V 5 vref + – value = {LIMIT(0.25 vx, 0.1, 0.9)} f C2 2.7 nF Epwm 50 kHz v – 7 VM = 4 V R R2 L = 50 µΗ fs = 100 kΗz –40 dB R1 11 kΩ 4 Xswitch R=3Ω + C 3 4 0 dB iLOAD 3 500 µF + – A. B. C. D. R4 47 kΩ 5V .nodeset v(3)=15 v(5)=5 v(6)=4.144 v(8)=0.536 Fundamentals of Power Electronics 36 Chapter 1: Introduction