Preview only show first 10 pages with watermark. For full document please download

Vishay Intertechnology Irf840pbf (71-162-05)

   EMBED


Share

Transcript

IRF840, SiHF840 Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Dynamic dV/dt Rating 500 RDS(on) (Ω) VGS = 10 V Qg (Max.) (nC) 63 • Fast Switching Qgs (nC) 9.3 • Ease of Paralleling 32 • Simple Drive Requirements Qgd (nC) Configuration Single COMPLIANT DESCRIPTION TO-220 Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness. The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 W. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry. G S D RoHS* • Lead (Pb)-free Available D G Available • Repetitive Avalanche Rated 0.85 S N-Channel MOSFET ORDERING INFORMATION Package TO-220 IRF840PbF SiHF840-E3 IRF840 SiHF840 Lead (Pb)-free SnPb ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage VDS 500 V Gate-Source Voltage VGS ± 20 V Continuous Drain Current VGS at 10 V TC = 25 °C TC = 100 °C Pulsed Drain Currenta ID 8.0 5.1 A IDM 32 1.0 W/°C Single Pulse Avalanche Energyb EAS 510 mJ Repetitive Avalanche Currenta IAR 8.0 A Repetitive Avalanche Energya EAR 13 mJ PD 125 W dV/dt 3.5 V/ns TJ, Tstg - 55 to + 150 Linear Derating Factor Maximum Power Dissipation Peak Diode Recovery TC = 25 °C dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque for 10 s 6-32 or M3 screw 300d °C 10 lbf · in 1.1 N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. VDD = 50 V, starting TJ = 25 °C, L = 14 mH, RG = 25 Ω, IAS = 8.0 A (see fig. 12). c. ISD ≤ 8.0 A, dI/dt ≤ 100 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91070 S-81290-Rev. B, 16-Jun-08 www.vishay.com 1 IRF840, SiHF840 Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 62 Case-to-Sink, Flat, Greased Surface RthCS 0.50 - Maximum Junction-to-Case (Drain) RthJC - 1.0 UNIT °C/W SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static Drain-Source Breakdown Voltage VDS Temperature Coefficient VDS VGS = 0 V, ID = 250 µA 500 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mA - 0.78 - V/°C VGS(th) VDS = VGS, ID = 250 µA 2.0 - 4.0 V Gate-Source Leakage IGSS VGS = ± 20 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 500 V, VGS = 0 V - - 25 VDS = 400 V, VGS = 0 V, TJ = 125 °C - - 250 Gate-Source Threshold Voltage µA - - 0.85 Ω gfs VDS = 50 V, ID = 4.8 Ab 4.9 - - S Input Capacitance Ciss VGS = 0 V, - 1300 - Output Capacitance Coss VDS = 25 V, - 310 - Reverse Transfer Capacitance Crss f = 1.0 MHz, see fig. 5 Total Gate Charge Qg Gate-Source Charge Qgs Drain-Source On-State Resistance Forward Transconductance RDS(on) ID = 4.8 Ab VGS = 10 V Dynamic VGS = 10 V ID = 8 A, VDS = 400 V, see fig. 6 and 13b - 120 - - - 63 - - 9.3 pF nC Gate-Drain Charge Qgd - - 32 Turn-On Delay Time td(on) - 14 - - 23 - - 49 - - 20 - - 4.5 - - 7.5 - - - 8.0 - - 32 - - 2.0 V - 460 970 ns - 4.2 8.9 µC Rise Time Turn-Off Delay Time Fall Time tr td(off) VDD = 250 V, ID = 8 A RG = 9.1 Ω, RD = 31 Ω, see fig. 10b tf Internal Drain Inductance LD Internal Source Inductance LS Between lead, 6 mm (0.25") from package and center of die contact D ns nH G S Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulsed Diode Forward Currenta ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode D A G S TJ = 25 °C, IS = 8 A, VGS = 0 Vb TJ = 25 °C, IF = 8 A, dI/dt = 100 A/µsb Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. www.vishay.com 2 Document Number: 91070 S-81290-Rev. B, 16-Jun-08 IRF840, SiHF840 Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted VGS 15 V 10 V 8.0 V 7.0 V 6.0 V 5.5 V 5.0 V Bottom 4.5 V 101 4.5 V 100 25 °C 100 20 µs Pulse Width VDS = 50 V 20 µs Pulse Width TC = 25 °C 100 4 101 VDS, Drain-to-Source Voltage (V) 91070_01 ID, Drain Current (A) 4.5 V 100 20 µs Pulse Width TC = 150 °C 100 91070_02 101 VDS, Drain-to-Source Voltage (V) Fig. 2 - Typical Output Characteristics, TC = 150 °C Document Number: 91070 S-81290-Rev. B, 16-Jun-08 6 7 8 9 10 Fig. 3 - Typical Transfer Characteristics RDS(on), Drain-to-Source On Resistance (Normalized) VGS 15 V 10 V 8.0 V 7.0 V 6.0 V 5.5 V 5.0 V Bottom 4.5 V Top 5 VGS, Gate-to-Source Voltage (V) 91070_03 Fig. 1 - Typical Output Characteristics, TC = 25 °C 101 150 °C 101 ID, Drain Current (A) ID, Drain Current (A) Top 91070_04 3.0 2.5 ID = 8.0 A VGS = 10 V 2.0 1.5 1.0 0.5 0.0 - 60 - 40 - 20 0 20 40 60 80 100 120 140 160 TJ, Junction Temperature (°C) Fig. 4 - Normalized On-Resistance vs. Temperature www.vishay.com 3 IRF840, SiHF840 2500 VGS = 0 V, f = 1 MHz Ciss = Cgs + Cgd, Cds Shorted Crss = Cgd Coss = Cds + Cgd Capacitance (pF) 2000 Ciss 1500 1000 Coss 500 Crss VGS = 0 V 0.4 102 ID, Drain Current (A) VDS = 400 V VDS = 250 V VDS = 100 V 8 10 µs 2 10 100 µs 5 1 ms 2 1 10 ms 5 4 For test circuit see figure 13 0 0 91070_06 15 30 45 60 Fig. 6 - Typical Gate Charge vs. Drain-to-Source Voltage www.vishay.com 4 TC = 25 °C TJ = 150 °C Single Pulse 2 0.1 0.1 75 QG, Total Gate Charge (nC) 1.4 1.2 1.0 Operation in this area limited by RDS(on) 5 16 0.8 Fig. 7 - Typical Source-Drain Diode Forward Voltage ID = 8.0 A 12 0.6 VSD, Source-to-Drain Voltage (V) 91070_07 Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage VGS, Gate-to-Source Voltage (V) 25 °C 101 VDS, Drain-to-Source Voltage (V) 20 150 °C 101 100 0 100 91070_05 ISD, Reverse Drain Current (A) Vishay Siliconix 91070_08 2 5 1 2 5 10 2 5 102 2 5 103 2 5 104 VDS, Drain-to-Source Voltage (V) Fig. 8 - Maximum Safe Operating Area Document Number: 91070 S-81290-Rev. B, 16-Jun-08 IRF840, SiHF840 Vishay Siliconix RD VDS VGS 8.0 D.U.T. ID, Drain Current (A) RG 6.0 + - VDD 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 4.0 Fig. 10a - Switching Time Test Circuit 2.0 VDS 90 % 0.0 25 50 75 100 125 150 TC, Case Temperature (°C) 91070_09 10 % VGS td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature td(off) tf tr Fig. 10b - Switching Time Waveforms Thermal Response (ZthJC) 10 1 0 - 0.5 0.2 0.1 0.1 0.05 0.02 0.01 PDM Single Pulse (Thermal Response) t1 t2 Notes: 1. Duty Factor, D = t1/t2 2. Peak Tj = PDM x ZthJC + TC 10-2 10-3 10-5 10-4 10-3 10-2 0.1 1 102 10 t1, Rectangular Pulse Duration (S) 91070_11 Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case L Vary tp to obtain required IAS VDS VDS tp VDD D.U.T. RG + - IAS V DD VDS 10 V tp 0.01 Ω Fig. 12a - Unclamped Inductive Test Circuit Document Number: 91070 S-81290-Rev. B, 16-Jun-08 IAS Fig. 12b - Unclamped Inductive Waveforms www.vishay.com 5 IRF840, SiHF840 Vishay Siliconix EAS, Single Pulse Energy (mJ) 1200 ID 3.6 A 5.1 A Bottom 8.0 A Top 1000 800 600 400 200 0 VDD = 50 V 25 91070_12c 50 75 100 125 150 Starting TJ, Junction Temperature (°C) Fig. 12c - Maximum Avalanche Energy vs. Drain Current Current regulator Same type as D.U.T. 50 kΩ QG 10 V 12 V 0.2 µF 0.3 µF QGS + QGD VG D.U.T. - VDS VGS 3 mA Charge Fig. 13a - Basic Gate Charge Waveform www.vishay.com 6 IG ID Current sampling resistors Fig. 13b - Gate Charge Test Circuit Document Number: 91070 S-81290-Rev. B, 16-Jun-08 IRF840, SiHF840 Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T. Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - RG • • • • dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage VDD Body diode forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91070. Document Number: 91070 S-81290-Rev. B, 16-Jun-08 www.vishay.com 7 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1