Transcript
VOL. V
FLAGSTAFF, ARIZONA
NO. I I
THE SUN AS A VARIABLE STAR II Photometric Observations of Uranus, Neptune and Standard Stars in the Years 1953
-
1961
K. Serkowski Warsaw University Observatory and Lowell Observatory
Abstract
B. Observations of planets in blue color C. Phase and oblateness effects D. Variations in brightness of Uranus and Nep tune V. Suggestions for future observers in this program Acknowledgements
The method used in the reduction of two-color photometric observations is described. Sixteen stand ard stars of nearly solar type were regularly observed for 7 years and no systematic changes in their bright ness were found. The r.m.s. deviation of the yearly mean blue magnitude for none of these stars exceeds –O’OO9. No systematic change in the blue magni tudes of Uranus and Neptune over a period of nine oppositions is obtained if the following conditions are fulfilled: 1 the gradient of the energy distribution in the spectrum of each of these planets within the blue filter spectral region is assumed to be the same as for a star with the same B-V color-index as the planet, and 2 with regard to Uranus only, the photometric effects due to its oblateness are half as great as those for the uniform distribution of bright ness over the apparent disc of the planet.
I. Introduction An outline of the purpose of this work, the methods used and the preliminary results were given in the first part of this paper by Johnson and Iriarte 1 and in earlier papers by Giclas 2, by Hardie and Giclas 3 and by Mitchell 4. The determination of the precise magnitudes of Uranus and Neptune in blue color is accomplished in three steps. First, atmospheric extinction and the coefficients of transformation from the instrumental to the BV photometric system are determined from the observations of primary standard stars in blue and yellow colors. discussed in Section II. Second ly, the magnitudes and colors of the comparison stars situated along the paths of Uranus and Neptune are determined by comparison with the mean values for 16 bright stars called "Ten Year Standards" Section III. Finally, the difference of blue magnitudes be tween each of the planets and two comparison stars situated at small angular distances from the planet is determined Section IV. The resulting magni tudes of Uranus and Neptune can be used as indi cators of the variability of the Sun.
Contents I. Introduction II. Atmospheric extinction and transformations to the BV system A. Transformation equations B. Solution of transformation equations C. Observers and instruments D. Extinction coefficients III. Magnitudes and colors of standard and com parison stars A. Accuracy of two-color observations B. Results for Ten - Year Standards and com parison stars C. Improved magnitudes and colors for primary standards of the UBV system IV. Magnitudes and colors of Uranus and Neptune A. Color-indices of Uranus and Neptune
The observations and their discussion were car ried on at the Lowell Obervatory, with the financial support of the U. S. Air Force.* *Contracts Nos. AF 19604-291, 19604-2077 and
19604-8031. 157
B
II. Atmospheric Extinction and
mu,,, + C
Transformations to The BV System Q22
The following observing schedule is used for all two-color photo metric observations in the present program. The star is measured first with a blue filter 5mm Corning .51330 filter -1- 2mm Schott CC 13 and next with a yellow filter 3.6mm Corning 3384. For each color two deflections of the Brown recorder which are separated by the deflection for sky background are always obtained. All the measurements of the star and sky background, both with blue and yellow filters are always taken with the same amplifier gain. The observation is concluded by measuring the deflection for a radioactive standard light source without a filter. This source is green in color and is measured at a fixed amplifier gain, such as that used for meas uring 4th magnitude stars. The amplifier gain is selected so that the deflections with the blue filter and with the standard source are larger than 0.6 of full scale on the recorder. The deflections with a yellov filter for early-type stars were sometimes only 0.15 of full scale; this probably diminished the ac curacy of measures with the yellow filter. We denote by B’ the mean of two deflections for a star observed with the blue filter minus the deflection for sky background with the same filter. By V’ we denote the similar difference with a yellow filter and by 5’ the deflection for the standard source minus the rlcfleetion for rlark current at the same gain. Furthermore, let S denote the magnitude dif ference between the star under consideration and an imaginary star which would give the same deflections at a certain fixed, arbitrarily chosen amplifier gain, the same for all the stars in the program. A.
Transformation
m21,
=
=
--2.5 log B’/Y’
2.5 log Y’/S’
5
A
A7 A5 2,1
Ql,2
QO M 5
=
=
=
A/A2 H-A5
6
I -i- A5-l/A2
7
-f K
A,,
8
Qn4K25A2
9
251
The coefficients K2 and 252 describing the colordependence of extinction are small and their varia tions are also proportionally smaller than the varia tions of other coefficients in equations 3 and 4. Therefore, instead of using the nightly values of co efficients K2 and Q, it is snore reasonable to use the mean values obtained by averaging the values from many nights. Since, howeser. the behaviour of these coefficients is not sufficiently well known and since rheir dependence on K and Q5’ must be investi gated, the coefficients K2 and 252 are determined for every night on which a sufficient number of pri mary standards was observed.
1
2
3
V=m5 + A5 H- A5 B-V-Q1 M
=
The coefficients of equations 3 and 4 are determined only from the observations of the pri mary standards of tIme TJBV system. The following 8 stars were considered as such standards: fi Cnc, ii Hya, HR 4550, 90 Leo A + B, a Ser, Lib, s CrB and r Her. The magnitudes and colors which were assumed for these stars are those given by Johnson and Harris 7 ; the values taken from this paper arc hence-forth denoted by B-V and V,.
1 + K2 M
M
M B-V
B-V
‘1he air mass at tlse time of observation, denoted by M, is computed by using the hour angle of a star as i-cad on the telescope’s setting circle at the middle of each observation. Tables and graphs facilitating computation of air mass accurate to 0.00 1 were pre pared on the basis of Bcmporad’s tables of air mass reprinted by Schoenberg 6.
s- A1 C,. -K1 M
=
-252
A0
in: 1 .2,5,6,7,8 are the coefficients of svherc A transformations to the BV system, K, H- B-V K2 is the extinction coefficient for blue-yellow color-index while 21 – B-V 252 and Q’ – B-V Q are the extinction coefficients for the yellow and blue mag nitudes.* Equation 5 is obtained by adding the equations 3 and 4 and by making the following substitutions
The color index B-V and the yellow and blue mag nitudes of the BV photometric system are connected with C,0 and m20 by the equations:
B-V
--
Equations.
We define now the quantities: C2.
+ A7
*‘j’hc coefficients K1 and K. are connected with coefficients k and k, in the instrumental system, defined by Johnson 5, by the relations: K1 = A2k, -- A5k, and K. = k2.
4
B-V 158
will mean A’5 etc. For a reliable determination of the extinction coefficients for each night, at least two primary stan dards should be observed at low altitude. It was found most practical to observe such stars at alti tudes between 22 and 28. The accuracy of such observations is of course much lower than that of the observations made near the zenith. Following Sieden topf 8, we assume that the mean errors of photo metric observations are proportional to the air mass for air masses between I and 3. Therefore, before nsaking the least-squares solution of equations 10 and 11 for determining the extinction and trans formation coefficients, we divide each of these equa tions by the air mass M. Moreover, since C5 is sub ject to observational errors and B-V is assumed to be exactly known, we must transform these equa tions so that the free term is C10 M and not B-V ,,/M. The final form* of these equations which ‘vere solved for every night when at least 6 primary standards were observed is
After multiplying equation 3 by 1 + K2M we notice that the coefficients B-V M for the unknowns are not independent of the coefficients K1 and of other unknowns. Therefore a simultaneous deter mination of K2 and Q, with other unknowns of equations 3 and 4 results in a drastic diminution of the weights of these other unknowns, particularly of A2 and A6. To avoid such loss of accuracy, we may write equations 3 and 4 in the form: B-V
-K20M B-V +A’5+A2C,-K’1M
10
-K2-K20 M-M [B-V--V] V
my0 -F
=
-Q
A’, + A’6 B-V
-Q’5
M-M [BVE:v]
M ,
11
where and IVV are the mean air mass and the mean color-index of the primary standards observed that night, K2 is the assumed approximate value of K2 and the new unknowns are connected with the old ones by the relations:
A’5=[l-K2-K2M]
18
A
+ K2-K20 M ThV
A’. K’1
=
=
[1-K2-K0M]A2 [1-
=
A’6
=
=
A5 +
,
12
-Q51
13
where the coefficients are
K2-K2i]K,
+ K9-K20 :v
A’5
K,/A2 -a A,/A2 --Bl/A2
Q12M B-V
A,-Q12M +
,
Q12EV
,
,
14
a
=
b
=
c d
15
+ a A5 + BA6-cQ5.2D
= =
B 1
16
=
,
1/M B-V. [1/M + K2] [1-M/M] [B-V6--V5] C05/ M B-V1/M V. in20 /M -
19
20 21 22
23 24 25
One of the main factors limiting the accuracy of photometric observations is the change of extinc tion during the night. The first step towards elimi nating the influence of this change is to assume that extinction is changing linearly during the night. To eliminate extinction changes of this type we need two groups of observations of standard stars during each night. preferably one near the beginning and the other near the end of the observations of the program stars. Each of these groups should consist
17
It can be easily shown that equations 10 and 11 are equivalent to equations 3 and 4 if only the term proportional to K2-K20 is neglected. The accuracy with which the primed coefficients are determined from equations 10 and 11 remains practically unchanged whether we determine K2 K2 and Q2 from these equations or whether we neglect the terms containing K2-K2 and Q2. Since the accuracy of determining K2-K2 and from one night’s observations is very low and since for the purposes of this work except for improving V and B-V of the primary standards we can assume that Q5.20, the difference between A,, A2, A3, A6, K5 and and the corresponding primed coefficients de fined by equations 12 to 17 can he neglected. Henceforth we shall omit the prime symbols and A5
*Unfortunately ouly for a few nights in 1961 could the equations in "final’ focus be solved. For all the other nights the equations 10 and 11 were solved by the least squares nicthod. This means that for most of the observa tions of primary standards discnsserl in this section the changc of accuracy with air mass was not taken into con sideration. The values of A2, A5 and A5 which are used throughoot this paper may be subject to small systematic error, usually not exceeding 0.002, resulting from treating B-V., as a random variable and Crs as exactly known.
159
of at least 4 stars, two of them at low altitude and two at high altitude. The least-squares solution of equations 18 and 19 is then made for both groups together, but the extinction coefficients K1 and Q are determined in this solution for each group separately. When reducing the observations of program stars, values of extinction coefficients inter polated between the two pairs obtained from the least-squares solution are used. B. Solution of Transformation Equations. Since equations 18 and 19 are likely to be used not only by the future observers in this program but also by other photometric observers, it seems worthwhile to give some details of the least-squares solution of these equations. We assume that the observations of standard stars made on any one night can be divided into two groups; let the number of stars in these groups be denoted by n’ and n11. The coefficients A,, A2, A2, A1, K2-K2 and Qy2 are determined for both groups together while K, and Q, are computed for each group separately, so that two pairs, K, Q,, and K Q1, of these coefficients are obtained. Following Gauss we shall denote in this section only by square brackets the sums of the terms in these brackets. If the symbol in brackets has a roman numeral I or II, this means that it should be summed only over the first or second group of standard stars. If there are no roman numerals, the summation is over both groups together.
=
853
[]
831
‘11
‘
61
=
863
833
41
={b’] /811
843
= 51
=a
[ab]
-
[a’] /811
2’
j
2
83 -
,
[ad
=
[a"]
2 32
=
[bcj-
52
ol
2 42
2 -
= [iJ_
8
1C i.
55
2]
s
S
2
-
8
8
51
65 s
-
= Ed] S
53 63
[B’]
=
/s
-
-
51
s s
-s 33
-
2 53 -
52
[I]
831 t41
42
32
-
t62
,
/811
62
44
$
.
-
S
8
61
54
/8
[aB]
=[]
42 62
2 52
62
843853/833
-
-
S
32
83/S33
-
61
41
-
S
t41
55
41
-S
8,
31
/s
61 -
32
62
/822
=[2]_
t1
-
t
-
t3/s33
t41 851
-
42
-
t43s53/s33
[BDJ- t t61
-
t t62
-
t43t63/s33
[BC]
]
-
Is
32
=
31
‘
r ]
-
S
-
854
= d hij
62
t63 =[aD]_
s =[b
31 41 ‘
-
j]J
11b 21
t44 1
32 52
-
"
22 32
851
I
=[‘]
t61 ‘
83 -
We introduce the following auxiliary quantities*
s11n
[ac]
=
I Ill C j ‘22
‘
=
[c
2
2
]
-
51
-
2 52
-
2 s53/s33-t4/t44
51 6l *The least-squares solution presented here is based om, the cracovian algorithm introduced by Banachiewicz 9 and thoroughly described by Kopal 10. Our s are conr for nected with Kopal’s r by the relations: s for j3. 1, 2 and s j j
-
=
161
-
52
853t61833t54t64/t44
62
The mean errors of
Ilie unknowns are computed from the formulas:
A2
s/
=
K A1
=
-
s64-s54s65/s55 K
=
A2
s43-A2s63+K2-Ks53
=
eA6
65’55 /533
Q
,
=
A5
=
=
A6
A2
eK
=
I
I .
1
E
B-v
/>204-M
I
t63_A6t43+Q2s53/s33
A5s316t41-s51-t61/s11
‘
If the unknowns are calculated correctly, tile following two control equations are fulfilled:
[abj A1
[bdj
+
A2
-
[bc K2-K
-
[b’ ]K
B-V and
The mean errors of a single observation of V at zenith, are I
A
,
EB_V/555
22 EB. 1/s+554/ss55
‘22
A5s32+A6tk2_Q72852_t62/522
n
‘
i/t+t4Itt55
Ev
eK2-K
A1s32+A2s62-K2-Ks52-s42
and A are given by
for the mean errors of K2-K20, A2 and of the ex tinction coefficients the approximate expressions carl be used:
,
A1s31+A2s61-K2-K551-S41 /s11
=
55
V’
-
Q,
-
II
[b"]
K"
4-
[b2]
1
-
n1+n-m E2 B-V
,
a 82/n’+n"_m
=
{aDJ A5
+
[BD] A6
-
[cDJ
-
[D’] ,
III n +n EV
aS2/n’+n11_m
=
-
,
8B-V
aA1
+
-
C
*
K2-K
-
b
-
K1
I =
[D2]_ n’+n"-m
e
the terms containing and m v are usually negligible if, as seems to be most convenient, all the calculations are made with four digits after the deci mal point.
are clevia respectively, where a8 n:v and a8 tions, reduced to zenith, which should be computed for every star from the formulas a
[D]
C. Observeys and lnstrumelltl. The observers working on the photometry of Uranus and Neptune and the instruments used are listed in Table I.
,
The tube 1 P21 No. 12 which has been used since December 1957 is characterized by an exceptionally large dark current when unrefrigeratecl. Vhen the tube is refrigerated with dry ice the clark current from tile cathode amounts to only about 20 electrons per mill ute. The sensitivity of this tube increases by several per cent, or more. when the tube is illuminated by
a 8=aA5+BA6_CQ72_D_Q, where in denotes the number of unknowns deter mined from each of the systems of unknowns de scribed in equations 18 and 19. If the stars are divided into two groups, we have m = 5. For only one group nTm = 0 and m = 4; if, moreover, K-K and Q, are not determined we should re t j and -j place c by zero, omit all the terms i 1, . . .. 6 and assume iii 3.
a bright star, especially if the tube was previously illuminated without applying voltage. When tile tulle is illuminated by a second magnitude star in
the focus of the 21-inch telescope, an appreciable in161
now changed to A and time resistance box is adjusted so as to give thesariie deflection of the recorder.
crease of sensitivity can be noticed during the first 10 minutes of illumination. After this time the sensi tivity becomes stable and drops down very slowly when the tube is not illuminated. When the tube is initially illuminated by a fainter star, the time neces sary for reaching the stable sensitivity is proportion ally longer. The sensitivity of multiplier tubes used until 1957 decreased, rather than increased, after illumination by a bright star. ‘lo secure stable sensitivity of the multiplier tribe the voltage is applied 1… hours before observations are started and the tube is illuminated throughout this interval by the standard radioactive light source. Dry ice is put in immediately after applying the voltage. During all the observations, the voltage applied to the multiplier tube is taken from a 900-volt battery constructed from 30-volt batteries connected in ser ies; this is believed to affect the linearity of the mu! tiplier tube less than other types of power supplies. The calibration of the amplifier and the testing of its linearity were performed at intervals of sev eral months or years. A precision decade resistance box was used for this purpose. The presently used General Radio type 1230-A d.c. amplifier with gain resistors taken from the previously used amplifier No. 4 is calibrated hy a procedure similar to that de scribed by Borgman 11 . For determining the exact value of any 2.5-magnitude step, the switch is set in position B Figure 1 and the fine gain ‘/2 magni tude steps of the amplifier is adjusted so as to give a full scale deflection of the recorder. The switch is
Figure 1. Wino diagram of sun pie arraugcuieut for calibrating the General Radio d.c. am plif or amid testing its tin cant’. The fine gain steps are calibrated and linearity is tested with the switch at position A. For every finegain step the resistance box is adjusted so as to give the same deflection of the recorder. Linearity was checked at every fine-gain step separately by chang ing the setting of the resistance box and comparing the defleetions of the recorder with tIme expected values. No corrections for nonlinearity were applied. In all the amplifiers userl in this program, both coarse-gain and fine-gain resistors were wire-wound.
TABLE I Observers and Instruments Period To From 1953, Feb. ii 1953, Jan. 21 1953, 1953, 1953, 1954, 1954, 1954, 1955, 1955, 1956, 1957, 1957, 1958, 1960, 1960,
Feb. 23 Jun. 10 Oct. 30 Mar. 15 Jun. 17 Oct. 11 Apr. 28 Sep. 23 Sep. 22 Sep. 21 Dec. 26 Oct. 3 Jan. 28 Nov. 17
1953, Apr. 1953, Jul. 1954, Mar. 1954, Jun. 1954, Jul. 1955, Apr. 1955, Jul. 1956, Jun. 1957, Jun. 1957, Dee. 1958, Jul. 1959, Jun. 1960, Oct. 1961, Jun.
25 3 6 16 1 26 8 27 24 12 5 10 20 28
Observer I-I. L. Johnson H. L. Johnson H. L. Johnson IC H. Hardie R. H. Hardie R. H. Hardie IC H. Hardie IC H. Hardie R. H. Hardie C. F. Knuckles R. I. Mitchell W. M. Sinton W. M. Sinton B. Iriarte K. Serkowski J. Priser & K. Serkowski
Telescope McDonald 13-inch McDonald 82-inch Lowell 42-inch Lowell 21-inch Lowell 21-inch Lowell 21-inch Lowell 21-inch Lowell 21-inch Lowell 21-inch Lowell 21-inch Lowell 21-inch Lowell 21-inch Lowell 21-inch Lowell 21-inch Lowell 21-inch Lowell 21-inch
Refrigerated **Urmrefrigerated Lall. = Lallemand 162
Tube Type 1P21 1P21 1P21 1P21 1P21 Lall. 1P21 1P21 1P21 lP2l 1P21 1P21 1P21 lP2l 1P21 1P21
Tube Desig.
Y Y 2-Ref Y_TJnref** i0-Ref. 10-Ref. 10-Ref. 12-Ref. 12-Ref. 12-Ref. 12-Ref.
A5 A8 A8 A8 A8 A5 A8 A8
-
= fl
= = == = =
-F 0.030 +0.018 +0.046 +0.024 +0.017 + 0.063 +0.017 + 0.073
A8 = +0.005 amplifier No. 4 amplifier No. 4 amplifier No. 4 amplifier No. 4 amplifier No. 4 General Radio Amplifier No. 838
in this table, as in all other tables in this paper, refer to UT. The tlurd column gives the number of obser vations of primary standard stars used for determining the transformation coefficients. The extinction co efficients, K1 and Q were determined together with
The corrections for the gain steps, based on the cali bration of the amplifier, however small, were ap plied to all the observations. The coefficients A2, A and A5, determined on particular nights, are given in Table II. The dates
TABLE H. Transformation Coefficients
DATE 1955 Feb. 2 24 Apr. 4 11 20 21 25
n
A2
A,
A5
REMARKS
2 11 18 7 13 17 7
1.076 1.072 1.090 1.087 1.091 1.077 1.090
-0.040 -0.001 -0.019 -0.008 -0.005 -0.006 -0.007
+0.031: +0.066 + 0.064: + 0.072 + 0.079 + 0.066
sky dusty wind
1P21 Y-U 2nd set of filters
May 4 6 28
ii 18 11
1.014 1.012 1.018
-1- 0.010 +0.021 +0.012
mean +0.073 + 0.024 + 0.033 + 0.030
lP2l Y-U 1st set of filters
Jun. 20 21 22 27
8 8 8 8
1.055 1.055 1.051 1.045
+0.034 +0.035 +0.029 +0.028
mean + 0.029 + 0.086 + 0.087 + 0.078 + 0.071
TUBE 1P21 No. 2U* 1P21 No. 2-1
lP2l No. 10-R
Oct. 27 28 30 31 Nov. 4 7 8 16 19 20 27 1956 Jan. 17 19 20 Feb. 3 10 14 Mar. 5 14 19 Api. 5 18
-1-0.076
4 4 4 4 2 4 4 2 2 2 2
1.012 1.022 1.015 1.023 1.024 1.014 1.023 1.020 1.018 1.027 1.028
-0.011 -0.017 -0.014 -0.005 -0.015 -0.003 -0.010 -0.018 -0.015 ---0.021 -0.022
mean + 0.080 + 0.001 + 0.005 + 0.001 – 0.017 +0.009 + 0.011 -i-0.012 + 0.002 H- 0.003 + 0.005 + 0. 005
25 4 4 19 22 23 5 8 36 24 12
1.029 1.021 1.027 1.006 1.026 1.054 1.021 1.011 1.006 1.012 1.005
-0.018 0.000 +0.006 -0.004 -0.019 -0.031 -0.024 -0.006 +0.003 -0.005 -0.011
+ 0.008 +0.021: + 0.032: +0.002 + 0.006 + 0.020 -0.003 + 0.005 + 0.009 --10.006 -0.006 mean + 0.005
*Refrigerated Unrefrigerated 163
clouds at end clouds at end
hazy
hazy
clouds
clouds
TABLE II. Transformflon Coefficients Contd TUBE 1P21 No. 10-k
1P21 No. 12-k
DATE 1957 Mar. 23 24 26 28 31 Apr. 5 6 7 9 15 16 18 19 20 24 26 May 1 3 5
n
A2
A
A5
13 15 3 4 3 13 8 4 3 10 3 7 4 5 4 5 10 8 6
1.024 1.019 1.012 1.011 1.022 1.015 1.015 1.018 1.018 1.015 1.019 .013 1.011 1.020 1.018 1.008 1.015 1.017 1.015
0.014 0.004 -0.008 +0.018 0.013 --0.001 +0.013 -0.006 -0.015 0.000 -0.014 +0.011 -0.003 +0.003 +0.030 -0.002 -0.007 -0.002 -0.006
+0.010 +0.015 +0.004 -+0.029 +0.009 +0.014 +0.028 -H0.012 +0.003 +0.015 +0.005 + 0.024 H-0.008 +0.017 +0.048 +0.006 +0.008 +0.015 +0.009
May 30 Jun. 1 13 14
5 4 2 2
1.009 1.016 1.009 1.022
+0.019 +0.016 +0.018 +0.007
mean H-O.015 + 0.028 +0.032 +0.027 +0.029
Jun. 22 24 25
4 4 6
1.014 1.016 1.012
+0.026 +0.025 +0.021
mean +0.029 +0.040 +0.037 +0.037
Dec. 27 1958 Jan. 8 9 16 Feb. 11 27 Mar. 20 Apr. 10 11 15 May 4 9 10
5
1.043
-0.070
irlean -F 0.038 -0.029:
6 8 9 8 9 9 10 10 10 10 10 10
1.046 1.036 1.039 1.039 1.043 1.046 1.038 1.041 1.043 1.042 1.044 1.047
-0.046 -0.027 -0.035 -0.036 -0.016 -0.023 -0.027 -0.026 -0.025 -0.029 -0.023 -0.027
-0.002 +0.008 -J-0.003 +0.002 +0.025 +0.021 +0.010 +0.013 +0.016 +0.011 +0.019 +0.018
REMARKS
wind clouds at end clouds poor seeing
clouds at end clouds clouds clouds clouds
1P12 No. 12-k
4 4 4 2 4
1.025 1.043 1.047 1.031 1.047
-0.034 -0.034 -0,048 -0.044 -0.043 164
-0.010 –0.007 -0.003 0.014 –0.002
end end end end
clouds at end extinction changing clouds
clouds ? clouds P clouds P
clouds P clouds
mean –0.013 1959 Jan. 5 11 24 29 31
at at at at
clouds
TABLE II. TransformaHon Coefficients Contd TU BE
1P21 No. 12-R
DATE 1959 Feb. 2 4 5 26 28 Mar. 1 3
n
A2
A
A5
2 4 4 4 4 4 4
1.061 1.051 1.049 1.040 1.043 1.039 1.041
-0.05 1 -0.046 -0.049 -0.038 -0.032 -0.041 -0.041
+ 0.007 + 0.003 0.002 0.000 + 0.003 -0.003 -0.002
9 15 16 27 28
2 2 2 2 2
1034 1.044 1.041 1.068 1.061
-0.009 ---0.015 -0.028 -0.019 -0.015
1960 Jan. 20 28 29 Feb. 17 18 21 23 25 Mar. 15 17 18 19 21
2 4 2 6 2 4 6 2 6 6 8 6 6
1.026 1.026 1.022 1.023 1.026 1.021 1.025 1.030 1.027 1.023 1.018 1.021 1.024
-0.067 -0.045 -0.052 -0.040 -0.05 1 -0.040 -0.041 -0.052 -0.042 --0.040 -0.035 -0.032 -0.034
Mar. 26 30 Apr. 3 4 6
4 6 6 2 4
1.028 1.026 1.033 1.017 1.044
-0.024 -0.030 -0.038 -0.046 -0.038
clouds
-
mean May
REMARKS
0.000 +0.024 + 0.027 +0.011 + 0.045: –0.043: 0.042 -0.020 -0.020 0.0 18 -0.026 -0.019 -0.0 17 -0.023 -0.016 -0.018 -0.0 17 -0.011 -0.010
-
mean -0.020 + 0.003 -0.005 -0.006 -0.029 -F 0.004
clouds at end clouds bad seeing clouds
clouds
clouds at end clouds at end
mean -0.007 1961 Feb. 6 8 10 15 22 24 Mar. 1 8 23 31 Apr. 4 9 12
6 9 8 4 4 3 8 4 8 4 6 7 13
1.024 1.028 1.044 1.022 1.005 1.038 1.032 1.034 1.027 1.029 1.023 1.024 1.024
-0.052 -0.036 -0.027 -0.046 -0.041 -0.057 -0.050 -0.050 --0.032 -0.057 -0.040 -0.040 -0.036
-0.029 -0.009 -0.009 -0.024 -0.036 -0.020 -0.019 -0.0 17 -0.006 -0.029 -0.018 -0.017 -0.0 13 mean -0.019
165
clouds at end clouds at end
clouds at end strong wind
clouds at end
TABLE III. Err of single obsrroatiorc
Extinction for B-V colors
Extinction Coefficients Exrinc Con for V magnitudes
1955 Feb. Apr.
m 0.099 0.161 0.117 0.113 0.126 0.129 0.128 0.126 0.117 0.088
m +0.009 +0.017 –0.014 –0.004 +0.007 +0.007 +0.005 +0.005 –0.008 –0.014
m 0.145 0.138 0.132 0.176 0.133 0.120 0.114 0.184 0.089 0.124
+0T029 –0.031 +0.017 +0.004 +0.018 0.011 –0.009 4-0.006 +0.001 –0.021
0237 0.286 0.239 0.287 0.257 0.246 0.240 0.207 0.204 0.210
2.2 9.8 0.5 1.0 1.0
–0.009 –0.011 –0.009 –0.011 –0.008 –0.011 –0.011 –0.006
–0.010 –0.024 –0.015 –0.016 –0.012 –0.009 –0.017 –0.016
0.108 0.118 0.117 0.102 0.122 0.105 0.128 0.128
+0.004 –0.007 –0.004 +0.007 +0.002 –0.015 –0.010 –0.005
0.138 0.151 0.158 0.164 0.144 0.158 0.198 0.172
–0.005 –0.018 –0.000 –0.011 –0.004 –0.012 –0.017 –0.016
3
2.6 1.0 0.8 0.4 1.3 1.5 1.3 0.4
+0.005 –0.008 –0.010 –0.009 –0.007 –0.005 –0.009 –0.007
–0.010 –0.014 –0.014 –0.016 –0.011 –0.008 –0.027 –0.017
0.109 0.138 0.110 0.124 0.132 0.132 0.145 0.113
+0.003 +0.008 +0.010 +0.015 –0.006 –0.004 –0.008 –0.011
8 9 16 10 11 15 4 9 10
1.2 0.8 1.0 1.3 2.1 3.5 3.6 5.0 7.2
–0.021 –0.010 –0.006 –0.007 –0.004 +0.008 +0.009 –0.008 –0.008
–0.013 –0.021 –0.013 –0.011 –0.014 –0.007 –0.016 –0.016 –0.025
0.116 0.132 0.116 0.110 0.105 0.121 0.130 0.127 0.116
28
0.6
+0.009
–0.011
0.118
1956 Jan. Feb.
17
3.5 1.2
Mar.
10 14 19 19 5
Apr.
3
5 1957 Mar. Apr.
May 1958 Jan.
Apr.
May
1959 Feb. 1960 Mar.
1961 Jan. Feb.
Mar.
Apr.
May
Jun.
23 24 5 6 15 26 1
3.5
15 17 18 19 21
0.4 0.5 0.5 0.4 0.6
10 11 6 8 10 15 24 1 22 23 31 4 9 12
1.4 0.4 1.8 2.8 1.3 1.1 0.5 2.5 1.8 4.7 2.9 1.9 3.4 8.4
29 9 16 17 19 21 2 8 10 28
0.5 1.0 0.5 2.5 0.9 4.5 1.1 1.1 0.8 0.8
–0.005 –0.008 –0.004 –0.008 –0.005
–0. 010 –0.015 –0. 022 –0. 016 –0. 012
–0.005 –0.007 –0. 005 –0. 005
–0.007 –0. 012 –0.009 –0.007
–0.009
–. 009
–0.011 –0.004 –0. 004 –0. 005
–0.018 –0.005 –0.008 –0. 012 –0. 014
0.088 0.114 0.125 0.090 0.105 0.117 0.105 0.122 0.097 0.130 0.115 0.115 0.094 0.126 0.108 0.102 0.129 0.127 0.097 0.109 0.078 0.110 0.131 0.119 0.111 0.122 0.120 0.113 0.115 0.146
me.
me,
bi
m +0.018 –0.025 –0.017 –0.009 –0.015 +0.009 +0.015 +0.007 –0.001 –0.017
0.4 0.7 1.0 5.9 0.8 0.9 3.1 1.4 0.9 0.7
Nov.
me.
m.r
me.
m +0.006 +0.014 +0.015 +0.010 +0.006 +0.007 –0.008 +0.006 –0.008 –0.012
24 4 21 6 27 28 30 31 7 8
May Oct.
toe,
K2
Q
K1
M-Mc-
DATE
Coefficients of coIordrprndeoon of extinction
Extinction for B mags.
r
-0.033
+0.005
+0.002
–0.006
0.243 0.268 0.272 0.261 0.265 0.262 0.325 0.298
-0.023
–0.006
-0.007
–0.007
-0.017 -0.034 -0.028
–0.006 +0.010 +0.004
0.000 +0.008 -0.010
–0.010
0.185 –0.006 0.142 –0.014 0.136 –0.016 0.160 –0.028 0.212 40.010 0.264 –0.007 0.296 –0.024 0.178 –0.027
0.291 0.277 0.244 0.282 0.342 0.395 0.439 0.289
-0.028
–0.005
+0.003
–0.010
–0.019 +0.010 Th.006 –0.006 –0.003 –0.004 –0.004 –0.003 –0.003
0.121 –0.012 0.156 –0.027 0.134 –0.013 0.258 –0.010 0.257 –0.010 0.174 –0.004 0.187 –0.009 0.219 –0.007 0.228 –0.009
0.232 0.283 0.246 0.364 0.358 0.290 0.312 0.341 0.339
-0.026 -0.031 -0.034 -0.030 -0.032 -0.030
–0.008 –0.003 +0.005 +0.006 +0.004 –0.004
-0.002 +0.015 +0.007 +0.007 +0.008 +0.002
–0.012 –0.012 –0.005 –0.011 –0.008 –0.012
–0.011
0.127
–0.014
0.240
0.167 0.203 0.172 0.140 0.142
–0. 015 –0. 020 +0.032 –0. 026 –0.015
0.253 0.314 0.295 0.228 0.244
+0.008 -0.055 -0.001
–0.007 –0.024 –0.024
-0.092
–0.020
-0.013
–0.020
+0.003
–0.017
– 0.007 –0. 011 –0.006 –0.012 –0. 005
–0.004 –0.004 –0. 004 –0. 005 –0. 012 –0. 006 –0.004 –0.007 –0.003 –0.002 –0.003 –0.003
0.105 0.151 0.147 0.107 0.131 0.146 0.171 0.097 0.160 0.133 0.134 0.135 0.147 0.147 0.145 0.105 0.151 0.202 0.214 0.179 0.177 0.157 0.175 0.247 0.226
166
–0. 005 –0. 007 –0. 008 –0. 007 –0.014 –0.006 –0.008 –0.003 +0.006 0.006 –0.007 –0.007
0.219 0.253 0.266 -0.032 –0.012 0.201 -0.057 –0.013 0.258 -0.029 –0.012 0.258 0.283 0.189 -0.057 –0.009 0.283 0.238 0.233 0.261 -0.044 –0.010 0.271 0.241 -0.017 –0.005 0.251 0.241 0.258 0.330 0.330 0.287 0.296 0.274 0.285 0.359 0.368
–0.015 –0.006
Yellow
the transformation coefficients on only those nights for which M-M 2 for the primary standards was larger than 0.3. These nights arc listed in Table III.
October. November December through March 10 March 11 through April 20 April 21 through July
Exaiuioing ‘table II we notice that the values of A,5 are usually higher irs the summer nsonths when the temperature of the air is high and refrigeration with dry ice is not so effective as in tile winter. Nu merous experiments made by I-I. L. Johnson proved that for most multiplier tubes the transformation co efficients depend strongly on temperature when the tubes are not refrigerated.
Blue
Q,
Qs
07120 .138 .150 .190
Oi’232 .250 .262 .300
‘the dependence of extinction on humidity was in vestigated hut no clearly expressed correlation was fotind. The last two columns of Table III give the co efficients K1 and Q2 which describe the color-de pendence of extinction; K, = -0.030 and Q, 0.002 arc their mean values. In reducing the ob servations it was, however, assumed that Q,2 = 0 and that Q, had the value -0.033.
D. Extinction Coefficients. The values of the extinction coefficients determined from the observa tions of primary standard stars arc given with their mean errors in Table III. The second column gives iM-M 2 which can be considered as the weight of the extinction deternonation. The third and fourth columns give the mean errors of a single observation of B-V and V as obtained from the least-squares solution. The number of observations used in the solution can be found in the third column ofT able II. The mean errors arc not given in Table III for those nights when only 2 or 3 primary standards were observed. The values of K,, Q,-, and Qs listed in the 5th, 6th and 7th columns of Table III arc plot ted as a function of season in Figures 2, 3 and 4. The coefficient K1 does not seem to vary with the sea son. Its mean value can he assumed as 0’’l 15. The mean seasonal values of the extinction coefficients with yellow and hluc filters coefficients Q, and Qi,’ used for reducing the observations are:
Ill. Magnitudes and Colors of Standard and Comparison Stars A. Accuracy of Two-Color Observations. The mag nitudes and colors of the ‘1en-Year Standards and comparison stars Ivere computed from equations 3 and 4. where the values K2 = ---0.03 and Q,2 = 0 were always assumed. The values of A1. A2, A, and A, were determined from the observations of primary standards for every night when two color observations were made. They were never averaged over several nights. The nightly values of the extinction coefficients K, and were used only for those nights which are listed in Table III. For other nights the seasonal
K1 d96
SN 4 d2
&O 8
Figure 2. The atmospheric extinction coefficients K, for the blue-yellow color index as determined at Lowell Observatory. I 1crti al lines chow the mean errors of nightly values. Open circles represent values based on 2 or 3 standard stars, filled circles those based on 4 or more stars. Horizontal line represents the assumed mean value. 167
___
Figure 3. The atmospheric extinction coefficients Q5, for the yellow magnitudes. Notations are the same as in Figure 2. Horizontal lines represent the assumed mean seasonal values.
I
bI Qm3 5
I
*I
I
I
I
O.395IO.49
. EXTINCTION
FOR
B
MAGNITUDES
0 0
. *
.
m
0.30
*. *
0 S
S 0m25 _*
I
.
.%
0
S S
* **
S 0
*. . .
*
0 0
. **.
0 0
. 0 0
.
00
I OCT
I NOV
DEC
I JAN
Figure 4. The atmospIeric extinction as in Figures 2 and 3.
FEB coefficients Qs,
mean values were used. From the scatter in Figures 2 and 3, it can he roughly estimated that the r.m.s. deviations of nightly values of K, and Q,-, from sea sonal averages are rK, –O1’025 and aQ., –OO4, respectively. The mean errors for a typi cal observation of the color and magnitude of a bright star at the zenith can be assumed to be u-v M1 –OOO75 and FV M1 –OO12. ‘l’hese values are used for computing the weights of the observations of the Ten-Year Standards and com parison stars, as described below.
MAR
APRIL
MAY
JUNE
for the blue magnitudes. Notations are the same
We denote by M the mean air mass for the primary standard stars used for determining the transformation coefficients A,. A2, A2 and A,. If these coefficients were the only unknowns determined from the equations 3 and 4, A, and A2 would be distorted by any deviation of extinction coefficients K, and Q’ from the assumed seasonal mean values K1 and Q,. Instead of the true values for A, and A2, we obtain from the least-squares solution of equa tions 3 and 4 the coefficients A" and A"2 con nected with the true coefficients by the relations: 168
A"1
A1 A2
-
-
21
K1-4K1M
25
1ST
Q iQri
M=1
M ={M2r2BV
B-V
22
which are valid when the deviations of K2 and Qy2 from their assumed values can be neglected. The equations 3 and 4 now take the form
rvM ={M2rJM=l +
MM2o2Q.,Il/2
26
B-Vl+K20M ‘A",H-A2C20 23 V-m22
=
If the weight of the observation at the zenith is taken as 5, the weight of an observation at air mass Mis
A"2 + A6 B-V
-QQ2’
M-M
24 5
Assuming the seasonal mean values of extinction co efficients we neglect the last terms of equations 23 and 24 . Therefore, if we assume that the errors of photometric measurements are proportional to the air mass, the mean errors of the color and magni tude computed by taking into account the uncertain ty of extinction are
W =M2
-
M-M
2
[aQyi
/ v M1
]2
27
Ihis equation was used for computing the weights of all observations given in Tables IV and V. For
Table IV. Observations of Ten Year Standards p
DATE
1955 Feb. Apr.
May
24 4 11 20 21 4 6
4t169 4.210 4.170 4.162 4.191 4.169 4.168
V Wt.
+ 01322 .328 .308
3 4
.311
5 4 3 3
.326 .327 .321
V
B-V
System of DATE
Mar. Apr.
1957 Mar. Apr.
23 24 5 9 15 20
4.173 4.190 4.193 4.193 4.140 4.179 4.194 4.174
4.182 4.194 4.167 4.187 4.166 4.157
.321
.298 .314
.308 .316 .323 .300
.333
.302 .311
.312 .316 .304 .308
primary stds.
1957 May
41159 4.214
+0’1319 .318
4.171 4.192 4.172 4.163
.310 322 .330 –0 .325
Dec. 1958 Jan.
+0 .320
Feb.
3
41188 4.191
H- 0’1331 .312
27
4.192
.320
4
1956
17 3 10 14 5 19 5 18
+0 .318
4 4 4 4
4.181 4.188 4.184 4.183
2
4J78
3 4 2
4.182 4.187 4.170
.300 .313 .304 .321 .315 .302 +0.342
mean 4 .183
+0 312
5 4
4.181 4.199
9
4.176
16
4.177
11 27 Mar. 20 Apr. 10 11 15
4.179 4.149 4.181 4.178 4.168 4.175
May
4
4.194
9 10
4.190 4.226
.331 .315 .313 .311 .309 .314 .321 .308 .318 .302 .311
5 12 24 29 31 2 5 26
4.141 4.185 4.187 4.177 4.183 4.187 4.168 4.167
.322 .321 .301 .309 .312 .308 .331 .322
1959 Jan.
+0 .304 .305
4 2 3 2
Feb. 4.163
B-V System of
V
System of
10-year stds.
mean 4.180 Jan. Feb.
p Gem B-V
Gem
B-V V System of primary stds.
.308
169
Wt.
10-year stds.
41177 4.194
0111327 +0.311
mean 4.184 4
+0 .309
2 3
3 3
2 4 2 4 4 4 3 3 3 mean 4 2 3 5 4 4 4 4
4 .180 4 .188
+0 .314 .307
4 .175 4 .178 4 .168 4 .196 4 .187 4 .220
.307 .309 .315 .304 .317 .310 +0.306
4 .183 4 .173 4 .190 4.191
+0.310 +0.326 .323 .317
4.192
317
4 .173 4.183
.332 .314
4.171
Table IV. Observations of Ten Year Standards Contd 10 U Ma p Gem B-V System of primary stds.
V DATE
Wt.
V
B-V V System of 10-year stds.
DATE 1955 May
1959 Feb.
Mar.
28
4m215
+011330
1 3
4.185 4.195
.313 .316
1960 Jan.
20 28 Feb. 21 23 MaL 15 17 18 19 21 26 30 Apr. 3 6
4.184 4.181 4.190 4.192 4170 4.179 4.201 4.173 4.170 4.169 4.178 4.169 4.200
411209
+01331
4.187 4.218
+0 .330
mean 4 .189
+0 .324
3 3 3
.315 .314
.321 .315 .317 .315 .314
.320 .340
.327 .313 .309 .319
4 3 2
4.184 4.181
1 2 2 3 3 1 0 2 3 2
4.193 4.171 4.173 4.186 4.181 4.176 4.162 4.183 4.175 4.192
mean 4 .181
1961 Feb.
6 8 10
15 21 22
24 Mar. 1 8 23
31 Apr.
4 9 12
4.183 4.211 4 .181 4 .186
4.181 4 .167 4 .165
4 .183 4 .181
4 .158 4 .189 4 .192 4.171 4 .183
.310 .311 .315 .314 .315 .313 .318 .309 .313 .312 .310 .323 .306 .316
5 4
4.183 4.206
4
4.174
3
4.173
.323
1956 Jan. Feb.
Mar.
+0 .314 .321 .313
Apr.
.324 .321 .313 .321 .315 .329 .315 .313 +0 .325
4.177 4.173 4.176 4.169 4.154 4.183 4.185
2
4.177 4.180
+0.315
mean 4.177
B-V System of primary stds.
DATE
1955 Feb.
Apr.
May
V
Wt.
31966
+01432
4
31956
4 11
3 .967 3.974 3 .977
3 3 4
3.971
20
.453 .433 .440
4
3 .966
.433
3
3.969
6
3 .964
.436
4
3.959
3.986
3 .955 3 .970 3 .976
.439
14
3 .994
5
3 .930
19
3.971
5 18
3 .954 3 .978
mean 4 4 .420 .430 4 .427 5 .432 2
3n979
+ 011442
3 .970 3.963 3.968 3.967
+ 0 .438 +0.436
.422 .429 .423
.437 .435
4
3.984 3.968 3.974
4
3.947
.427
1
3.974
.437 +0.436
mean 3 .968
+0 .430
3 .942 3 .994
+0 .453 .428
3 .968
.432
3 .985
.442 .441 +0 .433
.451
S
3 .989
4
5 9
3 .958 3.978
.434 .428 .430
15 20 26 1 3
3 .971 3 .963 3 .976 3 .996 3.963
.428
3
.442
2
.437
.429
5
1
3 4
3.986
27
3 .960
.445
8 9 16 11
3 .992 3.955 3 .981 3.995
.428 .458
27
3 .957
Mar.
20
3 .984
Apr.
10 11 15 4 9 10
3 .987 3.967 3 .979 3 .975 3.972 3 .988
May
.424 .420 .423 .431 .430 .440
.427 .427 .432 .440
B-V
1959 Jan.
+ 011429 .443 Feb.
.439 .436 .440 170
2
.446 .442 .430
Feb.
+0.311
3
.438
Dec. 1958 Jan.
System of 10-year stds.
24
17 3 10
3
3 .943
10 U Ma V
00444
24
May
+0 .308 .302 .309 .314
4
311980
Mar. 23 Apr.
+0.318
.309 .304 .306 .311 .311 .325 .318 .312
28
Wt.
B-V V System of 10-year stds.
1957
4 4 3 4 4 4 3 3
B-V
System of primary stds.
5
3 .930
12 24
3.970 3 .972
29 31 2 4 5
3 .963 3 .957 3 .949 3.962 3.974
.432 .434 .422 .435 .449 .426 .431 .432
3 .966
3 .975 mean 3 .969 3
+0 .440
3
4 2 4 2
3.984 4.004
+0 .423
3.978
4
3.987
.429 .425
4 4
3.967 3.975
3
3.977
2 2
3.969 3.982
+0.435
mean 3 .980
+0 .427
4 2 2
.414
.434 .423 .426 .440
3.962 3.975 3.976
+0.436
3.966
.454
3.977 3.979
.436 .433
.436 .438
3
4 4 5 5
Table IV. Observations of Ten Year Standards Con+’d IlL Mi
10 U Ma B-V System of primary stds.
V B-V System of 10-year stds.
V DATE
1959 Feb. Mar.
Wt.
V B-V System of 10-year stds.
DATE 1955
26 28 1
3
31947
+ 0445
4 .001 3 .977 3 .974
.433 .432 .435
3963 3 .995 3 .979 3.997
+01437 .434 .442 +0.449
mean 3.976
+0.439
5 3 2 4
May
1956 Jan. Feb.
1960
Jan.
20 28 Feb. 21 23 Mar. 15 17 18 19 21 26 30 Apr. 3 6 1961 Feb.
3 .975 3 .981 3.984 3 .974 3 .968 3.985 4.007 3 .958 3 .966 3 .977 3 .962 3 .959 3 .989
4 3 4 4 3 3
.430 .427 .438 .442 .429 .429 .436 .441 .464 .437 .440 .427 .420
3.984 3 .975 3.975 3 .969 3 .979 3 .992 3 .966 3 .972 3 .970 3 .967 3.965 3.981
+0.427
iiiean 3 .974
+0 .435
2 2
2 1 3 4 3
3 .974 3 .965 3 .983 3 .987 3 .973 3 .957 3 .968 3 .973 3.981 3 .947
.434 .436 .435 .425 .435 .442 .444 .428 .431 .434
4 3 3 4 4 4 4 5 4 3
31
3.980 3 .980
.418 .436
3
3.965 3 .981
.434 .429
4 9 12
4 3 5
DATE
Feb.
511412
5 .413 5.407 5 .412 5 .416 5.406
24 4 11 20 21 May 4
+01775 .778 .766 .771 .775 .764
mean 5.412
+0.772
4 4 4 5
5.414 5.392 5.403 5.412
+0.769 .782 .774 .760
5.380
.755
2
5.418
.760
.770
5 .407
.766 .756
4 4
5 .417 5 .400 5 .436
.762 .768
.436
.435 .435 .442 .439 .439 .442 .431 +0.426
+0 .432 .427 .429 .425
3 .967
.438
3 .976
.430
.966 .969 .943 .974 .973
.425 .429 .433 .433 .431 .440
+0.428
mean 3.970
–0.431
2 3 4 5 4 4
.775 .764
+0775 +0 .780
5 .414
51402 5 .417
+01772 .768
5 .421 5 .417 5.409
.770 .771 .767
.763 .770
9 15
5 .415 5.414
.776 .758
20 26 1 3
5.426 5 .424 5 .459 5 .425
.778 .760 .777 .766
27
5.397
.769
8
5 .414
.766
1
9
5.395
.783
3
16 11 27 Mar. 20 Apr. 10 11 15 May 4
5 .426 5.396 5 .393 5 .420 5 .424 5.411 5.428 5 .407
.756 .778 .770 .778 .762 .777 .782
9
5.418
.773 .757
10
5.433
.770
4 2 4 2 4 4 4 3 3 3
Feb.
1959 Jan.
Feb.
171
2
5.402 5.420 5 .416
Dec. 1958 Jan.
V B-V System of 10-year stds.
5 .440
1957 Mar. 23 24 Apr. 5
1955 Apr.
.780
5397 5 .413
5
3.971
Wt.
.772
4 3
19 Apr .5 18
11 L Mi B-V System of primary stds.
5.406 5.394 5.412 5.422
+01771 .782
Mar.
3.978
V
17 3 10 14
5402 5 .414
.438
3 .974 3 .960 3.976 3 .974
3 3 3 3 3
6 28
.440
May
6 8 10 15 21 22 24 Mar. 1 8 23
Apr.
B-V System of primary stds.
V
5
12 24 29 31 2 4 5
mean 5 .409 5 5.401 4 5.425 .773 4
+0 .765 +0 .768
+0.765 .764
2
3 2 1 3 4
5.411
.762
5 .448 5 .428
.773 +0 .765
mean 5.421
+0.766
4
5 .429 5 .405
+0 .755 .772
5 .414 5 .424 5.411 5.424 5 .409
.776 .757 .771 .778 .772
5.415
.765
5.427
+0.765
mean 5 .419
+0 .767
5.367 5.381
.763 .788
3 2
5.399 5.386
+0.767 .790
5 .394 5 .382 5.384 5 .401 5.398 5.409
.758 .768 .768 .775 .765 .775
2 5 4 4 5 5
5 .398
.774
5.393
.773
5.413 5.414
.770 .776
Table IV. Observations of Ten Year Standards Contd
40 Leo
Ii L Mi V
B-V
System of primary stds.
DATE
1959 Feb.
+ 01763 .764 .757 .752
20 28 Feb. 17 21 Mar. 15 17 18 19 21 26 30 Apr. 3
5 .412 5 .402 5.406 5 .419 5 .412 5.418 5.428 5 .398 5.404 5 .422 5.408 5 .406
.772 .776 .765 .776 .769 .756 .771 .774 .795 .766 .763 .758
2 4 3 3 2 2 3 2 3 4
6
5.419
.766
3
.774 .785 .784 .762 .767 .766 .773 .768 .768 .771 .759 .776 .762 .768
mean 4 3 3 4 4 4 4 5 4 3 4 5 4 5
1960 Jan.
1961 Feb.
6 8 10 15 21 22 24 Mar. 1 8 23 31 Apr. 4 9 12
5.400 5 .406 5 .413 5.425 5 .400 5.389 5.395 5 .402 5.402 5.390 5.402 5 .402 5 .399 5.422
System of 10-year stds.
Wt.
51402 5.441 5.405 5.404
26 28 Mar. I
V
B-V
V
DATE 1956
01755 .765 .767 +0.766
5 3 2 4
51418 5.435 5.407 5.427
+
mean
5 .411
+0 .769
3
5 .405 5.404 5 .410 5 .413
4 0 .776 .770 .776
5.412 5.413 5.406 5.410 5 .415 5.413 5 .412 5.411
.762 .770 .775 .770 .768 .765 .762 +0.772
5.410 5.400 5 .401 5 .406 5.412
+0.770 –0.772 .776 .778 .762
Jan.
3 10 14 Mar. 5 14 19 Apr. 5 18
.762 .759 .765 .766 .770 .774 .771 .768 –0.767
mean 5 .401
+0 .768
DATE
1955 Feb. Apr.
24 41801 4 4.793 11 4.794 20 4.796 21 4 .800 May 4 4 .797 6 4.791 28 4.796
+01450 .458 .455 .446 .455 .441 .454 .457
V
2 3 4 5 4 4 4 3
4.797 4.805 4 .801 4 .800 4.786 4.795
.445 .451 .444 .458 –0.455
.797
–0 .450
useami 4
0456 .459 .454 .441 .441 .453 .466 .445 .436
4 4 4 4 2 4 3
41791 4.786 4.784 4.791 4.797
+ 011453 .461 .453 .437 .446
4.786 4 .797 4.797
.458 .447 –0.445
.790
–0 .451
5
4.793
–0.446
4 4 2 3 2 1 2 4 1 2
4.791
.458
4.787
.445
4.811 4.791 4 .788 4 .807
.466 .441 .448 +0 .448
mean 4.794 4
–0.449
3
2
.444 .464 .446 .444 .441 .454 .453 .470 .442 .445 .448
27
4 .792
.447
8 9 16 Feb. 11 27 Mar. 20 Apr. 10 11 15 May 4 9 10
4.793 4 .784 4.784 4.782 4.768 4 .792 4.794 4.794 4 .807 4 .793 4 .809 4.814
.451
1
.458 .453 .461 .457 .461 .451 .453 .448 .450 .438 .452
3 4 2 4 2 4 4 4 3 3 3
1959 Jan.
Feb.
172
5 12 24 29 31 2 4 5 26
B-V
System of 10-year stds.
Wt.
4.794 4.786 4.782 4 .802 4.790 4 .786 4.797 4.822 4.788 4 .799 4 .807
Dec. 1958 Jan.
B-V
–011447 .448
411791
1-
V
mean 4
1957 Mar. 23 24 Apr. 5 9 15 20 26 May 1 3 5 30
System of 10-year stds.
Wt.
41783 4.788 4.793 4.801 4.759 4.771 4.783 4 .804 4.801
.776
5.399 5 .403 5 .395 5.390 5.386 5.396 5 .395 5.405 5.419
B-V
System of primary stds.
17
Feb.
40 Leo V
B-V
System of primary stds.
4.787 4.791
+0.452 .455
4 .786 4.794 4.794 4 .803 4 .795 4 .806 4.808
.459 .446 .447 .444 .449 .446 –0.447
mean 4.796
–0.449
4 .786 4.787 4.788
+0 .450 .455 .457
4.790
.446
4.794 4.810 4 .798
.450 .431 .450
4 .754 4.782 4.784 4 .776 4.781 4 .785 4.779 4.805
.446 .453 .441 .439 .441 .444 .445 .430
2 3 2 5 4 4 5 5
4 .782
.458
5
Table IV. Observations of Ten Year Standards Cont’d 36 U Ma A 40 Leo System of primary stcls.
DATE
1959 Feb. Mar. 1960 Jan. Feb.
Mar.
Apr.
Wt.
System of 10-year stds.
DATE
Mar.
Apr.
41797
–01452
3
4Y791
1 3
4 .792 4.775
.445 .432
2 4
4.794 4.798
+01453 .455 +0.446 +0.448
4.812 4.789 4.797 4.807 4.792 4.793 4.804 4.812 4.791 4.793 4.798 4.791 4.789 4.806
.456 .447 .443 .446 .452 .450 .440 .454 .440 .473 .449 .449 .448 .444
mean 4 3 2 4 3 3 3 2 2 3 2 3 4 3
4.795
20 28 17 21 23 15 17 18 19 21 26 30 3 6
4.792 4.795 4.798 4.793 4.794 4.798 4.797 4.799 4.799 4.791 4.796 4.795 4.792
-10.447 .448 .446 .450 .457 .446 .453 .441 .448 .451 .451 .452 H-0.450
mean 4.795
*0.449
6 8 10 15 21 22 24 8 23 31 4 9 12
4.786
.456
4.795 4 .800 4.808 4.794 4 .793 4.782 4 .805 4 .800 4.802 4 .792 4.783 4.807
.157 .164 .140 .450 .454 .459 .450 .446 .438 .458 .448 .454
2 3 2 3 4 4 3 4 3 4 4 1 1 mean
May
Wt.
4.786 4.790 4 .793 4.795
+0.454 .448 .458 .440
4 .803 4.790 4 .793 4 .796 4.796 4 .785 4.789 4.804
.450 .445 .448 .445 .453 .453 .454 +0.453
4 .793
V
B-V
24
4 11 20 21 Mayl
Apr.
6
System
Wt.
Jan. Feb.
Mar. Apr.
H- 05 18
17 3 10 14 5 19 5 18
4 .823 4 .833 4.847 4.833 4 .802 4.832 4 .830 4.843
.519
4
.518
4
.507 .538 .509 .521
4 4 2 3 3
4.831 4.831 4 .838 4.823 4 .840 4 .835 4 .823
.500
2
4 .839
.514 .519 .523 +0 .509
mean
4 .832
+0.518
.529
4.830 4 .852 4 .847
.528
1
.496 .521 .516 .515
3
4.861
.495
4
4 .848
.517
4 4
4.834 4.833
.519 .519
41826 4 .835
+0517
mean 4 .840
+0.515 –0.516 .520 .506 .534
.518 .526
1
4 .829
4
1 .836
–0 .520 .520
.522
3 2 3 2
4 .832
.517
2
4 .863 4 .833 4 .828 4 .839
.525 .529 .515
30 1
4 1 3 3
+0 .513
mean 4 .836
+0 .521
27
4.821
.519
1 4 4 4 4 4 4 4 4 4 4 4
.516 .528
3
.517
4
.535 .525 .514 .526 .516 .523 .516
9
24 Apr .5 9 15 20 26 1 May 3
5 Jun.
Dec. 1958 jan.
8
9 16
Feb.
11
Mar. Apr.
27 20 10 11
May
10-year stds,
2 3
4i840
4 .830 4.831 4 .830 4.836 4 .835 4 .832 4 .848 4 .874 4.830 4.839 4 .839 4 .837
Mar. 23
B-V of
+ 01522
.527
4
1957
+0 .450
41836 4 .831
4.831 4 .838
41841
15
V
System of
prima my stds,
DATE
28
1956
36 U Ma A
1955 Feb.
B-V V System of 10-year stds.
1955 28
1961
Feb.
B-V System of primary stds.
V
B-V
V
B-V
V
H- 01519
.519
4 9 10
.530
.512 .513 .528
5
4.824
.502
4.833 4 .835 1.830
.502 .503
Feb.
12 24 31 4
4 .837 4 .827
4
.513 .502 .528
4.830 4 .847
+0.516 .529
4 9
–0.514
mean
4.835
–0.516
4 2 2
4.856 4.838 4.839
*0 .506
4 5
4.839 4.852
5
4.832
3
4 4 1 4 4 -1 4
.512 .521 .510 .519 .515 .515
.833 .823 .838 .833 .828 .842 .852
4 4 4
.507
.519
1959 Jan.
5 173
.855 .830 .827 .838 .800 .839 .823 .838 .837 .826 .845 .858
.521 .513 .512 .522 .529
.504 .519 .518 .507 .529
Table IV. Observations of Ten Year Standards Contd /3 Vir
36 U Ma A B-V System of primary stds.
V DATE
Wt.
V
B-V V System of 10-year stds.
DATE
Feb.
26 28 1 Mar. 3
4823 4 .844 4.843 4 .805
+09525 .521 .508 .494
1960 28 17 21 23 Mar. 15 17 18 19 21 26 30 Apr .3 6
Jan. Feb.
Mar.
Apr.
6 8 10 15 21 22 24 1 8 23 31 4 9 12
4 .829
.520
4.836 4 .837 4 .835 4 .831 4.843 4 .859 4.822 4 .825 4.838 4.828 4 .832 4.839
.513 .516 .514 .518 .508 .523 .519 .545 .508 .513 .516 .512
4.837 4 .849 4 .848 4.850 4.841 4 .832 4.829 4 .846 4.859 4.836 4.840 4 .892 4.824 4.844
.517 .538 .533 .523 .517 .526 .528 .523 .522 .512 .509 .510 .509 .515
4823 4 .838 4.845 4 .828
09517 .522 .518 +0 .508
mean 4.839
+0.515
5 3 2 3
4 .832 4.834 4 .828 4 .836 4 .832 4.837 4 .844 4.830 4 .831 4.831 4.833 4 .838 4.831
+0.520 .518 .516 .512 .525 .514 .522 .520 .520 .510 .515 .520 +0.518
mean 4.833
+0.517
3 3 4 3 3 3 1 1 3 3 2 4 4
3 3 3 3 4 4 3 4 4 3 3 4 4 4
4.837 4 .844 4 .841 4.837 4 .842 4.837 4 .839 4.847 4.832 4.834 4 .885 4.830 4.841
mean 4.842
/3
B-V System of primary stds.
DATE
-r 0547 .550 .563
1956 jan. 17 3.589 Feb .33.59 3
.554 .568
Mar.
Api.
1957 Mar. Apr.
+0.515 .529 .527 .523
May
Jun.
.522 .514 .520 .520 .511 .524 .505 .515 +0.514
Dec. 1958 jan.
Feb. Apr.
+0.518 May
Wt.
V B-V System of 10-year stds.
Wt.
4 6 28
10 14 5 14 19 5 18
3 3 3 3 3 3 3
.612
.599 .566 .600 .615 .611 .620
.540 .549
.545 .558 .547 .542 .534
39600 3 .597 3 .598
09550
mean 3 .612 3 3.597 3 3 .591
+0 .551
3 3 3
.554 0.561
10.551 .570
3 3 2 3
3 .603 3 .589 3 .604
.539
2
3 .618 3 .604 3 .616
.539 .544 -t-0 .543
mean 3 .601
+0 .548
3 1
.545 .550
23 24 5 15 20 26 1 3 5 30 1
3 .613 3 .600 3.608 3 .608 3 .591 3 .612 3 .621 3 .603 3.611 3 .613 3 .617
.542
3
3 .612
9-0 .544
.553 .558
4
3 .605
.547
.545
3 0
3 .605
.549
.558 .551 .543 .533
3 3
3 3 3 3
.550 .546
.545
2
27
3 .602
.548
8 9 16 11 10 11 15 4 9 10
3 .600 3 .598 3 .601
.546 .550 .557 .563 .561 .569 .552 .545 .547 .558
3 3 3 3 3 3 3
.587 .599
.654 .615 .600 .618 .615
.554 .550
9
9
.610 .606 .600 .613
usean 3 .608 1 2 3 3 4 3 5 3 3 3 3
.554
mO .533 +0 .547
3 .604 3 .596 3.599 3 .654 3.611 3 .602 3 .615 3 .609
+0 .556 .557
mean 3 .614
+0 .555
.556 .563 .548 .544
.555 +0.553
1959
1955
Apr.
+9597 3 .602 3 .599
May
Vir
V
Feb.
B-V
System of 10-year stds.
1955
1959
1961 Feb.
V
B-V
System of primary stds.
10 24 4 11 20 21
39602 3 .645 3 .602 3.612 3 .611 3 .622
+0" 548 .555 .554 .564 .554 .549
4 4 4 3 4 3
Jan. +9635 3 .606
H 0552 .544
3 .620 3 .623
.553 .545
Feb.
174
5
3.571
.552
12 24 31 4 5
3.605
.537 .532 .545 .552 .538
3.596 3 .595 3 .576 3.597
1 3 3 4 3 2
3 .603 3 .610 3.600 3 .604 3 .591 3.602
-90.556 .539 .548
.550 .557
.539
Table IV. Observations of Ten Year Standards Con+’d
/3 CVn
/3 Vir B-V System of primary stds.
DATE
1959 Feb.
26 37577 28 3.617 Mar .1.3 .606 3 3 .582
+01563 .547 .533 .536
Wt.
37593 3.611 3 .608 3 .605
+07555 .548 .543 +0 .550
mean 3.603
+0 .548
2 3 3 3
1960 Jan.
28
Feb.
17
3.608 3 .621
.536 .558
3 3
3.611 3 .619
–0.536 .563
21
3 .622
.543
3
3 .613
.543
23
Mar. 15 17 18 19
3 .609 3 .608 3 .612 3 .622 3.603
.556 .538 .544 .537 .548
3 3 3 2 2
3 .610 3 .609 3 .606 3 .607 3.611
.554 .545 .550 .536 .549
21
3.607
.568
3
3 .613
.543
26 30 3 6
3 .612 3 .603 3 .620 3.620
.549 .547 .547 .548
2 3 3 3
3 3 3 3
Apr.
.605 .608 .626 .612
DATE
1955 May 28 1956 Jan. Feb.
17 3 10 14 Mar. 5 19 Apr. 5 18
+ 0.548
Mar. 23 24 Apr. 5
3.604 3 .616 3 .605
+0.548 .550 .554
6
May
1961
Feb.
6 10
15 21 22 24 1 Mar. 8 23 4 Apr. 9 12
3 .604 3 .623 3 .618 3.604 3 .600 3 .592 3 .626 3 .627 3 .597 3 .606 3 .585 3.611
.550 .556 .554 .543 .558 .558 .555 .551 .552 .548 .543 .561
4 0 2 2 1 2 3 3 3 4 3 3
3.610 3 .600 3 .619 3 .615 3 .593 3.599 3 .591 3.608
.551 .543 .549 +0.560
mean 3 .609
+0 .550
1958 Jan.
.554 .544 .552 .549
Feb.
DATE
B-V
System of 1rinary stds.
V Wt.
10 –7259 24 4.269 Apr. 4 4 .238 20 4 .243 21 4.254 4 4 .245 May 6 4.265
–07587 .591 .607 .584 .593 .583 .576
4 4 2 4 4 5
4.260
5
4.241 4.242 4 .267 4.279 4.212 4.253 4.253 4 .253
H- 07585
.589 .595 .583 .596 .570 .590 .600 .571
27
4 .262 4 .245 4 .252 4.264 4.264 4.279 4.254 4.272 4 .264
4 4 4 4 4 4 4 4 4 4 4
.246 .253 .256 .245 .256 .256 .255 .260 .254 .262 .270
.590 .598 .581 .582 .589 .596 .587 .580 .581
.585 .591 .588 .589 .592 .594 .585 .597 .586 .578 .590
B-V
System of 10-year stds.
41259 4.242 4.252 4.255 4.248
8 9 16
Mar. 20 10 11 15 May 4 9 10
1959 Jan.
5 12 24 31 Feb. 4 5 26 28 Mar. 1
1955 Feb.
15 1 3 5 30
Apr.
/3 CVn V
47261
Wt.
4
B-V V System of 10-year stds.
41260
+ 01583
mean 4 .255
+0.585
4.249 4.240 4.258 4.269 4.250 4.256 4.246 4.249
+0 .586 .597 .582 .592 .575 .582 .602 –0 .580
mean 4 .253
+0 .587
4 4 4 4 2 5 2 2
1957
.551 .549 .551 +0.554
mean 3 .612
B-V System of primary stds.
V
B-V V System of 10-year stds.
V
+ 07588 .597 .583 .589 .586 .580 175
4 .208 4.259 4 .252 4.248 4 .241 4.251 4 .244 4.261 4 .259
.562 .573 .572 .579 .581 .574 .599 .581 .575
5 4 4 4 2 2 2 2 5
4.261 4.250
+0 .592 .592
4.261 4.268 4.257 4.261 4.264
.593 .592 .586 .583 +0 .581
mean 4 .260
+0 .588
3 2
4.259
+0.587
4.250 4.256 4 .255 4.256 4.256 4.259 4.264
.590 .589 .579 .593 .585 .586 +0.585
mean 4 .257
+0 .587
3
2 4 4 5 4 3 4
2 3 3 4 5 4 4 3 2
4.240 4.264 4.256 4 .257 4.256 4.256 4 .260 4.255 4.261
.566
.575 .588 .584 .586 .575 .591 .582 .585
Table IV. ObservaHons of Ten Year Standards Cont’d 78 UMa
& CVn B-V System of primary stds.
V DATE
1959 Mar.
Wt.
DATE
3
41228
28 4 .255 17 4.262 21 4.275 23 4.261 Mar. 15 4 .253 17 4.266 18 4.282 19 4.252 21 4.245 26 4 .263 30 4 .249 Apr. 3 4 .253 6 4.262
1961 Feb.
6 8 10 15 21 22 24 Mar. 1 8 23 31 4 Apr. 9 12
4.261 4.275 4.267 4 .266 4.268 4 .261 4 .257 4 .269 4.279 4 .278 4.266 4.252 4.240 4.255
May 28
42251
+0592
mean 4.256
+0.583
4.258 4 .260 4 .266 4 .262 4 .254 4 .260 4 .267 4 .260 4.251 4 .256 4 .254 4 .259 4 .254
+0.585 .590 .580 .582 .588 .586 .585 .580 .586 .588 .586 .585 +0 .583
mean 4 .258
+0 .585
Ma
+0.581 .589 .601 .590
Jun.
4
+0578
.585 .585 .580 .584 .581 .580 .586 .579 .611 .586 .584 .581 .577
2 5 4 5 3 3 1 1 3 5 2 4 4
5 2 2 3 3 3 3 3 4 4 3 5 5 5
.583 .598 .607 .590 .589 .594 .601 .593 .591 .589 .576 .594 .582 .589
4.261 4 .270 4 .260 4 .253
1956 Jan. Feb.
3 10 14 Mar. 5 19 Apr. 5 18
B-V System of primary stds.
DATE
Wt.
Mar. 23 24
Apr.
4.271 4 .265 4 .262 4 .267 4 .274 4 .260 4 .245 4 .246 4.252
.590 .587 .590 .589 .588 .591 .589 .588 +0.588
Jan.
6 15 1 3 5 30 1
4 .939 4.910 4 .928 4.934 4 .946 4.926 4.948 4 .920 4 .915
+0.587
May
8
4.911
9
4.915
16 11 27 Mar. 20 Apr. 10
4.916 4.920 4.934 4 .929 4 .924 4.920 4 .938 4.928 4.936 4 .927
Feb.
11
V B-V System of 10-year stds.
.370 .361 .368 .368 .363 .359 .362 .356
4
4930
+0358
mean
4.927
+0.364
4 4 4 4 2 4 3 2
4.923 4 .925 4.916 4.917 4 .915 4 .940 4 .926 4.925
+0.367 .363 .367 .364 .368 .351 .364 –0.365
mean 4.924
+0.363
.356 .378 .358 .359 .371 .365 .356 .371 .377
4 4 3 2 2 4 2 5 4
4 .938 4 .915
+0 .358 .372
4.931 4 .935 4 .929 4 .937 4.920
.363 .367 .364 .359 +0.371
mean 4 .928
+0 .366
10 4942 24 4.939 4 4 .925 20 4.911 21 4.928
+0348 .371 .377 .366 .361
4 4 3 5 4
4929 4 .929 4.920 4.929
mO’368 .367 .365 .357
4
4 .925
.363
4
4 .928
.366
6
4 .934
.360
4
4 .929
.364
15 4 9 10
.357 .369 .363 .377 .369 .374 .373 .370 .371 .368 .358 .376
2 3 2 3 2 2
4.919 4 .929
+0.362 .371
4 .923 4 .924 4 .920 4.934 4 .930 4 .933 4.921
.372 .368 .364 .367 .367 .366 +0.371
mean 4.926
+0.367
4 4
4 4 3 3
1959
Jan.
5 12 24 31 Feb. 4 5 26 28 Mar. 1
1955
May
4.915 4 .927 4.925 4 .927 4.877 4.937 4 .933 4.929
--0360
1957
78 UMa V
17
4931
1958
mean 4.259
Apr.
Wt.
V B-V System of 10-year stds.
1955
1960 Jan. Feb.
Feb.
B-V System of primary stds.
V
B-V V System of 10-year stds.
176
4 .902 4.921 4 .922 4.924 4 .910 4.924 4 .914 4 .933 4 .924
.363 .363
2 3
.347
3 4
.351 .372 .355 .373 .362 .356
4 3 3 3 2
4 .934 4 .926 4 .926 4.933 4 .925
4 .929 4 .930 4.927 4 .924
+0 .367 .365 .363 .356 .377 .356 .365 .363 .366
Table IV. Observations of Ten Year S+andards Cont’d RD 115043
78 UMa V
B-V System of primary stds.
DATE
Wt.
DATE 1956 Jan. Feb.
1959 Mar. 1960 Jan. Feb.
Mar.
Apr.
3
41899
–1922
+0 .365
2
4.922
+0 .369 .370 .364 .363 .337 .373
4.919
.369
17 21 23 15 17 18 19 21 26 30 3
4.925 4.931 4 .925 4.942 4.932 4.945 4.913 4.924 4.940 4 .914 4 .935
.365
5
4.923
.364
4
4.922
.365 .330 .367 .372 .361 .386 .360 .367 .366
5
4.927
3 3 1
4.943 4.926 4.930
1
4.921
6
4 .932
.361
3 4 2 4 4
4 .930 4 .933 4.919 4.941 4 .924
6
4 .935
8
4.931
10 15 21 22
4.941 4.949 4.964 4.933
24
4 .929 4 .963 4.957
Mar.
1
Apr.
23 31 4
8
4.945 4.942
9
4.936 4 .908
12
4.931
+ 0o370
mean 4 .927
28
1961 Feb.
4
+01356
riiean .368 4 .387 2 .365 2 .377 .354 .378 3 .380 3 .380 3 .375 4 .371 3 .352 3 .370 4 .353 4 .383 4
4 .928 4.935
.362 .361 .362 .369 .370
61822
+ 01604
3 10 14 Mar. 5 19 Apr. 5 18
6.860 6.849 6 .856 6.814 6.837 6 .860 6.822
.598
Apr. May
+0.367
4.926 4.934
.359
4.936
.377
4.943 4.937 4.956 4.945
.374
4 .941
17
1957 Mar.
.371
+0 .365 +0 .366 .378
Jun.
.377 .373 .370 .367
–0 .382
mean 4 .935
+0 .370
23 24 6 15 I 3 30 1
B-V Systeiii of primary stds.
DATE
Vt.
Feb.
6.818
6.819
6.832 6.833
10
6.831
12 24 31 4
6.836 6 .820 6.809 6.799
01600
5
6.814
Apr.
.614
26 28 1 3
6 .804 6.818 6.837 6 .800
May
10 24 4 20 21 4
6845 6 .836 6 .821 6 .819 6.837 6 .845
0:610 .603 .624 .606 .594 .603
4 3 3 5 4 4
61826 6 .825 6 .828 6.838 6 .848
6
6.842
.596
4
6.837
28
6 .850
.606
4
6 .849
.605 .590 .606 .600 +0 .604
mean 6 .836
+0 .602
Feb.
Mar.
1960 Jan. 177
28
+0 .601
2 5
4 9
1955
mean 6 .843
4
6.820 6.814 6 .830 6.835 6.836
Jan.
6.818
6.817
27 20 10 11 15
System of 10-year stds.
6.840 6.853
3 2
6.815
Feb.
1959
4
4 3 2 2
6.812 6.822 6 .809
B-V
V
6.846 6.852
4
.610 .603 .610 .605 .601 .605 .605
.602 .607 .611 .615 .605 .609 .615
.603 .610 .595 .603 .607
HD 115043 V
4 2
6.811
.593 .581 .591 .602 .608 .617 .607 .592 .580
.611
+ 01601
.600 .591 .616 .580 .604 .600 –0 .613
.609
6.819
Ma
6830 6.858 6.840
.602
.812 .833 .821 .841 .815 .830 .824 .814
9 16 11
.365 .359
.598 .604
4 4 4
6 6 6 6 6 6 6 6
8
Mar. Apr.
.592 .620 .575 .612
Wt.
B-V
System of 10-year stds.
6 .816
1958 Jan.
.366
4.936 4.929 4 .914 4.928
B-V System of primary stds.
V
V
V B-V System of 10-year stds.
6.818 6.830
+0.604 .603
6.824
.607 .606 .604 .604 +0 .605
mean 6.820
+0.604
4
3 2 3 2 1 4 4
6.825 6.818
–0.610 .609
6.808 6.830 6.835
.610
4
6.832
.606
4 3 3
6.834 6.830 6.825
.594 .611
–0 .602
mean 6 .829
+0 .604
.607 .597
3
6.841
3
6.824
.597
4 3 3
6.818 6.814 6.819
.596
3
6.820
3 2 4-
6.812 6.839
+0.595
.607
.609 .609 .608 .602
6.823
+0.594
mean 6 .823
+0 .601
6.814
+0.611
2
Table IV. Observations of Ten Year Standards Contd
Corn
HD 115043 V
B-V System of primary stds.
DATE
1960 Feb.
17 21 23 Mar. 15 17 18 19 21 26 30 3 Apr. 6
1961 Feb.
61815 6.826 6.816 6 .811 6.815 6 .830 6.810 6.810 6 .825 6.813 6 .820 6 .828
+0599 .614 .603 .572 .592 .605 .602 .627 .605 .594 .608 .594
Wt.
V B-V System of 10-year stds.
6813 6.817 6.817 6 .812 6.809 6 .815 6.818 6.816 6 .818 6.818 6 .826 6 .820
+0604 .614 .601 .579 .598 .604 .603 .602 .607 .596
mean 6 .817
+0 .603
5 4 5 3 3 1 1 3 4 2 4 4
1956 Mar.
Apr.
.611 .608 .601 .610
4 3 2 2
6.822 6 .822 6.825 6.830
+0.609 .599 .595 .610
21 22 24 Mar. 1 8
6.824 6 .833 6 .814 6.844 6.851
.609 .606 .631 .616 .614
2 2 3 3 4
6 .843 6 .822 6.837 6.839
.602 .617 .613 .612
23 31 4 9 12
6 .849 6 .826 6 .842 6.821 6.820
.610 .591 .612 .596 .610
3 3 4 4 4
6 .845 6 .820 6 .835 6.827 6.817
.609 .606 .607 .602 –0.609
mean 6.829
+0.607
B-V System of primary stds.
DATE
1955 Feb. Apr.
24 4266 4 4 .245 20 4 .235 21 4.243 May 4 4 .247 6 4 .261 28 4.251
1956 Jan. Feb.
17 3 10 14
4.241 4.240 4 .264 4 .262
–01568 .588 .566 .581 .564 .561 .567
.580 .591 .567 .568
Wt.
mean 4.249
+0.574
4 3 3
4 .263 4 .238
+0 .563 .568
2
4 .260
.580
2 4
4 .241 4 .249
.562 .568
5 30 1
4.247 4.254 4 .254
.564 .573 .575
2 5 4
4.236 4.254
.567 +0.573
mean 4.250
+0.569
Jan.
8 9 16
4 .232 4.243 4.250
.566 .582 .574
2 3 4
Feb.
11
4.244
Mar. 20
4.276
Apr.
10 11 15
4 .249 4 .243 4.255
.575 .581 .581 .582 .577
3 2 4 4 4
May
4
4 .248
.572
4
9 10
4.253 4.250
.566 .576
4 4
1959 Jan.
4.253
+0 .573
4.253 4.270 4 .249 4 .243 4.251 4 .250 4.250 4.244
.569 .579 .576 .576 .573 .571 .574 –0.571
mean 4 .250
+0 .573
5
4.221
.570
2
12 24
4 .258 4 .250
.567 .555
3 3
4 .263 4 .254
–0 .569 .571
31 4 5 26 28 1 Mar. 3
4.250 4 .244 4 .243 4 .240 4.246 4 .258 4 .239
.571 .560 .572 .582 .572 .556 .554
4 3 3 3 3 2 4
4.259 4 .259 4 .248 4 .256 4.240 4 .260 4 .262
.576 .565 .573 .574 .573 .566 +0 .568
mean 4.256
+0.571
mean 4.250
+0.568
1960 Jan. Feb.
28 17 21 23 Mar. 15
178
.566 +0.569
.576
1958
+0.577 .593 .567 .564
.578
.566 .569
Feb.
4.249 4.238 4 .255 4 .252
4.242 4 .266 4.250
4 .263
Jun.
V B-V System of iD-year stds.
–0Th77
4 .252 4 .246
+0Th65 .578 .565 .577 .567 .565 +0.565
4 4 4 5
.561 .574 .572
41244
2 4 5 3 2
1 3
41256 4 .249 4 .244 4.244 4 .250 4 .256 4.250
3 2 5 4 4 5 4
4 .264 4 .233 4 .256
–01572 .590 .586 .564 .560
Wt.
V B-V System of 10-year stds.
15
May
Corn V
5 41206 14 4.235 19 4.239 5 4 .273 18 4.254
1957 Mar. 23 24 Apr. 6
.612
6.822 6 .827 6.832 6.843
B-V System of primary stds.
DATE
+0 .600
6 8 10 15
Apr.
V
4.250 4.261 4.256 4 .249 4 .259
.570 .569 .579 .579 .571
2 5 4 5 3
4.253 4.259 4.247 4 .250 4 .260
+0.570 .574 .579 .577 .578
Tab’e IV. Observations of Ten Year Standards Con+’d 61 Vir
/3 Corn B-V System of primary stds.
V DATE
1960 Mar
Apr.
17 18 19. 21 26 30 3 6
1961 Feb.
6 8 10 15 22 24 Mar. 1 8 23 31 Apr.
4
9 12
41263 4 .273 4 .254 4.241 4.257 4 .251 4.244 4.250
4 .256 4 .249 4.250 4.278 4.241 4.246 4.251 4.251 4.259 4.249 4 .246 4.248 4.245
–01566 .574 .557 .601 .564 .567 .572 .569
.573
.569 .576 .567 .578 .588 .566 .569 .578 .559 .579 .568 .577
Wt.
4 1 1 3 5 2 4 4
+1257 4 .258 4 .262 4.247 4.250 4 .256 4.250 4.242
+01572 .573 .558 .576 .566 .569 .576 +0.575
mean 4.252
+0.574
4 .256 4 .244 4.243 4.265 4.251 4.254 4.244 4.239 4.255 4.243 4 .239 4.254 1.242
–0 .571 .560 .570 .567 .574 .574 .563 .567 .577 .574 .574 .574 –0.576
mean 4.248
–0.571
5
3 1 3 4 4 4 4 3 4 5 3 5
V
B-V V System of 10-year stds.
DATE
1956 Apr.
B-V System of primary stds.
DATE
1955 Feb.
41736
+01687
10 4.743 24 4.759 Apr. 4 4.757 20 4.810 21 4 .787 4 4.745 May 6 4.750 28 4.740
.709 .718 .679 .700 .699 .718 .704 .716
8
1956 Jan.
17
Apr.
5
Wt.
1 1 4 4 0 1 1 2 1
30
Jun.
–0’1715
4.761 4.819 4 .788 4.748 4.745 4.739
.669 .699 .695 .721 .708
mean 4 .754
4.730 Feb. 3 4 .742 10 4 .742 14 4 .734 Mar. 5 4.692 19 4.727
.703 .695 .702 .729 .708 .712
2 1 2 2 1 2
4 .749
.702
2
4.738 4 .740 4 .733 4 .724 4 .730 4.730 4 .742
1
1958 ,Jan.
8 16 Mar. 20 Apr. 10 11 15 May 4 9 10
V B-V System of 10-year stds.
41’749
18
1957 Mar. 23 24 Apr. 6 15 1 May 3 5
61 Vir V
B-V System of primary stds.
41775
4.726 4.724 4.761 4.730 4.714 4.748 4.774 4 .741 4 .750
–01691
.715 .701 .706 .712 .680 .710 .749 .697 .706
4.761 4.734 4.739 4.723 4.726 4.730 4 .738 4.735 4.735
.711 .707 .715 .725 .699 .706 .701 .699 .720
1959 Jan.
5
4.680
.718
Feb.
12 24 31 4
4.711 4.707 4 .726 4.704
.730 .688 .705 .675
5
4.713
.693
26 28 Mar. 1 3
4.714 4.760 4.724 4.715
.718 .699 .696 .686
Wt
V B-V System of 10-year stds.
41771
+01700
mean 4.734
+0.707
0
1 0 4 1 1 1 1 1 1
4.725 4.729
+0.717 .695
4.727 4.703 4.751 4.763 4 .741
.716 .676 .709 .752 +0 .697
mean 4.735
+0.711
2 2 1 1 2 2 2 2 2
4.737 4.733 4.723 4.726 4.726 4 .740 4.732 4.729
+0.706 .713 .720 .693 .702 .700 .707 +0.715
mean 4.731 0
+0.706
0 0 0 0 0 0 1 0 1
4.716 4.711 4 .735 4.719 4.718 4.730 4.754 4.726 4.738
–0.732 .704 .710 .680 .694 .710 .700 .706 +0.700
mean 4.746 +0.700
1 960 Jan. Feb.
28 4.726 17 4.722 21 4.739 23 4 .744 Mar. 15 4.723 17 4 .682 18 4 .729 19 4 .728 21 4.733 26 4.756 30 4 .741
+0.714 +0 .699 –0.700 .697 .701 .725 .713 .704 .704
179
.705 .706 .706 .702 .716 .687 .706 .722 .740 .707 .704
1 0 1 1 2 0 2 2 2 0 1
4.729 4.720 4.730 4 .745 4.724 4 .676 4 .714 4 .736 4.739 4.749 4 .746
–0.705 .711 .706 .700 .723 .693 .705 .723 .715 .709 .706
Table IV. Observations of Ten Year Standards Confd 70 Vir
61 Vir B-V System of primary stds.
V DATE
Wt.
V
B-V V System of 10-year stds.
DATE
1957 May
1960
Apr.
3 6
1961 Feb.
6 8 15 22 Mar. 1 8 23 31 Apr. 4 12
4’757 4.773
4.732 4.772 4.731 4.715 4.755 4.747 4.752 4.751 4.719 4.746
–0728 .707
.713 .722 .714 .702 .725 .705 .715 .694 .707 .723
0 1
4i763 4.765
+0732 +0.713
mean 4.734
+0.712
4.732 4.767 4.718 4.725 4.748 4.735 4.748 4.745 4.712 4.743
+0.711 .713 .714 .698 .722 .703 .714 .709 .702 +0.722
mean 4.738
+0 .712
2 1 1 1 2 1 2 2 2 2
Jun.
1958 Jan. 16 Feb. 11 Mar. 20 Apr. 10 11 15 May 4 9 10 Jan.
V DATE 1955 Feb.
Apr.
May
1956 Jan. Feb.
Mar.
Apr.
1957 Mar.
Apr. May
+09710 .714 .710 .727
Wt.
Feb. 8 10
–9984 4.990
+09707 .707
4 4
24
4 .998
.717
3
49988
+09714
4 20
4 .953 4.963
.738 .716
3 5
4 .957 4.972
.728 .715
21 4 6 28
4.959 4.977 4.995 4.975
.729 .706 .710 .711
4 4 4 4
4.960 4.980 4.990 4.974
.725 .709 .714 +0.709
17 3
4.959 4.966
mean 4.974 3 .722 4.967 .718 4 4.964
–0.716 +0.719 .720
10
4.986
.714
4
4.977
.713
14
4.990
.703
4
4.980
.699
5
4.928
.725
2
4.966
.730
14
4.983
.707
4
19
4.975
.708
4
4.978
5
4.994
.719
3
18
4.982
.691
2
Mar.
4 2 5
49986 4.980 4.979
+09709 .717 +0.710
mean 4.980
+0.708
3 3 1 3 4 4 4 3 3
4.971 4.970 5.007 4.972 4.972 4.984 4.970 4.973 4.967
+0.716 .717 .713 .720 .718 .721 .723 .704 +0.712
4
.717 .723 .715 .725 .724 .725 .724 .696 .717
snean
4.974
+0.717
24 31
4 .959 4.964 4 .969 4 .967 4 .954 4.956
1 2 3 4 2
4.969 4 .973 4 .976 4 .969
–0.717 .715
4 5
.722 .715 .699 .706 .702 .716
2
4.961
.717
26 28
4.958 4 .980
.726 .704
2 3
4.974 4 .974
.718 .705
1 3
4 .968 4.944
.707 .696
3 4
4 .970 4.967
.717 –0.710
mean 4.971
–0.713
5 12
V B-V System of 10-year stds.
‘Nt.
4.968 4.961 5.013 4.972 4.972 4.988 4 .968 4.976 4.973
1959
70 Vir B-V System of primary stds.
3 49983 5 4.991 30 4.979 1 4.968
B-V System of lO-year stds.
V
B-V
System of primary stds.
.711
.707
1960 ./1‘3
9:
4.3/4
+0.113‘
15
4.990 4.981 4.976
./07 .714 .713 .700
4 5 3
4.9i3 4.981 4.982 4.977
.712 .714 .711 .707
17
4.984
.708
3
4.978
.714
18
4.991
.718
1
4.976
.717
19
4.980
.705
1
4.988
.706
21
4.983
.734
3
4.989
.709
.700
26
4.995
.714
4
4.988
.716
4.987
.721
30
4.979
.714
2
4.984
.716
4.978
+0.700
mrican 4.975
+0.712
3 6
4.977 4.986
.704 .709
4 4
4.983 4.978
.708 +0.715
6 8
4.976 4.970
.717 .712
mean 4.981 4 4.976 3 4.965
+0.712 +0.715 .703
Jan. Feb.
28 1/ 21 23
Mar.
Apr. 1961 Feb.
4971 .
4.9/j
23 24
4.991 4.965
.709 .710
4 3
4.990 4.970
+0.711 .704
6 15
4.983 4.987
.712 .706
3 3
4.984
.710
10 15
4.976 4.980
.722 .709
2 3
4.969 4.967
.716 .709
1
4 .978
.702
3
4 .967
.698
22
4 .965
.703
4
4 .975
.699
180
Table IV. Observailons of Ten Year Standards Contd 70 Vir
70 Vir V DATE
1961 Feb. 24 Mar. 1 8 23 31
B-V System of primary stds.
+964 4.977 4.981 4.978 4.977
–01731 .714 .717 .712 .699
Wt.
3 4 4 3 3
1955 Feb
Apr.
May
4i972 4.970 4.969 4.974 4.971 V System
DATE
V
V B-V System of 10-year stds.
B-V System of primary stds.
DATE 1961
Apr.
+01717 .711 .715 .711 .704 r Boo B-V
4 9 12
41975 4.973 4.972
Wt.
V
Wt.
4 3 4
41968 4.979 4.969
–01718 .711 –0.716
mean 4.971
–0.711
–01723 .705 .717
BT
System of 10-year stds.
of primary stds.
8
41498
–01487
4
24 4 20 21 4 6 28
4 .503 4 .488 4 .482 4.475 4 .491 4.512 4.483
.488 .480 .479 .494 .476 .468 .479
3 3 5 3 4 4 4
4fl
493 4 .492 4 .491 4.476 4 .494 4.507 4.482
+01485 .470 .478 .490 .479 .472 +0.477
mean 4.491
–0.478 +0 .467
1956
Jan. Feb.
17 3 10
Mar.
14 5 14 19
Apr.
5 18
4 .493
.470
3
4 .501
4 .525
.451
4
4 .523
.453
4.520 4 .505 4 .450 4 .482 4.486 4 .498 4.495
.508 .494 .465 .499 .502 .491 .475
4 4 2 4 4 3 2
4.511 4 .495 4 .488
.507 .490 .470
4.489 4 .491 4.491
.495 .493 +0.484
mean 4.500
+0.483
1957
Mar. Apr.
May
23
24 6 15 24 1 3 5
Jun. 1958 Jan.
30 1
4 .500 4 .482 4 .494 4.501 4.516 4 .479
.479 .485 .484 .481 .470 .474-
4 4
4 .499 4 .487
–0 .481 .479
3 1 2
4.498
.485
4 .468
.470
4 .493
.485
4
4 .496
.484
4 .524 4 .489 4 .487
.463 .483 .486
1 4 4
4 .513 4 .489
.466 –0 .483
mean 4 .492
H- 0 .480
8
4 .484
.483
2
16
4.488
.485
3
4.491
+0.484
Feb.
11
4 .479
.481
4
4 .488
.475
Mar. Apr.
20 10
4 .521 4 .495
.497 .489
1 3
4 .515 4 .495
.495 .484
11
4.499
.479
4
4.499
.473
181
V B-V System of 10-year stds.
Table IV. Observations of Ten Year Standards Confd r Boo B-V V System of primary stds.
DATE
Wt.
B-V V System of 10-year stds.
1958 Apr. May
1959 Jan.
Feb.
Mar.
1960 Jan. Feb.
Mar.
Apr.
1961 Feb.
Mar.
Apr.
15 4
4498 4 .489
+ 01486 .486
4 4
4494 4 .491
9 10
4 .489 4.484
.470 .486
3 3
4 .486 4.478
+0.481
mean 4.491
+0.481
+ 0482 .485 .478
5 12 24 31 4 5 26
4.479 4 .489 4.495 4 .484 4 .480 4 .491 4 .480
.481 .476 .461 475 .472 .473 .476
1 2 3 4 2 2 2
4.511 4 .494 4.499 4 .493 4 .495 4 .496 4 .496
+0.485 .478 .477 .480 .477 .474 .468
28 1 3
4 .486 4 .484 4 .471
.476 .470 .452
3 3 4
4 .480 4 .486 4 .494
.477 .480 +0 .466
mean 4.493
+0.476
28
4.497
.477
2
4.500
–0.477
17 21 23 15 17 18 19 21 26 30 3 6
4.528 4.510 4 .486 4 .493 4.492 4 .507 4.492 4 .492 4 .502 4 .493 4 .490 4.503
.439 .474 .490 .477 .481 .485 .471 .504 .480 .478 .467 .465
5 4 5 3 3 1 1 3 5 2 4 4
4.526 4.501 4 .487 4 .494 4.486 4 .492 4.500 4 .498 4 .495 4 .498 4 .496 4.495
.444 .474 .488 .484 .487 .484 .472 .479 .482 .480 .471 +0.471
mean 4 .498
+0 .475
4 .493 4.489 4 .487 4.504 4.481 4 .495 4 .491 4 .495 4 .529 4 .502 4 .493 4 .500 4.496
+0 .483 .502 .469 .480 .480 .488 .481 .470 .478 .475 .478 .475 +0.473
mean 4 .496
+0 .479
6 8 10 15 22 24 1 8 23 31 4 9 12
4 .493 4.494 4 .494 4.517 4.471 4 .487 4 .498 4 .507 4 .533 4 .508 4 .500 4 .494 4.499
.485 .511 .475 .480 .484 .502 .484 .472 .479 .460 .483 .469 .474
182
4 3 2 3 4 2 4 4 3 3 4 2 3
Table IV. Observations of Ten Year Standards ConVd ,j Boo V B-V System of primary stds.
DATE 1955
Feb. Apr.
May
Mar. Apr.
V
B-V
System of 10-year stds.
8 24 4 20 21
2’681 2 .693 2 .663 2 .666 2.677
+0588 .577 .601 .587 .582
4 3 3 5 4
2’683 2 .667 2 .675 2.678
+011574
4
2 .679 2.697 2 .667
.577 .571 .584
4 4 4
2 .682 2.692 2 .666
.580 .575 +0.582
mean 2 .678
+0 .581
3 4 4 4 2 4 3 2
2.694 2 .693 2 .680 2 .674 2 .681 2.657 2 .691 2.681
+0.575 .575 .584 .588 .589 .597 .583 +0.578
mean
2.681
+0.584
2 .696 2 .689
+0 .585 .588
2 .699
.580
2 .651 2 .687 2.686
.577 .583 +0.581
mean 2 .689
+0 .583
2 3 4 1 4 3
2 .680 2 .675 2 .699 2 .679 2.691
.589 .584 .579 .591 .569
6 28 1956 Jan. Feb.
Wt.
17
3 10 14 5 19 5 18
2.686 2 .695 2 .689 2 .684 2 .643 2.654 2 .698 2.685
.578 .573 .585 .592 .584 .605 .581 .569
.591
.586 .578
1957
Mar. Apr.
23 24 6 15 24
May
Jun. 1958 Jan. Feb. Mar. Apr.
May
1959 Jan.
1 3 30 1
2 .697 2 .684 2 .691 2 .702
.583 .594 .583 .576
4 4 3 3
2 .768
.588
1
2 .662 2 .684 2.686 2 .677
.581 .584 .581 .594
1 4 5 4
8 16 11 20 10
2 2 2 2 2
.682 .677 .666 .705 .679
.585 .590 .590 .581 .596
11 15
2.691 2 .693
.575 .583
4
2 .689
.579
4 9 10
2 .677 2 .678 2.678
.591 .582 .595
4 3 3
2 .679 2 .675 2.672
.590 .590 +0.590
mean 2.681
+0.585
5 12
2 .675 2.671
.580 .586
1 2
2 .707 2.676
+ 0 .584 .588
24 31
2 .676 2 .670
.570 .578
3 4
2 .680 2 .679
.586 .583
183
Table IV. Observations of Ten Year Standards Cont’d r Boo V System of
DATE 1959 Feb.
Mar.
1 960 Jan. Feb.
Mar.
Apr.
4
5 26 28 1 3
28 17 21 23 15 17 18 19 21 26 30 3
21660 2 .684 2 .644 2 .670 2.687 2 .641
2 .676 2.677 2 .695 2 .683 2 .683 2 .691 2.702 2 .681 2.678 2 .689 2 .681 2 .666
B-V primary stds. -
0578
.574.574 .591 .568 .576
Wt.
V
211675
+ 01583
2 .689 2 .660 2 .664 2.689 2.664
.575 .592 .578 +0.590
mean 2.677
HO.584
2 .679 2.675 2 .686 2 .684 2 .684 2 .685 2.687 2 .689 2.684 2 .682 2 .686 2 .672
-i-0 .586
2 2 1 3 3 4
.586 .579 .582 .584 .586
2 4
.574
3
.587 .571 .607 .582 .581 .584
1 1
5 5 3
3 5
2 4
mean 2 .682 1961 Feb.
Mar.
6 8 10 15 22 24 1
8 23 31 Apr.
4
9
12
2 .688 2 .683 2.703 2 .689 2 .660 2 .683 2 .683 2 .684 2.719 2.693 2 .687 2 .674 2.686
V
DATE 1955 Feb.
.584 .588
4 3
.579
2
.584 .584 .608 .584 .586 .588 .556 .582 .582 .585 Boo B-V
B-V
System of 11-year stds.
.584 .582 .582 .593
.580 .586 .572 .582 .584 .583 +0 .588 –
0 .584
2 .688 2 .678 2.696 2 .676 2 .670 2 .691 2 .676 2 .672 2 .715 2.687 2 .680 2 .680 2.683
+0 .582
niean 2.683
+0.582
3 4
3 4 4 3 3
4 3
3
Wt.
System of primary stds.
.566
V System
.579 .573
.584 .580 .594
.581 .584 .587 .571 .577
.588 +0.584
B-V of 10-year stds.
8 24
41474 4 .475
+0’373 .360
4 2
41465
H 01357
Apr.
4
4.445
.384
2
4.449
.374
May
20 21 28
4.442 4.449 4 .470
.368 .371 .357
5 4 4
4.451 4.450 4 .469
.367 .367 +0.355
mean 4 .456
-I-U .364
4 .474
+ 0 .365
1956 Jan.
17
4 .466
.368
184
4
Table IV. Observations of Ten Year Standards Con+’d cr Boo V System
DAlE
1956 Feb.
Mar. Apr
1957 Mar. Apr.
May
3 10 14 5 19 5
24 5 15 24 1 3 30
Jun.
1958 Jan. Feb. Mar. Apr.
1
9 16 11 20 10 II
15 May
4 9 10
41482 4.484 4.487 4 .424 1.470 4 .463
4.450 4.460 4.476 4 .436 4 .447 4 .447 4 .458 4 .456
4.456 4.458 4.462 4 .495 4.461 4.451 4 .454 4 .459 4.452 4.447
B-V of primary stcls.
01353 .364 .371 .357 .369 .366
.370
.356 .357 .365 .357 .366
.364 .368
.363 .369 .360 .371 .372 .372 .369 .366 .357 .370
Wt.
4 5 5 2 4 3
4 4 2
B-V V System of 10-year stds. 41480 4.475 4.477 4.462 4 .473 4.456
H- 01355 * 363 * 367 .362 .361 0 .368
mean 4 .473
HO .363
4.455
+0.364
4.473
.361
4.436 4 .450 4.458
.353 .365 –0.364
mean 4 .455
+0 .363
4 .461 4.471 4.489 4.461 4.451 4.450 4.461 4.449 4.441
+0.368 .354 .369 .367 .366 .365 .365 .365 -0.365
9
2 4 5 4
3 3 4 1 3 4 4 5 3 4
mean 4 .457 1959 an.
5 12 24 4 5
4.441 4.450 4 .468 4.465 4 .449 4.453
26
4.439
28 1 3
4 .459 4 .457 4 .423
31
Feb.
Mar.
1 960 Jan.
Mar.
28 17 21 23 15 17
4 .467 4.458 4.476 4.460 4 .467 4.472
.357 .363 .342 .347 .356 .370 .379 .352 .352 .346
.365 .365 .353 .363 .352 .356 185
1 2 3 4 2 2 2 3 3 4
2
5 4 5 4 4
H-0
.364
4.473 4.455 4 .472 4.474 4.464 4.458 4.455 4.453 4 .459 4.446
--0.361 .365
mean 4 .460
-f0 .360
4 .470 4.456 4.467 4.461 4 .468 4.466
-HO .365 .370 .353 .361 .359
.358 .352 .361 .371
.371 .353 .362 H0 .360
.362
Table IV. Observafons of Ten Year S+andards Conid u Boo V
B-V
System of
DATE
1960 Mar.
Apr.
18 19 21 26 30 3 6
41’474 4.471 4.460 4 .475 4 .465 4.451 4.470
Wt.
+0’1’376 .353
1 1
4i459 4.479
.388
4
.362
5 2 4 4
4.466 4.468
23
4 .466 4.462 4 .472 4 .455 4 .465 4 .479 4.476 4 .466
31
4.483
4
4 .468
9
4.464
12
4.466
8 10 15
Mar.
22 24 1 8
Apr.
B-V stds.
.360
.358 .351
.366 .369 .369
.375 .376
.362 .365 .348 .336 .365 .356 .356
H- 0i375
4.470 4.457 4.462
.354 363 * 364 .362 .362 +0.357
4 .464
f 0 .362
3 2
4.461 4.455
+0.357 .363
3 4 2 4 4 4 3 4
4.459 4.465 4.473 4.472 4.464 4.462 4.477 4.461
.369
3
4.470
5
4.463
.351 .360 .362 +0.355
mean 4.465
+0.360
mean
1961 Feb.
V
System of lU-year
primary stds.
.371 .362 .359
.363 .347
Boo V DATE 1955
Apr.
May
B-V
Wt.
System of primary stds.
B-V V System of 10-year std.s.
4 20
41531 4.544
+0i781 .780
3 5
41535 4.553
21
4.530
.766
4
4.531
28
4.552
.764
4
4.551
077 I .779 .762 +0.762
mean 4 .544
+0.769
4.565 4.546 4.537 4.541 4.539 4.556 4 .564
+0.762 .754 .770 .774 .778 .769
mean 4 .550
+0.766
4 4
4 .547
2 2 2 4 5
H
Corrections to system of 10-year stds. +
01004
–0 .009
01010 -0.001
+0.001 -0 .001
-0.004
+0.008 -O .002 -O .009 -O .010 –0.038
–0 .003 -0.007
-0.003 –0.002 -0.001 -0.004 3-0.005 -0.008 + 0 .002
H-O .762
+0 .005
-0.006
4.555
.776
-0.003
+0.004
4.517 4 .538 4.548
.749 .764 +0.771
-0.011 +0 .003 0.000
----0.004 -0.001 0.000
-0.002
1956
Jan. Feb.
Mar. Apr
1957 Mar. Apr.
May
17
3 10 14 5 19 5
24 5 6 15 24 1 3 30
4.557 4 .548 4.546 4.551 4.501 4.553 4 .571
4 .542 4 .548 4.563 4.558 4.538 4.528 4 .535 4.548
.765 .752 .771 .778 .773 .777 .758
.768 .763 .782 .772 .773 .753 .765 .771
4 4 4 4 2 3 3
186
+0.760
Table IV. Observations of Ten Year Standards Contd
s Boo V DATE 1957 Jun.
1958 Jan. Mar. Apr.
May
1959 Jan.
Feb.
Mar.
1960 Jan. Feb.
Mar.
Apr. 1961 Feb.
Mar.
B-V
Wt.
System of primary stds.
1
16 20 10 11 15 4 9 10
5 12 24 31 4 5 26 28 1 3
28 17 21 23 15 17 18 19 21 26 30 3
8 10 15 22 24 1 8 23 31
4’548
4.552 4 .542 4.548 4.547 4.541 4 .546 4 .550 4.539
4.541 4.524 4.554 4.541 4 .533 4.551 4.535 4 .546 4.531 4 .507
4 .551 4.541 4 .556 4.550 4.558 4 .556 4.561 4.532 4.536 4 .550 4 .543 4.536
4 .565 4.576 4.563 4.541 4.525 4.561 4.570 4.538 4.555
+0766
.763 .756 .778 .769 .772 .766 .755 .760
.753 .774 .746 .766 .752 .766 .768 .758 .755 .749
.767 .772 .765 .764 .757 .754 .764 .758 .796 .761 .765 .761
.773 .779 .768 .774 .785 .775 .773 .778 .742
V
B-V System of 10-year stds.
Corrections to system of 10-year stds.
4
3 5 3 3 44 3 3
0 1 2 3 1 1 1 3 2 4
2 5 4 5 3 3 1 1 3 5 2 3
2 1
3 4 2 4 4 3 1
mean 4.543
H-U .765
4.555 4 .536 4.548 4.547 4.537 4 .548 4 .547 4.533
–0.762 .754 .773 .763 .768 .765 .763 –0.755
mean 4.543
+0.763
4.573 4.529 4.558 4.550 4 .548 4.556 4.551 4 .540 4.533 4 .530
+0.757 .776 .762 .771 .757 .767 .760 .759 .765 +0 .763
mean 4 .542
+0 .764
4 .554 4.539 4 .547 4 .551 4 .559 4 .550 4.546 4.540 4.542 4 .543 4 .548 4.542
+0 .767 .777 .765 .762 .764 .760 .763 .759
mean 4.547
+0.766
4 .560 4.569 4.550 4.551 4.533 4.554 4.558 4.534 4.549
+0 .764 .773 .768 .770 .771 .772 .771 .777 .757
187
.771
.763 .767 +0.765
+0" 003 -0 .006 0.000 0.000 -0.004 +0 .002 --0 .003 -0.006
-0001 0 .002 -0.005 -0.006 -0.004 -0 .001 +0 .008 -0.005
+0.032 +0.005 +0.004 +0.009 +0 .015 +0.005 +0.016 -0 .006 +0.002 +0 .023
+0.004 –0.002 +0.016 +0.005 +0 .005 +0.001 -0.008 +0 .001 +0.010 +0 .014
+0 .003 -0.002 -0 .009 –0 .001 H-U .001 -U .006 -0.015 +0.008 +0.006 --0 .007 +0 .005 +0.006
0 .000 +0.005 0 .000 -0 .002 +0 .007 -HO .006 -0.001 +0.001 -0.025 +0 .002 +0.002 +0.004
-0 .005 -0.007 -0.013 +0.010 +0.008 -0.007 -0.012 -0.004 -0.006
-0 .009 -0.006 0.000 -0.004 -0.014 -0.003 --0.002 -0.001 +0.015
Table IV. Observations of Ten Year Standards Con+d Boo B-V V Systeni of primary stcls.
DATE
1961 Apr.
Wt.
4 9
4584 4 .557
+01778 .754
4
12
4.550
+0.748
4
Corrections to system of 1 0-year stds.
B-V
V System
of 10-year
stds.
0":007
4577 4 .563 4 .547
.760
+0.006
- 0005 +0.006
+0 .747
-0 .003
--0 .001
mean 4.554
--0.767
3
+0773
--
Table V. Observations of Comparison Stars UA 53
=
B-V System of primary stds.
V
DATE 1954 Feb. 28 5882 1 5 .853 Mar. 1961 6 5.864 Feb. 8 5 .856 10 5 .867 21 5 .885 22 5 .852 24 5.856 1 5.858 Mar. 8 5 .861 23 5 .846 31 5 .880 Apr. 4 5 .861 12 5.873
DATE 1954 May 31 Jun. 2 12 14 16 17 1961 Feb. 8 10 15 22 1 Mar. 8 23 4 Apr. 12
Wt.
V B-V System of 10-year stds.
+ 0364 .372
3
.370
4
5864
.373
3
.380 .375 .369 .375 .374 .377 .365 .366 .379 +0.374
3 3 4 3 4 4 3 3 2 4
5 .851 5 .860
+01368 .364 374
5 .862 5.864 5.851 5.849 5 .842 5 .874 5 .854 5 .870
.365 .361 .371 .375 .364 .381 .374 +0.373
mean 5 .859
+0 .370
DATE 1954 May June
3
1961 Feb.
Mar.
Apr.
HO 118704 NA 54 V B-V B-V V System of System of 10-year stds. Wt. primary stds. 8’1501 8.507 8 .504 8.491 8.454 8.500 8 .515 8.495 8.520 8 .475 8 .511 8.501 8.506 8.489 8.489
+0’543 .564 .552 .568 .562 .539 .546 .545 .548 .531 .547 .540 .553 .542 +0.544
NB 54 = HO 118705 V B-V B-V V System of System of 10-year stds. primary stds. Wt.
48 Gem
HO 55052
80510 8.488 8.507 8 .485 8 .504 8.489 8.502 8.482 8.486
+0537 .539 .548 .527 .544 .538 .552 .537 +0.543
mean 8.494
+0.541
9 171 9 .181 9.170 9.166 9 .134 9 .180
–
01476 .476 .492 .499 .494 .469
2 2 1 2 2 1
8 10 15 22 1 8 23 4 12
9.172 9.171 9.176 9.147 9 .190 9 .178 9 .196 9.183 9.169
.475 .468 .475 .462 .458 .470 .445 .462 +0.470
2 1 2 2 3 2 2 3
UA 54
=
9167 9.164 9.163 9.157 9.183 9.166 9.192 9.176 9.166
+ 01466 .462 .475 .458 .455 .468 .444 .457 -1-0 .469
mean 9.171
+0 .461
3
HO 61997
B-V
System of
DATE 1953 Oct. 30 Nov. 6 8 23 1954 Feb. 17 23 24 28 Mar. 29 1961
2 2 1 2 2 1 2 2 2 2 3 2 2 3 3
31 2 12 14 16 17
Feb.
188
primary stds.
We
7105 7 .100 7 .102 7 .113
+0422 .416 .431 .415
3 3 2 2
7 .120
.421 .422 .434 .413 .421
3 3 3 4 3
.421 .415 .412 .411 .409 .423
4 3 3 3 4 3
7 .136
7 .144 7 .146 7.119
6
7 .133
10 15 21 22 24
7.143 7 .143 7.132 7.129 7.108
V B-V System of 10-year stds.
71133 7.136 7 .130
+01419 .409 .412
7.139 7.116
.405 .409
Table V. Observations of Comparison S+ars Contd
B-V System of primary stds.
1961 Mar
V
B-V V System of 10-year stds.
V DATE
Wt.
Apr. 12
7" 129 7 .139 7.122 7 .139
7.137 7.136
+
DATE
4
.410
3 3
7.118
3 3
7.130 7.133
.409 .429 .413 +0.409
mean
7 .129
0.411
.414 .418 +0.410
4
7F122 7 .127 7 .133
B-V System of primary stds.
Wt.
-
24 Mar.
.410
8 23
31 Apr.
4 12
6940
+1:047
2
UB’ 54
10-year stds.
V
Nov.
6
6 .938
1,047
2
Apr. 17
Feb.
8 10 15 21 22 24
6 .969 6.986 6,980 6.977 6 .966 6 .942
1
1.049
6 .963
3
1.052 1.067
3 3
1.046 1.044
3 3
6,961
1.034 1.064 1.052
4 3 4
8
6.963
1.056
4
23
6.961
1.046
3
31
6.972
1.046
3
4 12
6 .974 6.979
1.048 1 .051
3 4
6:964 6 .979 6 .967
+ 1:043 1 1
1961 Feb.
.061 .046
6 .976 6 .950 6 .954 6.951 6 .957 6 .966 6 .967 6 .976
1 .030 .050 1 .049 1 .054 1 .045 1 .061 1 .043 +1 .050
mean 6 .964
+ 1 .048
=
B-V System of primary stds.
1 954 Mar. 30
6: 534
4 f
6.547 6.539 6.526 6.556 6.555 6.559
0:458 .455 .456 .458 .473 .450 -0.463
mean 6 .545
+0 .460
Mar.
Vt.
=
3
2 2 3
HD 58899
B-V
7143
V Wi.
0931 .927
2 3
6
7.143
.934
2
22
7.153
.931
2
26
7.141
.927
2
8
7.168
.920
10
.946
3 3 3
21 22 24
7.188 7 .168 7 .178 7.156 7.135
1 8
7 .157 7.165
.937 .930
23 31 12
7.155 7.170 7.180
.922 .918 +0.921
.919 .921 .915 .947
10-year stds.
7:163 7 .181 7 .155
+0:911 .940 .919
7.166 7 .143 7 .150 7.153 7 .151 7 .164 7.177
.911 .933 .934 .928 .921 .933 +0.920
.160
+0 .925
1 4 3
4 4 3 2
3
mean 7
UA 55 V
V B-V System of 10-year stds.
DATE
-
B-V
System of
of
7 .147
HD 58551
V DATE
:3
.458 .458 .459 .458 .455 0.464
1
15
1
Apr.
UA’ 54
u472
prinlary stcls.
1954 Mar. 30
1954
Feb. 1961
6526 6.554 6.551 6.530 6.562 6.562 6.562
B-V System of DATE
30
HD 63772
B-V System of
primary stds.
V System Wi.
B-V
of
10-year stds.
1955 6:544
-0.468
1
6 .544
.474
6
6 .540
.466
2 3 2
22 26
6.545 6.540
.476
2
.474
2
6 10
6 .547 6 .553
.454 .465
4 3
15
6 .560
.455
21 22
6.549 6 .538
.472 .484
Apr. May
1961
Feb.
1
System
1953 Oct.
Apr.
B-V System of 1 0-year stds.
Wt.
HI 60914
V DA FE
0403
0406 .412
UB 54
Apr.
B-V System of prIrnr stds.
1961 1 8 23 31
Mat.
HD 58551
UA’ 54
HI 61997
UA 54
3
6Th47 6 .546 6 54.7
+01’452 .459 455
1 4
6 .548
.480
189
8F939 8 .943 4 8 .961
20 25
+0:354 .340 .361
4 4 2
8948
+0353
8 .964
.364
1956 Jan. 17 Feb .3
8.943 8 .944
.353 .358
44
8.951 8 .942
.350 .360
10 14 Mar .5 14 19
8 .968 8 .965 8 .932 8.943 8 .952
.352 .325 .348 .349 .357
4 5 2 3 3
8 .959 8 .955 8 .970
.351 .321
8 .955
.349
.353
Table V. Observations of Comparison Stars Contd
1956 Apr. 1961 Apr.
-
V
B-V
System of rimary stds.
DATE
NB 55
HD 63772
UA 55
V
Wt. 4 2
8951
8.960
OP345 .370
8.956
0347 .379
8.952
0.359
3
8.949
+0.358
mean 8.9j3
0.350
5
8P958
18 12
UB 55 V
1955 Apr. May 1956 Jan. Feb.
Mar.
Apr 1961 Apr.
B-V
V
primary stds.
1956 Jan. Mar. Apr. 1961 Apr.
1 2 2 2 2
8+23
._0P438
8.919
.473
1956 ,Jaii.
17
Feb.
10
3 3 2
.449 .459
14 19 .5 18
.452 .460 .452
8.901 8.892
Mat.
8.893 8.901 8 .910 8 .873 8.892 8.913
.480 .459 .429
4 3 1
8 .876 8.885 8 .909
.461 .438
12
8.895
+0.472
3
8.892
.0471
mean 8 .897
+ 0 .459
Qy35
20 25 4
79400 7 .388 7.416
09386
4
.391 .393
4 7
7.419
.396
17 3 10 14 5 14
7 .393 7.410 7.425 7 .423 7 .370 7 .400
.391 .378 .378 .357 .390
4 4 4 5 2
7 .401 7.408 7.416 7 .413 7 .408
.391 .380 .377 .353 .395
19
7.401
.378 .391
3 3
7.404
.383
.5
7.404
.388
4
18
7 .413
.378
2
7.397 7 .411
.390 .387
7.424
-0.384
3
7.421
+0.383
mean 7 .409
1-0 .381
12
79409
primary stds.
21
79730
3-0344
25
7 .763
.496
4 20
7.729 7.723
.541 .557
21
7.731
.553
17 10 14 19 3 18
7 .701 7.704 7 .713 7.711 7.717 7.718
12
7.714
Wt.
+442 .467 .470 .454 .473
10-year stds.
Wt.
B-V
System of 1 0-year stds.
8922 8.902 8.916 8.910 8.905
Apr.
DATE
Ma’ Jun.
B-V
V
21 23 4 20 21
May Jun.
System of
.172
1961
Apr.
UA ab
HD 67228
V
ii
B-V System of
DATE
a’ imary stcls.
y
t.
Cnc. V B-V System of 10-year stds.
1955
NA 55 HD 120186 V B-V System of 1955 Apr.
1955 Apr.
B-V
Systeni of primary si ds.
DATE
HD 62720
System of
DATE
V
B-V
System of 10-year strls.
HI 119869
Vt.
Apr.
Ma Oct.
BSystem of 1O-year stds.
3 2 2 2 2
7i731
.546 .514 .549 .361 .516 .530
.3 3 2 4
7.712
0 .j50
3
Nov.
+09540 1956 Jan. Feb.
7.732
Mar.
7 .695 7.714
7 .710 7 .714 -
Api. .a39
ill
0 .D49
mean 7.714
+0.546
/
12 21 25 4
5.301 5 .321 5 .287 5 .308 5 .297 5 .293 5 .280 5 .283 5 .308 5.304 5 .304
.622 .642 .640 .637 .629 .632 .633 .625 .639 .633 .641
5 4 4 2 3 3 2 3 3 4 4
5.304
.637
5
17 3 10 14 .5 14 19 5 18
3.287 5 .292 5.306 5.326 5 .271 5.307 5 .302 5 .287 5.308
.646 .644 .636 .620 .628 .625 .633 .634 .630
4 -1 4 5 2 3 3 4 2
23 21 26
5 .296 5.309 5.307
.633 .614 .643
4 1 1
27 28 30 31 4 19 20 27
-
l9ai Mar.
190
5P322
-
07638
5 .311
.640
3.295 5 .290 5.297 5.316 5 .309
.643 .646 .635 .616 .633
5 .305 .280 5.304
.625 .636 .639
5 .295 5.311
.635 .638
Table V. Observations of Comparison Stars Contd UA 56 T
B-V System of primary stcls.
DATE
Wt.
May
1961 Apr.
5 9 15 16 19 20 1 3 5
5!293 5 .307 5 .305 5.310 5.305 5 .299 5 .325 5.308 5.310
0t633 .632 .626 .633 .632 .638 .650 .639 .628
4 2 2 1 1 2 1 3 1
DATE
1961 Apr.
12
5 .313
H-O .634
3
5o302
HI 68256 B-V System of primary stcls.
V DATE
1955 Oct.
5 .311 5 .311 5.299
.646
5 .310
+0 .633 -
0 .635
3 2 a 3 4 4 5
17 3 10 14 MarS 14 19 Apr. 5 18 1957 Mar. 23 24 26 Apr. 5 9 15 16 19 20 May 1 3 5
4.661 4 .652 4.675 4.686 4 .637 4 .658 4.677 4 .683 4 .675
543 .543 .532 .520 .533 .533 .525 .51 0 .533
4 4 4 4 2 4 3 4 2
4669 1.650 4.666 4.676 4.675
+ 0540 .545 .531 .516 .538
4 .680 4.676 4.671
.517 .512 .542
4 .674 4.691 4.681 4 .665 4.679 4.671 4.681 4.677 4 .665 4 .689 4 .683 4 .670
.526 .532 .540 .526 .528 .531 .531 .518 .536 .s : 9 .329
4 4
4.673 4.696
.528 .526
.531
0539 --
0 .530
HD 119638 V B-V System of 10-year stds.
17 19 20 3 10 19 5 18
6907 6.900 6 .899 6 .941 6.905 6.907 6 .918 6 .933
--01542 .541 .535 .527 .546 .566 .534 .529
2 1 1 2 2 4 2 0
6915
+01539
6 .939 6.896 6.910 6 .911 6 .929
.529 .545 .558 .536 .538
6 .900 6.906 6 .942 6.905 6.905 7 .086 6 .861 6.906 6 .910 6.915
.546 .542 .533 .531 .539 .531 .529 .552 .531 .544
2 2 1 4 2 0 0 1 I 1
6 .899 6.911
.548 .536
6 .850 6.909 6 .910
.525 .551 .531
Jun.
23 24 5 6 18 24 1 3 30 1
1961 Apr.
12
6.925
+-0 .510
2
6.922
+0.539
mean 6.912
+0.543
Feb Mar. Apr.
System of 10-year stds.
+0531 .527 .531 .528 .539 .535 .538 .536
Apr.
May
NB 56 = HD 121111
4.668
1956 Jan
Mar.
.535
Apr. 4.678 4 .686 4.659
B-V Systeni of 1riary stds.
DATE
Feb.
2 1 3 1
4678
B-V System of primary stds.
DATE
1957 Mar.
2
3
B
nean 1 .674
1956 Jan.
4663 4.671 4 .657 4.648 4 .678 4.669 4 .670 4 .675
1956 Jan. Feb.
4 0540
Vt.
V
27 28 30 31 4 19 20 27
Nov.
468 I
0630
8 Cnc A--B+C V B-V Wt.
12
NA 56
mean 5 .304 UB 56
B-T System of prilisary stds.
I
V B-V Systens of 10-year stds.
V
B-V V System of 10-year stds.
1957
Apr.
nc A
LB 56 = HD 68256
p Cnc.
Hi 67228
17 19 20 3 10 14 19 5 18
7p691 7 .694 7 .697 7 .714 7.690 7 .718 7.698 7 .685 7.708
23 24
7 .680 7 .681
--
01549 .550 .541 .534 .548 .545 .554 .365 .528
Vt.
V B-V System of 1 0-year stds.
7699
H-00546
7.712 7.681
.536 .547
7.701 7 .678 7.704
.546 .567 .537
7 .679 7 .686
.358 .552
4 a 4 3
1957
.535 .528 .534
Mar.
191
.556 .358
3 3
Table V. Observations of Comparison Stars Confd NB 56
=
B-V
System of primary stds.
DATE
CII 57
MD 121111
Wt.
May
Jun.
5 6 18 24 1
7735 7.690
3 30
7.689 7 .690
1
7 .695
.540 .509 .561 .546 .550 .540 .554
12
7.702
+0.552
+ 0538
1955 Oct.
7.736
7.799 7 .656
2 4 2 1 1 2 2
71645 7 .692 7 .690
F 01542
UA 57
--
+0.551
mean 7 .691
*0 .549
HD 72779
B-V System of primary stcls.
-
V
DATE
Wt.
6.388
17
6.384
.975
3
6392
3 10
6.389 6.398
.978
6 .387 6.389
14
6.381
.5
6.355
.970 .988
4 4 3 3
61578
+0681
14 19
6.394 6.391
.978 .990
23 24 26
5
6 .388 6.410 6 .380 6 .397 6 .389 6 .407 6 .394 6.387 6 .359 6 .384 6 .398 6 .382 6 .419 6 .391 6 .408
1959 May 1961
28
Apr.
12
Jan. Feb.
35 Cnc
V B-V Systersi of 10-year stds.
.5
1956 4 4 4 4 2 4 3 4 2
6F581 6 .583
+ 0678 .681
6 .592 6.589 6 .539 6 .584 6.578 6 .582 6.594
.681 .679 .683 .664 .688 .666 .684 .679 .668
6 .583 6 .579 6 .577
.682
6 .581 6 .575 6 .590
.676 .681 .677
23 24 26 31 5 7 9 15 16 18 19 20 26 1 3 5
6 .573 6 .596 6 .567 6.589 6 .576 6.583 6.593 6 .584 6.581 6.560 6.584 6 .579 6 .583 6 .601 6 .586 6.608
.685 .683 .691 .693 .671 .692 .679 .668 .675 .672 .674 .678 .682 .680 .678 .663
5 4 1 1 4 5 2 3 2 1 1 2 1 1 3 1
6 .572 6 .601
.687 .677
6 .590 6 .589 6 .597
.677
12
6.600
+0.678
4
6.597
+0.677
mean 6 .584
+0.678
Jan.
17
6.573
Feb.
3
6 .585
13 14 5 14 19 5 18
Mar.
Apr. 1957 Mar.
Apr.
May
1961 Apr.
1957 Mar.
.660 .693
16 19
6.383 6.386
20 27
6.387
31
Apr.
5
9 15 16 18 19 20 26
May
6 .581
61380 6.381 6.370 6.378
6.397 6.382 6.387
1956
Mar. 16
10-year stds.
Wt.
3
27 28 30 31 4 7 8
B-V
System of
3 2 3 3 3 3 5 4 4 5
Nov.
1955 Nov.
V
.981 .980 .976 .983 .979 .973 .982 .982 .980 .986
.549 .540
7.699
3
39 Cnc
0.966
1961 Apr.
System of prinry stds.
DATE
-
B-V
V
V B-V System of 10-year stds.
1957
Apr.
HD 73665
.672
I 3
.977
4 4
6.394
.982
.975 .978
5 4
6 .387 6.415
.977 .972
.982 .990 .965 .973 .970 .982 .967 .980 .978 .985 .985 .980 .960
1 1 4 2 3 2 2 2 2 1 1 3 1
6 .391
.974
6 .408 6 .394 6 .397
.981
6 .373
.979
1
6.391
+0.974
4
6.388
+0.973
mean 6.392
+0.977
1956 Jan. Feb. Mar.
192
19 10 14
71679 7 .692 7 .700
6.371
.979 .963
RD 121608 B-V
System of primary stds.
DATE
.980 .976
.966 .993
V
.666
0972
6 .393
NA 57 .676
-
V Vt.
B-V
System 0f 10-year stds.
4 0w536
.523 .539
2
7683
+ 01522
Table V. Observations of Comparison Stars Cont’d
System of primary stcls.
DATE
1956 Mar. 19 Apr. 5
Apr. Apr. May
Jun. 1961 Apr.
-i- 02548
7 .684 7 .697
.549
1-0556 .546 .531
2 1
23 24 28
7 .685 7 .692
.547
2
7 .684
.529 .519
2 2
5
7 .694
.534
2
6 18 24 1 3 5 30 1
7.671 7 .677 7.811 7 .671 7.671 7 .664 7 .691 7.681
.530 .533 .538 .524 .560 .552 .527 .549
4 2 1 1 2 1 2 2
7 .660 7 .674
12
7 .689
+0 .547
2
NB 57 V
Jun.
5 30 1
1961 Apr.
12
6841
Jan. Feb.
.548 .540
Mar.
.523 Apr Mar.
Apr.
7 .653 7 .691
.520 .559 .555 .527
7 .686
+0 .546
May
HI 121496 V B-V
Dec.
+0 .541
Feb.
-i-0470
B-V
System of
10-year stds.
Wt.
6. 703
Q. 860
4
6’7 11
021857
3 10 14 5 19 18
6 .695 6.730 6.726 6.673 6.713 6.723
.885 .860 .853 .870 .867 .852
4 4 4 2 3 2
6 .693 6.721 6.716 6.711 6.716 6.719
.887 .859 .849 .875 .859 .861
23 24 26 5 9 15 16 19 20 3 27
6.711 6.726 6.721 6.710 6.719 6.723 6.719 6.713 6.714 6.716 6 .697
.864 .865 .879 .857 .862 .864 .862 .867 .860 .864 .864
.5 4 1 4 2 3 1 1 2 3 4
6.710 6.731
.866 .859
6.720
.868
6.719
.863
11
6.706
.868
2
6.715
.862
6 .697 6.724
.867 .874
Apr.
10
6.725
.864
11
6.729
.865
4 2 4 4
6.718 6.725 6.729
.872 .859 .859
15 4 9
6.732 6.733 6.734
.859 .853 .849
6.732 6.720
.879 .866
6.728 6.735 6.731 6.726
.855 .852
10 8 9 16
6.708 6.711
.878 .865
3 3 3 3 1 3 4
6.714
.865
12
6.732
10.864
4
6.729
+0.863
mean 6 .720
+0.863
May 62845 6 .859
+09481 .464
6 .846 6 .854
.479 .470
2 2
6.813
.470
2
6.861 6 .836
.459 .462
2 4
6.837
.471
2
.960 .829 .844 .850 .844
.482 .463 .476 .452 .464
6 6 6 6
6 .843
.483
1 1 2 1 2 2
6.853
-10.478
3
6.850
+0.477
mean 6 .846
+0 .470
6 6 6 6 6
17
27 Mar. 20
2
Jun.
Apr.
.818 .847 .839 .844
.459 .475 .455 .464
UB 58 V
DATE
Nov.
705
0873
Wt.
B-V
System of 10-year stds.
16
62671
H 02706
5
Jan. Feb.
B-V
17
6 .661 6 .676 6 .711 6 .687 6.637
.712
4
69669
0709
.700 .698 .685 .697
4 4 4 2
6.674 6 .702 6 .677 6 .675
.702
10-year stds.
14 61
V
1956
1955 16
B-V
1955
System of Wr.
HI 75974
System of primary stds.
DATE
System of primary stds.
.857 .874
1961
ISA 58 = HD 75470 V B-V V
Nov.
Wt.
1958
-
System of primary stds.
DATE
I 3
B-V
System of 1 0-year stds.
1957
mean 7 .684
May
DATE
V
1 956 72690 7 .683 7 .690
7687 7 .690 7 .694
1956 Jan. 19 1957 Mar. 23 24 28 Apr. 5 6 18 24
System of primary stds.
of
10-year stds.
Wt.
4
18 1957 Mar.
System
B-V
V
B-V
V
B-V
V
HD 75470
LA 58
HD 121608
NA 57
Mai.
5 193
5
.697 .681
.702
Table V. Observations of Comparison Stars Cont’cI NAS8 =HD 123453 HD 75974
UB58
System of primary itt.
DATE
V
B-V
V
1956 Mar. 19 6678 + &t’704 Apr. 18 6.683 .698 1957 .690 Mar. 23 6.683 .704 24 6.691 .716 26 6.686 Apr. 5 6.666 .697 .701 9 6.680 .703 15 6.671 16 6.683 .709 .707 19 6.673 .702 20 6.677 .700 May 3 6.664 Dcc. 27 6.666 .706 1958 Feb. 11 6.666 .710 .713 27 6.654 Mar. 20 6.685 .709 .713 Apr. 11 6.692 15 6.686 .712 .699 May 4 6.698 9 6.689 .686 10 6.714 .693 Jun. 8 6.669 .700 9 6.664 .717 16 6.677 .707 1961 Apr. 12 6.693 +0.704
V
B-V
Wt.
Systemof 10-year stds.
3 2
&?681 +0P696 6.679 .707
5 4 1 4 2 2 1 1 2 3 4
6.682 6.6%
.692 .698
6.668
.707
6.667
.699
2 4 2 4 3 4 3 3 1 3 4
6.675
.704
DATE
6.679 6.692 6.682 6.700 6.686 6.708
.707 .707 .708 .698 .694
6.680
.707
6.690
-1-0.703
mean 6.684
+0.699
4
System of
DATE - itt. Wt. 1956 Jan. 20 7’P629 + 0588 2 Mar. 14 7 .655 393 2 19 7.629 .590 4 Apr. 5 7.650 .581 2 18 7.657 356 1 1957 Mar. 24 7.635 .574 2 Apr. 5 7.650 .598 I 6 7.656 393 4 May 30 7 .632 .583 1 Jun. 1 7 .629 372 1 .588 0 25 7 .632 7.633
.555
itt.
Feb. 27 7647 +0’’594 Mar. 20 7 .633 .585 Apr. 10 7.626 377 IJ 7.628 .584 15 7 .623 .586 May 4 7 .629 .586 9 7.619 383 10 7.625 389 Jun. 9 7.620 .586 16 7.640 374 1961 Apr. 12 7.637 +0389 NB 58 V
Wt.
10-year
B-V
Systemof
10-year stds.
0?582 383
7.640
.568
7.632
4
7 .642
7?627 7 .626 7 .628 7.619 7 .631 7.616 7 £19
itt.
365
,-
.574
7 .634
+ 0.588
mean 7.632
+0376
2
lID 123255 B-V
=
95 Vir V
B-s’
System of 10-year itt.
59’462
+O’P334
5 .455
.341
5 .468 5 .452 5 .472 5 .470 5 .458 5 .458 5 .472
.354 .348 .347 .339 .354 .344 .325
5.471
.346
5.471
+0.341
mean 5.464
+ 0.343
-
UA59 = ND 79096 V B-V V Systemof
.583
DATE primary itt. Wt. 1958 Feb. 11 69’489 +0744 2 27 6.478 .740 4
.349
194
0?583 372 .578 382 385 391 384
7 .643
DATE Wt. 1957 May 30 5’P462 + 0fl34 2 Jun. 1 5 .469 .348 2 13 5.463 .352 3 14 5.477 .346 0 22 5.474 .351 2 24 5.464 .348 I 25 5.454 .354 I 1958 Feb. 11 5.446 .347 4 27 5.459 .344 Mar. 20 5 .474 .356 9 Apr. 10 5 .452 .353 2 11 5.472 .353 2 15 5.474 .343 2 May 4 5.456 .355 3 9 5.461 .336 2 10 5.478 .330 2 Jun. 9 5 .458 .345 2 16 5.468 .346 2 1961 Apr. 12 5.474 0.342 3
.688
7’?632 7.643 7.653
=
1 1 2 2 2 2 2 2 2 2
System of primary stds.
1958
11
primary
B-V
System of
1958
NA 58 = HD 123453 V B-V V
Feb.
V
B-V
System of
B-V
System of
10-year 6?498
itt.
+0738
Table V. Observations of Comparison Stars Cont’d
System of prinlary stds.
DATE
1958 Mat. 20 Apr. 10 11 1.5 4 May 9 10
V
B-V
V
UB 59
HD 79096
UA 59
Wt.
2 4
61496
0:1741
6.497
4 3 3 3
6.508 6.506 6.519 6.506 6.519
.739 .726 .731 .736 .734 .724
.725 .722 .718 .720 .719 .727 .721 .733 .730 .720
4
6.511
2
6 .503
.728 .734+0.742
6:502 6 .497 6 .508 6 .510
0.743 .747 .732 .735 .737 .726 .729
6.517 6 .509 6 .525
2
System of priniary stcls.
DATE 1959 Mat.
5 12
24
20 Feb.
Mar. 1961 Mar.
Apt.
.31 4 5 26 1 3
6 .470 6.498 6 .500 6 .400 6.495 6 .486 6.504 6 .490 6 .496
6.492
.31
6.514 6.510
12
6.500
23
LB 59
Mat. Apr.
1958 Feb.
4 5
6.501 6.509 6.506 6.498
4
6.515
.734
3 2 .3
6.510 6 .497
.727 .749 0 .741
mriean 6 .506
-f 0.731
81299
27 Mar.
1
8 .284
.446
4
20
8 .318
.443
9
Apr.
10
8.315
.460
8.308 8.333 8 .330 8.318
.4-50
Ma
11 15 4 9 10
4 4 3
5 12 24 29 31 4 5 26 28 1
8 .277 8.315 8 .306 8 .30.3 8 .298 8 .283 8.312 8 .303 8.356 8.322
Mat.
.740
Jan. B-V
V lU-year
8.325
-
stds.
.440 .439 .438 .465 .140 .425 127 .440 1-44
.451 .437 -156
2
4 9
a 5 4 5 5 3
.439
.435
9
8308
-i- 011453
8 .312 8 .315 8 .308 8.329 8 .332 8 .315 8 .319
.441 .455 .444 .436 .438 .446
8.309 8 .320 8 .310
1-4.4 .427 .443
8 8 8 8 8 8
.449 .456 .438 448 .440 .445
.324
.443
3
8.307
0.457
3
8 .299 8.304
.442 --0.456
mneami 8 .315
-0 .446
HD 124401 V B-V
System of primary stds.
B-V Systemim of 11-year stds.
Wt.
61980 7 .011
11020 0 .983
7 .002 6.967 6.971 6 .986 6.978 6.969
1 .020 1 .032 1 .023 1 .018 1 .01:3 1.023 1.017
2 2
6 .932 6 .981 6 .981 6 .981 6 .990 6 .974 6 .990 6 .990 6.971 6 .975
0 1 1 1 1 1 0 1 1 1
2
6.991
+1.017
mean
6 .984
1 .017
AVir V System
B-V of
6.090
I lU 18
2
7 .006 7.019
0 .989
1.026
2 4-
7 .009 7 .008 6.967 6.971 6.996 6 .984 6.981 6.975
1 .018 1 .022 1 .037 1 .029 1 .022 1 .014 1.015 1 .022
1 2 2 2 2 2 2 2
5 12
6 .900 6 .976
0 .993 1 .006
0 2
24
6 .977
1 .016
2
31 4 5 28 1 3
6 .972 6 .97.5 6 .969 6 .974 6 .996 6.969 6 .952
1.010 1 .015 1 .023 0 .99-11 .003 1 .005 1 .016
1 1 0 0 2
12
6.994
1.018
26
.307 .298 .317 .319 .350
8 .30,3
6.992
1959
System of
Wt.
011459
Feb.
.725
6.504
0:448
12
1957 Mat. 23 24 6 1958 Feb. 27 Mat. 20 Apr. 10 11 15 May 4 9 10
.724 .732 .722
5 5 2
8:3 13
23
DATE
Feb. 11
1959 Jan.
6 .504
Wt.
4
8:290
NA 59 V
.729 .724 .734
6.504
B-T
System of 10-year stds.
1961
3
HI’ 79499 B-V
System of primary stds.
DATE
3
V
0:434
1
1959
Jan.
RD 79499
B-V
V
B-V System of 10-year stds.
-
Mar. 1 961 Apr.
.460
NB 59 V DATE 1958 Feb. 27 Mar. 20 Apr. 10 11 15 Ma 4 195
HI 125337 B-V
System of primary stds.
Wt.
-
.997 .008 .032 .015 .020 .024 .986 .004 .015 .030
1 0-yeam strls.
01125
1
4.523
.130
1
4:517
0:128
4.498 4.500 4.527 4.512
.148 .145 .123
2
4.498 4.500 4.523 4.514
.143 .139 .119 .131
4Th1 1
-
.132
2 2 2
DATE 1958 May
TØl. V. Obsorvafions of Comparison Stars Confd UB6O =11182140 NB59=HD 125337 =AVir B-V V B-V V B-V V B-V V System of System of System of System of 10-year st& primary stds. Wt. DATE 10-year stds. Wt. primary stds. 9 4?510 10 4.505
+0’?122 .142
2 2
4?507 +0?130 .137 4.499
4.483 4318 4334 4.497 4327 4321
.136 .126 .118 .129 .119 .111 .118 .108 .120 .110
0 2 1 0 1 0 0 1 2 1
4.475 4323 4.538 4.506 4.542 4326 4325 4 327 4317 4320
1959 Jan.
5 12 24 31 Feb. 4 5 26 28 Mar. 1 3 1961 Apr. 12
DATE 1959 May
4.509
4.533 4315 4.497 4326
+0.138
+0.137
mean 4315
+0.131
Jan.
20 8.380 8.372 29 8.375 Feb. 17 8.376 18 8.380 21 8.390 23 8.385 25 8.377 Mar. 15 8.370 17 8.386 18 8.403 19 8.365 21 8.362 26 8.375 30 8.373 Apr. 3 8.370 4 8.373 6 8.395 1961 Apr. 12 8.373 28
UA60 = 11181563 B-V V B-V V System of System of 10-year stdt Wt. primary stdz. 9 8’P319 +O’P466 .483 15 8.284 .468 16 8.310
3 1 2
.479
.461
4 3 4 2 3 2 2 2 3 3 2 2 3 2 3 4 2 3
0.497
3
1960
Jan.
20 28 29 Feb. 17 18 21 23 25 Mar. 15 17 18 19 21 26 30 Apr. 3 4 6 1961 Apr. 12
8.282 8.278 8.281 8.272 8.276
.480
.479 .477 .486
.493 .472 .491 .479 .473 .477 .477
8.285
8.294 8.277 8 .277 8.293 8.306 8.270 8.272 8.284 8.268 8.278 8.270 8.292 8.268
.5
.474 .482 .456 .485
.
8’P281
+0M80
8.270
.482
8.276 8.295
.493 .470
8 .278 8.287 8.291 8.278 8.278 8 .277 8 .273 8.284
.486
8.284
.467
8.265
+0.496
mean 8.280
+0.478
I 1 1
1960
.140 .128 .134 .134 .124 .112 .110 .109 .130 .124
4323
2
1959 May 15 8’395 + 0629 16 8.394 .638 .616 28 8 .249 .628 .641 .641 .638
.624 .628
4 3 4
8’375
4-064I
2
8 .374
.643
8.381 8 .386
.628 £31
8 .371 8 .380
.647
.6 .640 .634 .628 .640 .664 .638 .630 £14 .630 .626
3 2 2 1 3 3 2 2 3 1 3 4 2 3
+0.644
3
.633
8 .373 8 .368 8.368 8.378 8.376
.640 £27 .641 .639 .640 .632 £18
8.387
.632
8.370
–0.643
mean 8.377
+0.635
8.388
NA 60 = HD 126251 V B-V V DATE 1959 Jan.
Wt.
B-V
System of 10-year stds.
5 12 4 5
6fl51 6.477 6.482 6.468
+0?’410 .415 .412 .418
0 2 1 0
6’M83 6.482 6.497 6.473
28 17 21 23 Mar. 15 17 18 19 21 30 Apr. 3
6.493 6.475 6.489 6.496 6.489 6.487 6.490 6.497 6.492 6.491 6.511
.407
2 1 2 1 2 2 3 3 2 2 1
6.496 6.473
Feb. .479 .476 .478 .475 .476
Systemof primary nds.
+0P414 .417 .417 .419
1960
Jan. Feb.
.484 .460
196
.419 .417 .410 .413 .414 .422 .414 .444
.417 .422
6.480
6.497 6.490 6.481 6.475 6.505 6.498 6.496
6317
.407
.424 .417 .408
.420 .420 .421 .415 .419 .419 .426
Table V. Observations of Comparison Stars Confd
B-V System of primary stds.
DATE
1961 Apr.
12
6497
+01412
Wt.
61494
+0411
mean 6.491
+0.417
2
B-V System of primary stds.
V B-V System of 10-year stds.
V
1959 Jan. Feb.
1960 Mar. 30 Apr. 3 6
1961 Feb.
Wt.
Mar. 5 12 4 5
61633 6.643 6 .650 6.641
+ 01423 .422 .415
0 2 1
61665 6.648 6 .665
.417
0
6.646
-
01427 .424 .420
Apr.
.418
B-V
System of primary stds.
DATE
Hf 126766
NB 60
DATE
V
V B-V System of 10-year stds.
V
Hf 83683
UA 61
Hf 126251
NA 60
Mar.
Apr.
1961 Apr.
28 17
6 .642 6 .636
.425 .428
2 1
6 .645 6 .634
.425 .433
21 23
6.643 6 .648
.416
1
6.634
.416
15
6 .652
.413 .429
1 2
6.649 6 .653
.411 .436
17 18
6.654 6.660
.405 .411
2 3
6.648 6.645
.411 .410
19 21 30 3
6 .647 6.662 6 .659 6 .660
.432 .454 .422 .441
3 2 2 0
6 .655 6.668 6 .664 6 .666
.433 .429 .424 .445
12
6 .655
+0 .424
IJA 61 V
6966 6 .956 6.994
0469 .470
3 4
61971 6 .962
+ 0147 1
.451
3
6.986
J57
6 10 24
6 .962 6.965 6 .966
.492 .483 .487
3 3 3
6 .962 6.958 6 .974
.490 .477 .473
23 31 4 9 12
6 .989 6.987 6 .972 6 .948 6.964
.457 .460 .460 .474 --0 .480
3 3 2 2 3
6 .985 6.981 6 .965 6 .954 6.961
.456 .475 .155 .180 +0.479
mean 6 .968
-fO .473
Feb.
Mar.
20
61983
28 17 18
6 .965
+0 .423
mean 6 .652
+ 0 .423
B-V Wt. 1 3 1
61968 6 .956
+ 01470 .484
6.966
21 23
6 .981 6 .971
.465 .476
2 2
6 .972 6 .972
.465 .474
25 15
6 .972 6 .970 6 .959 6 .983 6 .958 6 .960 6 .967
.463 .458 .480 .475 .474 .500 .479
1 3 3 2 2 2 1
17 18 19 21 26
.971 .953 .968 .966 .966 .960
.474
Hf 83509 V
B-V
System of I P-year stds.
Wt.
1960 Jan. Feb.
+01169
3
.474
3
17
7 .035
.473
1
7.034
.466
3
7 .033 7 .040
.472 .468
2 2
25 7 .022 Mar. 15 7 .028 17 7 .038 18 7 .046 19 7 .024 21 7 .027 26 7 .032 30 7 .032 Apr .37.035 6 7 .055
.482
1
.475 .460
3 3
.484 .474
2 2
.494
2
.476 .467 .458
1 3 4
.464
3
.042
.477
3
.040
.477
3
.035
.481
3
.066
.451
3
.045 .038 7 .034
.468 .464 .478
3 2 2
0.488
3
Apr.
197
71048 7 .034
18
196! Feb.
.465 .486 .474 .475 .475 .481
20 28
21 23
Mar. 6 6 6 6 6 6
=
B-V System of primary stds.
DATE
V B-V System of 10-year stds.
+ 01468 .470 .479 .469
6.958
UB 61
Hf 83683
Systeni of primary strls.
DATE
1960 Jan.
=
6 .652
2
B-V
System of 10-year stds.
Wt.
1960 Jan. Feb.
V
6 10 24 23 31
4 9 12
7 7 7 7 7 7
7.030
-
7037 7 .033
+0474 .478
7 .021
.472
7 .041
.466
7 7 7 7 7 7 7 7 7
.029
.472
.032 .031 .032 .033 .025
.466 .183 .475 .469 .478
.037 .04-1 .047
.469
.4-62 .470
.042
.4-75
.033 .043 .062 .039
.471 .467 .450 .483
.031 .040 7.027
.459 .484 +0.487
mean 7 .037
+0 .471
7 7 7 7 7 7 7
Table V. Observations of Comparison Stars Contd
FID 128596
NA 61
V
B-V
V
System of DATE 1
primary stds.
NB 61 B-V DATE
960
1
28 7o464 Feb. 1 7. 7 .470 21 7 .474 23 7 .480 Mar. 15 7 .473 17 7 .481 18 7 .480 19 7.479 21 7.483 30 7 .483 Apr. 3 7 .492 jan.
1961 Feb.
Mar.
Apr.
+0o651 * 645 .660 .641 .646 .646 .647
.650 .680 .657 .665
2 1 1 1 2 2 3 3
2 2 1
7fl467 7.468 7.465 7.481 7.474 7.475 7 .465 7 .487 7 .489 7.488 7.498
-H065l .650 .660
961 Apr.
7 .454 7.505 7 .459 7 .508 7 .538 7 .494 7 .480 7.480
.667 .652 .634 .656 .644 .643 .634 +0.652
NB 61
=
0 2 1 2 2 2
mean
7 .485
+0 .650
1961 Feb.
DATE
Apr.
DATE
B-V
Mar.
10-year stcls.. Apr.
1960 Feb.
Mar.
Apr. 1961 Feb. Mar.
17 21 23 15 17 18 19 21 30 3
8 22 I 23 31
Apr.
9
6 188 6.201 6.191 6.185 6.180 6.202 6.201 6.220 6 .208 6 .216
6 6 6 6 6 6
.202 .180 .234 .204 .218 .195
1
0457 .450 .155 .469 .178 .450 .460 .488
.457 .469
.487 .464 .474 .438
.450 .449
1 2 1 2 2 3 3 2 2 1
2 1 2 2 2 2
61186 6.192 6.192 6.186 6.174 6.187 6 .209 6 .226 6.213 6.222
6 .197 6.190 6.227 6.200 6.212 6 .201
Vt. 2
8o099 8 .076 8.092 8 .086 8.106 8 .099 8 .092 8.076 8.083
6203
H- 01462 .450 .453 .476 .484 .449 .461 .463 .459 .473
24 23 31 4 9 12
0547 .545 .543 .558
.543 .533 .547 .537 O .555
Vt.
4 3 3 3 3 3 1 2 3
B-V
System of 1 0-year stds.
0545 .536 543 .544 .542 .547 .542 .543
8099
8.071 8 .079 8 .094 8.102 8 .093 8 .085 8.082 8 .080
+0.554
mean 8 .088
+0.544
BSystens of I 0-wear stris.
11042 1 .056 1 .036 1 .032 1 .040 1 .022 -31 .047
Wt. 3 3 3 2 4 2 3
71781 7.799 7 .814 7 .799 7 .793 7.792 7.796
mean 7 .796 =
i042 1 .042 1 .03.5 1 .046 1 .035 1 .028 +1 .046 +
+ 1 .039
Hf 129271
V
B-V System of primary stds.
DATE
0.461
HD 86898
-
NA 62
+
V
B-V
7794 7.791 7 .818 7 .805 7 .800 7.786 7.799
Qn455
Hi 87176
primary stds.
15
B-V
System of I O-vear stcls.
System of
System of
Wt.
0456
LB 62
1961 Feb. V
6 8 15 24 23 31 4 9 12
V
RD 128429
B-V System of primary stds.
-
B-V System of prilnary stds.
DATE
.646 .651 .655 .659 .669
2 2
6i206
LA 62
.652
.665 .643 .630 .653 .643 .658 .640 +0.651
V
12
.639 .653
7 .454 7 .500 7 .469 7.501 7.534 7.488 7.486 7.477
V
mean 6 .201
Mat. 6 8 22 1 23 31 9 12
B-V System of primary stds.
V
System of I O-vear stds.
Wt.
Hf 128429
V Wt.
B-V System of I O-year stds.
1961
Feb.
.178 .460 .471 .437 .465 .455
Mar. Apr.
198
8 10 15 22 1 23 9 12
81058 8.052 8 .063 8.021 8 .070 8.051
8 .041 8.058
-
01837 .817 .843
.812 .842 .815 .805 0.811
2 1 2 1 2 2 1 2
8053 8.045 8.050
-
0o828 .811 .843 .808 .839
8.031 8 .063 8 .047 8 .047 8.055
30.810
I Isean 8 .051
+0.823
.814
.811
tudes and colors was formed foi each len-Year Standard using only the nights when at least 12 Tencrc observed: these averages ace Year Standards given with theic mean errors in Table VI. The de viations of iodi idoal observations of the Ten-Year Standarrls from these averages s crc computed. The weighted means of these di’s iations ci e fornied fm t’ach night gis cii in the last tso colouins of Table IV and added to all tIme observations of the TenYear Standa! ds and conipam ison stars observed that night. The magnitotles arid colors corrected in this way are given in Tables IV and V io the fifth and sixth columns for each star. These are the values which can be considered as deterusinerl by coin lfl5O0 with the mean uiagnitudcs and colors of the Ten-Year Standards. These magnitudes and colors will henceforth be considered to he reduced to the system of the ‘lcn-Ycar Standards.
nights when the extinction was determined. aQ,i in this equation was replaced hy the mean was determined. error with which From equations 25 and 26 it can be con cinded, that the highest accnracy of photometric ob servations is obtained when all the stars are observed at the same, fairly high. altitude, except for the few standard stars observed at different altitudes for de ternuning the extinction coefficient. the
Q1
B. Rr.s u/ti for J’eo-Yr ar Standardc and Comparison stars. The observations of the Ten-Year Standards are listed in l’able IV. On1 those nights are included
for sshich at least 4 Ten - Year Standards are ob served. Floweser, in forming a e r a g e s and for furthei discussion onlr the nights with observations of at least 1 2 Ten-Year Standards were used. Obser vations of comparison stars are listed in Table V. ‘Ihe values V. B-V and their weiuht. given in the first three columns for each star in Tables IV and V. were computed from equations 3 . 4 and 27, rcspeetis ely, using the transformation co efhcients clerivetl Irom the observations of primary standard stas s. ‘l’he seiglited moean of these magni
The weighted mean magnitudes and colors of the Ten-Year Standards are gis en in Table IV for each season: they arc averages of x aloes reduced to the system of Ten-Year Siantlards. These mean val ties were miser1 for computing the mean blue magni-
TABLE VI. Magnitudes and Colors of Standard and Comparison Stars TEN-YEAR STANDARDS in system of primary standards
RD
V
Star
B-V mn.e.
58946 76943 82885 89449 90839 102870 109358 113139 114710 115043 115617 117176 120136 121370 128167 121156
p Geom
10 11 40 36 /3
UMa LMi Leo UMaA Vir /3 CVn 78 UMa /3 Coni 61 Vir 70 Vir r Boo zj Boo a Boo 5 Boo
4.181 3.973
--0T002 .002 .002 .001 .002 .002 .001 .002 .001 .002 .003 .002 .002 .002 .002 s-0902
5.409
4.794 4.837 3.609 4.257 4.929 4.252 6.827 4.742 4.976 4.496 2.683 4.463 4.548
n m.c.
0.315
.434 .769 .449 .518 .550 .587 .366 .572 .604 .709 .713 .479 .583 .363 +0.765
Ot’OOl .001 .001 .001 .001 .001 .001 .001 .001 .001 .002 .001 .002 .001 .001 r000l
61 64 64 66 67 62 66 67 66 66 48 66 67 65 61 57
n 11 0 11 11 10 11 11
COMPARISON STARS in system of Ten-Year Standards
RD 55052 50692 61997 60914 58551 58899 63772
Star UA 53 =48 Gem UB 53 UA 54 UB 54 UA’54 EJB’54 UA 55
V
B-V
5.859
–OTOO$
0.370
me. .0002
7.129 6.964 7,160 6.545 8.953
.002 .003 .003 .004 .002
0.411 1 .048 0.925 0.460 0.350
.002 .003 .003 .003 .004
sin. e.
199
TABLE VI. Magnitudes and Colors of Standard and Comparison Stars Cont’d Star 1JB 55 VA 56=gs Cnc. UB 56= t Cit VA 57=35 Cit UB 57 39 Cnc VA 58 UB 58 UA 59 UB 59 VA 60 UB 60 VA 61 UB 61 VA 62 UB 62 NA53 NA 54 NB54 NA55 NB 55 NA 56 NB 56 NA 57 NB 57 NA 58 NB 58=95 Vir NA 59 NB 59A Vii NA 60 NB 60 NA 61=NB 62 NB 61 NA 62
HI 62720 67228 68256 72779 73665 75470 75974 79096 79499 81563 82140 83683 83509 87176 86898 116681 118704 118705 120186 119869 119638 121111 121608 121496 123453 123255 124401 125337 126251 126766 128596 128429 129271
7.409 5.304 4.674 6384 6.392 6.720 6.684 6306 8.315 8.280 8.377 6.968 7.037 8.088 7.796
ni.c. –0.002 .003 .003 .002 .003 .002 .003 .002 .003 .002 .002 .002 .002 .004 .004
8.494 9.171 7.714 8.897 6.912 7.691 7.684 6.846 7.632 5.464 6.984 4315 6.491 6.652 7.485 6.201 8.051
.004 .004 .004 .006 .003 .004 .003 .004 .003 .002 .003 .003 .003 .002 .004 .004 –0.003
V
B-V
0.699 0.731 0.446 0.478 0.635 0.473 0.471 0.544 1 .039
zn.c. –0.004 .002 .003 .002 .002 .002 .002 .002 .002 .003 .002 .002 .002 .002 .002
0.541 0.461 0346 0.459 0.543 0.549 0.541 0.470 0 376 0.343 1 .017 0.131 0.417 0.423 0.650 0.461 +0.823
.002 .003 .002 .005 .003 .002 .004 .003 .003 .002 .003 .002 .001 .002 .002 .003 –0.005
0.381 0.635 0330 0.678 0.977 0.863
n ii 17 15 15 13 21 20 20 20 14 14 21 21 9 7 0 9 9 8 8 12 12 11 7 15 11 20 18 16 16 19 17 8
OTHER STARS in system of primary standards RD 12929 18331 55156 62345 61421 69221 69994 73344 73666 75528 76508 79009 81361 81581 83343 84722
Star Ari HR 875 49 Gem K Oem a CMI a
40 inc 54 Cnc.
V 2.017 5.171 7.068 3574 0.384 7.630 5.830 6.899 6.610 6.376 6.172 6.886 6.288 7.754 6.641 6.450
B-V +1.137 +0.079 +0.036 +0.931 +0.418 -j 0.948 -i-1.134 40542 +0.001 +0.636 + 1.002 +0.062 +0.966 +0.308 +0.438 +0.428
n 11 11 3 38 39 5 3 10 41 10 9 9 7 7 16 15
HI Star V 87777 8.400 110379-80 y VirAB 2.749 114449 7.614 116658 a Vii’ 0.994: 121325 6.188 121865 7.047 121981 6.957 124897 a Boo -0.039 126660 J Boo 4.047 128752 6.729 128986 6.982 129157 8.410 130109 109 Vii 3302 134083 45 Boo 4.929 *
200
Eclipsing variable
B-V +0378 -1.0.353 +0.403 -0.227 -1-0326 +0.978 -I 0.997 -11.227 +0.499 +1.005 + 1.631 +0.867 -0.009 +0.429
n 9 35 4 40 7 2 2 34 28 11 5 8 29 25
955
56
57
58
59
60
6!
Fjc’ure 5. The yearly mean blue magnitudes of the Ten-Year Standard stars. I’eiv point is based on 5 to 13 n igli Is. J7 e vertical lines indicate mean errors. 201
deriving the improved values. The corrections de rived from observations in different years and with different multiplier tubes are in good agreement. The improved values given in Table VII were obtained after finishing all the reductions of the ob servations of the present program. Therefore all the values of the transformation coefficients, the mean errors of single observations and the magnitudes and colors of Ten-Year Standards and comparison stars given in this paper are based on the data for primary standard stars given by Johnson and Harris 7.
tudes which are plotted in Figure 5. Examining this figure, and also the nightly values given in Table IV, we can see that there seems to be no variability in the Ten-Year Standards which can not be ex plained by the errors of observations. For none of these stars does the r.m.s deviation of mean seasonal values from the final mean value exceed –11009. The weighted mean magnitudes and colors of the comparison stars, reduced to the system of TenYear Standards, are given with their mean errors in Table VI. The last column in this table gives the number, n, of nights included in forming the aver age. Table VI also contains the weighted mean mag nitudes and colors, not reduced to the system of TenYear Standards, for some other stars which were observed occasionally in this program. Most of these stars were candidates for comparison stars or TenYear Standards which were later rejected. C. Improved Magnitudes and Colors for Primary Standards of the UBV System. The deviations, 8 v and 6 B-V , of observed magnitudes and colors of primary standard stars from the catalogue values were used for improving these last values. Only those 32 nights were used on which at least 6 different primary standard stars were observed and night1 extinction coefficients were determined. The mean 8 v computed by assuming Q2 = -0.002 and the mean 6 B-V were computed for every star; let us denote these mean values by 8 v and 8 B-V The values 8 V and were averaged for the stars B-V /3 Cnc, ie Hya, a Ser, /3 Lib, CrB and r Her; these average values are denoted by 8 and 8 . The _80 quantities . v = 8 y B-V = v and 8 B-V are now treated as corrections BV which should be added to the magnitudes and colors given by Johnson and Harris 7. These corrections and also the corrected magnitudes and colors are given in Table VII, together with their mean errors computed from the scatter of values 6 v and 8 u-v The mean magnitude and mean color of stars de noted as primary standards by Johnson and Harris remain, of course, unchanged. The last column of Table VII gives the number of observations used for
IV. Magnitudes and Colors of Uranus and Neptune A. Color Indices of Uranus and Neptune. The yel low magnitudes and color indices of Uranus and
Neptune are given in Table VIII. They were derived exactly in the same way as the values for the com parison stars in Table V and both of these tables have the same arrangement. The energy distribution in the spectra of Uranus and Neptune differs strongly from the energy dis tribution in spectra of color type stars. H. L. John son in Progress Report from 1955 writes: "There has always been some doubt whether the blue-yellow color index B-V that has been deter mined from the standard U B V system filters, satis factorily represents the planetary gradient in the blue filter spectral region. We would, in fact, expect the gradient determined from the ordinary B-V to be too blue because of the methane absorption in the yellow region. This is an important matter since this gradient enters into both the extinction and systemic re ductions. We have, therefore, made color measures using two filters formed by splitting from the spec tral standpoint the blue filter into two filters. The exact procedure that we used is the following: We selected a yellow-transmitting sharp cut-off filter glass whose cut-off wavelength lies approximately in the center of the blue filter. During these special ob servations of the planets and standard stars, deflec tions were taken with the standard blue filter and with the standard blue filter plus the above yellow filter. By subtraction, we obtain deflections corres
Table VII. Improved Magnitudes and Colors for Primary Standards of the UBV System
,Hya
V 3Th34 –01’002 4.299 .002
Star 8 Cnc
.
B-V
y
-1- 011014 -
9OLeoAB
5.947
.003
HR 4550 /3 Lib
6.448 2.608
.003 .003
-
a Ser
2.640
.002
-
CrB rHer
4.144 3.895
.002 .003
+
-
+ 1477 -0.195 -0.159 + 0.753
.001
.002 .010 .006 .005 202
B-V
–01’OOl .001 .001
0U1003 .000
36 37 27 30
+
.001 .002
28 29
-
-0.109 + 1.170
.002 .002 .002
+ 1.231
.001
+
.001
28
-0.151
.002
+
.001
29
-
TABLE VIII. Two-color Observations of Uranus and Neptune Uncorrected for distance, phase and oblateness effects Uranus
Uranus B-V System of primary stds.
DATE
Wt.
DATE
Oct. 30 5t518 Nov. 6 5 .520
Apr.
+0568 .551
2 2
5.537 5.563 5 .572 5 .577 5 .539 5.537 5 .545 5 .584 5 .586
.558 544 .554 .533 .532 .532 .528 .535 .543
2 3 3 2 2 3 2 2
11 5 .502 12 5 .520 20 5 .547 21 5 .566 25 5 .546 4 5 .594 May Oct. 27 5 .537 28 5 .541 30 5 .528 31 5 .519 Nov. 4 5 .536 16 5 .501 20 5.501 19 5 .507 27 5 .480
.520 .534 .535 .537 .532 .535 .523 .523 .523 .527 .531 .534 .528 .532 .529
4 4 4 3 2 3 3 2 3 3 5 4 4 5
5556 5 .567
+0534 .533
5 .597
.538
5 14 19 5 18
5 .413 5 .405 5 .440 5 .454 5 .433 5 .474 5 .487 5.511 5 .550
.541 .549 .523 .518 .527 .523 .532 .529 .527
4 4 4 5 2 4 3 4 2
5 5 5 5 5
1957 Mar. 23 24 26 31 5 Apr. 9
5 .470 5.486 5 .482 5 .499 5 .496 5.519
.525 .533 .526 .529 .516 .517
5 4 1 1 4 2
1954 Feb.
17 23 24 28 Mar. 30 1
6 22 26 1955 Apr.
1956 Jan. Feb.
17 3 10 14
Mar.
Apr.
Wt.
1957
1953
Apr.
B-V System of primary stds.
B-V V System of 10-year stds.
V
B-V V System of 10-year stds.
V
May
15 5’525 16 5 .531 19 5 .524 20 5 .529 3 5.568 5 5 .584
+0’521 .524 .525 .523 .523 .497
2 2 1 2 3 1
5522
+0’525
5.571 5 .573
.522 .500
5 .394 5.411 5 .413 5 .393 5 .391 5 .388 5.393 5 .396 5 .407 5 .410
.523 .513 .507 .527 .518 .521 .531 .535 .526 .512
4 2 3 5 4 5 5 5 2 4
5 .426 5.416 5 .417
.527 .515 .523
5 .400 5 .403 5.398 5 .412 5 .409 5 .433
.523 .526 .532 .527 .536 .526
5 .407 5.408 5 .400 5 .380 5 .390 5 .414 5.411 5 .400 5 .412 5 .418 5 .442 5 .422 5 .422 5 .434 5 .435 5 .436 5 .476
.526 .522 .523 .531 .532 .520 .530 .542 .537 .533 .524 .527 .549 .533 .529 .524 .515
4 3 4 1 3 2 2 1 3 3 2 1 3 1 3 4 3
5.411
.522
5 .378
.536
5 .405 5.412
.520 .528
5 5 5 5 5 5 5 5 5
.413 .412 .427 .430 .428 .427 .440 .442 .468
.544 .539 .523 .528 .524 .535 .531 .528 .521
5 .384 5 .387 5 .389 5.441 5 .415 5 .430 5 .426 5.456
.525 .540 .538 .512 .538 .517 .510 +0.531
3 3 3 3 3 2 2 3
5 .379 5 .380 5 .397 5.437 5 .409 5 .423
.516 .534 .524 .511 .553 .512
5.453
+0.530
1959 5 12 24 29 31 4 Feb. 5 26 Mar. 1 3
Jan.
.421 .403 .431 .444 .491
.538 .551 .522 .514 .532
5 .490 5.504 5 .546
.524 .531 .536
5 .469 5 .491
.527 .527
1960 Jan.
20 28 29 Feb. 17 18 21 23 25 Mar. 15 17 18 19 21 26 30 Apr. 3 6
1961 Feb.
8 10 24 Mar. 23 31 4 Apr. 8 12
203
TABLE VIII. Two-color Observations of Uranus and Neptune Cont’d Uncorrected for distance, phase and oblateness effects Neptune
Neptune V
primary stds.
DATE
V
T
B-7 Systetn of
B-V System of
primary stds.
DATE
10-year stds.
Nt.
V
B-V Systens of
B-V
System of 10-year stds.
Wt.
1957
1954 May Jun.
31 2 12 14 16 17
71’901 7 .912 7.916 7 .911 7 .881 7.913
–01404
2
.396 .396 .410 .412 .398
2 1 2 2 1
21 25 4 20
7 .864 7.877 7 .899 7.933
.406 .391 .392 .379
3 2 2 2
7’865
-2 02402
7 .902
.395
17 19 20 3 Feb. 10 Mar. 19 Apr .5 18 1 957 Mar. 23 24 28 Apr. 5 6 1 May 3
7 .944 7 .935 7 .922 7 .921 7 .911 7.896 7.85’.3 7.884
.398 .392 .407 .411 .389 .401 .427 .381
2 2 2 2 2 4 2 0
7 .952
1955 Apr. May Jun. 1956 Jan.
7 .869 7 .862 7 .928 7 .870 7 .852 7 .844 7.859
.415 .410 .393 .402 .393 .380 -70.412
1959 Jan. Feb.
2 2 2 2 4 1 2
Mar. 1 960 Jan. Feb.
.395 Mar.
7 .919 7 .902 7.899 7 .846 7.880
.413 .388 .393 .429 .390
7 .868 7 .867
.417 .404
7 .833 7.862
.376 –0.411
1960 Apr. 1961 Mar.
.Apr.
H 0’7 21 for Uranus. and
28
02628 for Neptune:
29
1
7’t’069
–O’396
12 24 4 5 28 1 3
7 .942 7.925 7 .894 7.902 7.890 7 .872 7.854
.416
2
7 .947
.418
.414 .429 .407 .409 .402 .402
2 1 0 2 2 2
7 .929 7 .909 7.907 7.884 7 .874 7.877
.430 .434 .408 .410 .412 .416
28 21 23 15 17 18 19 21 30
7 .910 7 .877 7 .860 7 .845 7 .845 7 .852 7 .854 7.854 7 .846
.422 .424 .436 .438 .429 .431 .437 .468 .432
2 1 1 2 2 3 3 2 2
7 .913 7 .868 7 .861 7 .846 7 .839 7 .837 7 .862 7.860 7 .851
.422 .424 .434 .445 .435 .430 .438 .443 .434
3
7 .854
.442
I
7 .860
.446
1 8 23 31 8 12
7 .897 7 .875 7 .880 7 .856 7 .831 7.849
.450 .428 .419 .422 .421 --0 .424
2 1 2 2 1 2
7 7 7 7
.890 .863 .876 .850
.447 .426 .418 .437
7.846
p0.423
the further papers of thus series.
B. Obsereatious of Plonet.s in Blue Color. The brightness of Uranus and Neptune in blue color is 5 peejat ubservatious uf Lrauus auct Neptune at the luw altitudes of 20 tu 250 were made with the blue filter on four nights in 1961 fur determining what values uf colorindices woutd be necessary fur correcting the observations tor eulor-tlepeudessee ef extinction. ‘The color indices B-V 0.32 -t-O’et 1 use. fur Uranus and B-V’ - t. 0v50 tttt5 in .e . for iN eps one were obtained. Taking into ac count the luw aeenraev of these values they are in satis factory agreement with Johnson’s gradient euler-indices. *
B-V
–01396
color rlependence of extinction and reduced to the BY system using the rlirectly observerl color-indices given in the same table. The discussion of data con tained in Table VIII will therefore he postponed to
Johnson are
‘
71’869
cision antI therefore these magnitudes cannot be properly transformed to the BY systessi. The yellow magnitudes given in Table VIII were corrected for
ponding to the amount of light cooling through the two halves of the hlue filter. We can then compute the planetary gradient in the blue filter region corn parerl with stars observed in the sanw spectral region. This proceelsire gives considerably redder values of B-V than the standard U B V filters. The new alues learl to snore accorrlant results especially for I urge hour angles.’’ The new values of color-indices obtained by I B-V
30
they are called henceforth the gradient color indices antI are used in the transformation of the blue triag nitudes in all subsequent reductions. Similar gradient color indices for transforming yellow magnitudes have not yet been rleterminerl with satisfactory pre
2&4
Since the eat thi. sun, antI planets change their relative positions. the measured brightness is cor tected to some arbitrary fixed distance. The oppo sition position for 1 950 has been used for this pur pose. FIle correction is rletermined according to the formula
coutpai ccl with that of conq arison stars at least once a week os ci a period of se eral months around each opposition. The blue filter is the same as that
used for tss o-color observations. The comparison of each planet with two comparison stars takes an av ‘rage of about 80 minutes: the duration of such ob servations should not exceed I … hours. All obsers atioris are made with a diaphragm 48 seeonrls of ate in diameter 2mm at the casse grainian focus of the 21 -inch telescope . Therefore the satellites Mit anna . Arid, Limbriel and Triton are abs ays measurerl together with theit respectis planets. All the photometric rlata for planets given in this papr’t refer to planets nteasured together with the aforementioned satellites. Ut anus’ satellites Titania ann Oberon, shich are occasionally within the cliaphragnt together. may increase the planet’s brightuess by about 0.0008: rlus fact is neglected in the present discussion. Denoting by A the measure for comparison star A, by B that for comparison star B, by P that for planet and by S the deflection for radioactis e standard soutce, we can reptesent a single observation as:
log K
5log k
logs
logo
30
.
where K is the distance of the planet from the srtn. _ is the distance of the planet front the earth and K,, antI , are the arbitrary fixed distances to which the corrections ate made : their values are given by Hat die and Gielas 3 . The distance corrections coin 1nttenl frotti equation 30 are given in the 9th cotutnrt of fables IX and N. ‘l’be 7th antI 8th columns of these tables give M, and the nhiflerential extinction coriection. the cot t eetiott for the color rlependetice 0f extinction. Q52Mx B-V . respectively. ‘I he s aloes Q5J 02033 and the mean seasonal values of are mtsed, except for the year 1961 ss lien the use is niade of the nightly s allies of this coefficient. The differ ence B-V is defined as
SABABA...BA.AYA...P/ABAB&JjAS .5xB iOxP :ixB
B-V
B-V star A
‘
31
ss het e fot the gradient eolm index B-V ‘ the values gis en by equations 28 antI 29 are tisecl. The dif ference in air mass is eomptttetl front the approxiittate formula
A total of 10 t neasut es of tile planet, 10 measures of star B, and 21 measures of star A are made. Each measure consist’, of two deflection’, separated by the deflection for sky background. In the middle of each measurement of sky background the hour angle is read on the telescope’s setting circle. The standard time is t earl during the 11th measure of star A. All obsers ations of planets in blue color tnade front January 1 9.53 to June 1961 are listed in Tables TX and N. The first eoluntn gives the Unix ersal ‘lime at the tuidrlle of the observation with an ac curacy of a hundredth of a rlay . The second column gives the hour angle of the planet at the middle of the obset ation E denotes East. V West . The 3t d, 4th annl 5th columns give the amplifiers gain usetl sshett obsers ing the planet. the comparison star A ann comparison star B, respectively. The first num ber in each of these columns gis es the setting of the 2.5 magnitude gain steps, the second number that of the 0.5 utagnitude steps. They are given to permit a future rediseussion of the effects of possible nonI inearitv of the aniplifiet antI errors in its calibra tion. The 6th column of Tables IX anti X gives tile number of measut es of the planet. which is usually 10. ‘1 he niunher is smaller than 10 when the obsers ations were stopped by elourls or when the planet eoulrl he obsers cr1 only at low altitude: in this latter case thit’ met ease in the number of measures ss otilnl ntean that the planet is observed at still loss er altitudes sshieht ss mild only rerluce the accuracy.
-
M planet
AsinH
----
M star A
Beosli
CM
32
where II is the mean houi angle of the planet and star A, positive westward, M is the mean air mass of the planet ann star A, while A B C
-
sina star A
plitnet
8 planet
sin 8 star A sin8 star A
8
ne
eos
4
cos ‘‘
eos 4 sin
,
33 34
sin 4 eos3: 35
here antI 8 are tight ascension and declination, 8 is the mean declination of the planet and star A and 4 is geographic latititnle of the observatory. 4 he cot reetions gis en itt thin’ 7th and 8th coluntns of ‘fables IX antI N refer to the middle of the observation. Sintilar corrections are. howev er. eoittputerl for es cry mnteasurentenr of the planet. The individual measures correeterl for extinction are ntserl fot eottupuung the nightly mean value of tlte rttagnitutche nlifferenee betss ecu tite planet antI comparison 205
Z
0 ci
0
*1 50’
H 0
‘00
-
is
SM H 0
-
0000H
SOSOSOHHH .5OtOHHHH SM + H 0’ 15 H SM 5.. 55 H H ‘00-0 5’ H ‘0 55 0
-
5050505050 5.. 0 - 0’ SM L
0’ SM
H H H H H H H H H H5’ H H H H H H H H H H H HSi 5055 H Si 50 H SM
-
SM
5..
55 SM
-
5..
5’
-0 ‘0 ‘0 - 0’ 05005... 0 SM 5’ ‘0
SM
HHHHH ‘0 SM t tO H 0
5.
- SM
to H 0 ‘0-0 0’SJS
i
.
to to 50 50HH HHH to 050S0 tOH 5 0P-0-0 0’O"-0 0’- 00 E-SM Ho 0’- Sos
SiHHHHH5..JH OHH 000HH 000HLOHOHHO
OHH50OHOHHOO
H H
HHH HtsH HHHHHHH HH 00H00000000’0’0’H00’H
00’OO’O
5.. 5.. 5.. 5.. 5.. SM SM SM SM SM - - - -
-
s_i 5.05’ 5
H H H H H
00000
5-’ H H H H
H H
H H H H H H H H H H H
H H H
H
0 OSM 0055000 H 05000000 05.. 000000 H OH 0’O 1111111111111
I
III
I
IllIl
11111
00000
I II lIlt I I I to0000050H000Si55
0000-
to 505O 505550
11111 55 5’
IIIIIIIIIII ++++++++++++++++++ SM SM 4 5 555’ H H H H to 5 5..’ SM SM SM SM 0’ 500 05 05’ 000 t00’tOO
0’ - -0 0’ H 45
I
I I I I I I I I I I I I I I II I II I I II I H H HH H HH H HHH H HH H H H H H H H H H H H H H HH H SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM ‘.1s SM SM SM SM SM SM SM SM 5... H 0 5 0’ 5 H 70 55 0 0’-0 0’ -50 0".0 5 ….. 00555 H
HHHHHHHHHHHHHHHHHHH SM 45 5..0 5.0 SM ‘M SM SM SM SM SM SM 00005’ OH---H O
-Si00’-
I
I
0’
I
0’ 50 0’
1+1+1+1+1+ 5. 5’ 5’ 5’. 5’
+I+I+I+I+I+I+J+I+I+I+I++t+I+I+I+I+P+I+J+I+I+t+I+II+I+l+I+ 0’ 0’ 0 SM SM
SM
-
Us SM
S..’ 5’ 5’
SM 5’ 50 Us
5’ 5
II
- SM 0’
II
SM SM Us SM 515
++++++++++++++++++++++++++++++ HHHHHHHHHHHHHHHHHHHHHHHHHHHHHH 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’
I
I
I
I
11111
505050 50505.05..
I
I
I
HHHHH - - -
0’
0’ …..
-
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
III
5.05.0’ 5.05.0
I
I
555.0
‘.0
++++++
H
H
HHHHHH
1+
1+ s_0
1+1+1+1+1+1+
I
I
5.0
5
505050505’
+++ +++ +++++++++++++ H HHH HHHHHHH 0 H H H H H H H 0’H H H 0’O’H
I
I
I
I
+
++++++
-
--50lo.t5_
I
I
I
I
I
I
I
I
I
HHHHHHHHHHHHHH00000
11111 III II 111111111111 I I I El I 5050505050505050705570505055505050505050501570505050505050 HHHHHHOOOOOOOOO0OOOOOOOO0OO0OH
El 11111111111111111 SD5J5’ HHHHHHHHHHHHHHSiS0505O
I III I I I I I I I I II I I I I I I I I I I I I HIH H H H H H H H H H H - H H H H H H H H H H H H H H H H H H
HIH H H H H H H H H H H H H H H H H H H
15SM 0’5J50’0’U,SMSM O’SMO’0’0’SMSM 0’0’0’0’0’S15SMSMSM 0-0’ SM -. .0J0 ‘ 0’ 00 - -0--DO CO H H 0 - 0" 05’ 05 - 000’ 0 H
111111111111
III
I
5015’
5’. -0
loSs,,
---
to 505050505050505050505550
11111
II
0’SM SM 0’ 0’ 0’SM 0’ 0’ 0’ 0-SM 0’SM SM SM SM 0 HH H ‘0 0 5.0 H 55 ‘-05.050 0 05005050-0 5
-Thi
00H’0O
II
+
I
to5’5S
I
+
+
‘0
0000000 0 0’0 ‘0 ‘0 ‘0 ‘ 0 H 5.0 - SM 0’ 0’ 0 ‘0 H H 50 5O 5
+I+l+I+l+I+I+I+I+I+l+I+I+l+I+I+14-I+I 5.05.0
55 +++++
0’0
0 O’0 0’
OOHOH
H
III
I
I
505’Jt -i--O-0’00"
HHHHHHHOHHHOCOH00000 5050505050 tO’ 507055505
CCC
SDSDSDSDSDSDSDSDSDSDDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSSD H H H H H H H H H H H H H H H H H H H H I-’ H 5-’ H H H H H H H
SDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDDSDC H H H H H H H H H H H H H H H H H H H
CH P’’.
CD
0 P
C
r
*
HHHHH C-’C/NHH -0 0’C-, 4’- C-.’C 0- 0’ H 0 00-’,
C-fl
HHHHHHHHHHHHHH 0’ 000-;- C-fl 0’C-’ C-’ C/ C/u 4’ 00’
H H H H H H NNH H HH N NH NN NNN NC-’C-’C-’ C/ut’ 00 C-fl CC- 0.’C N H ‘0-0-0 -000 C-00 N H ‘000’. 4’ N -0 C-s C-’
NNHH C/C/NNNHH Ho’.;- H;- O- C’C/ N 0;- -0C/ C/u C/u H C/u;- C/u ;- C/ 4’ - C/u-- ;C-.HC-flH-OH--00NH;--’, NN
NC-.NNNHHHHHH OH 0
000000000000 OOH000H0HOOH 00
000
C-’ C/u C-. C/u C/u C/ C/u C/ C/ C/ C/ C/ C-. C/ C/ C/ C/ C/ C/u C/ C-. C-. C/u C/ C/u C/u
C-. C/ C/u C/ C-’ C/u u C/u C-’ C/u C-. C/ C/ C/u C/u
C-, C-, "C C-fl C-fl C-fl C-fl ‘CC-, C-, C-fl C-, C-, C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-fl
C-fl
C-, C-fl C-fl C-, C-, C-fl C-fl C-’ C-. C-. C-. C-. N N
"C
4’4’- C-fl C-fl N C-’ C-’ C-’ C-’ H H
C-, C-fl;- ;- ;C-fl C-, C-fl C-fl 4’-
C-fl C-fl "C C-fl C-fl
4’
C,
C-fl
4’-;-
NNNNNNHHH C-’ N H 04’- C-’ N H O’0 0-
C-.- 0’C-,
HH C-’ N;- o
‘."
4’- N
H 000000 N 0 H H H
C-fl C-fl
C-fl C-fl C-fl C-fl C-, C-fl C-fl C-, C-fl C-fl
4’-;-- 4’-;-- 4’-;-;- 4’-;-;- 4’-;- 4’-;-;- 4’-;- 4’-;-;- 4’- 4’-;-;- 4’-;C-fl C/u C/ C-. C-. C/u C/u C/ C/u C/u C/ C/u C-’ C/u C/u C-’ C-. C/ C/ C-’ C/u C/u C-’ C/u C-. C/u
C-7’U C-fl C-fl C-fl C-fl C-, C-fl 4’- , C-fl C-, C-, C-fl C-fl CC-C’ 0’ CC-C-, C-,C’CO’ N N N C-. C-’
HH -00’ 0000
"C C-.
C-fl
H 0
HH ‘O’000
H HHHHHHHHHHHHHHHHHHH 0 0’0 000000000000000000 0’C-fl I
++ HHNHHHHHHHHHHH +
+i+
+ + + + .1. + + +
000 ‘0 ‘0 ‘0 ‘0 ‘0’O
+++++I HH N 000’
11111
‘0’0’C III
HNN4’C-’C - N C-fl -‘00 C-’ 0’- H
11111111111
III
I
+1
++++
++I
II
H 0-
HNHH’CH’0-4’-NHH--1C-fl
-.
HHHH o;-
00 O-u-C 0000;- 000
I
I
I
+
0ONH0ONHHC/NC/ 0OC-.NNN’.’NNH0000
OHOHOH0000H 0000
H H H H H H H H H I-’ H H H H H H H H H H H H H H H H 000000 H 0000 H 00 H 00 H H OH H OH 00
+++++++++++++++ HHHHHHHHHHHHHHH 000HOOHHOONOHHH
II I I I 1111 I I II II Ill I 11111 II HHHHHHHHHHHH 0’-_---_]-_-_ 0000CtC000CO’C’C0000000HHHHH C-’ N N 00 H C/u;- 0’N C/4’- 0’- 0 0 H ON C-’ 4’-;- C-fl C-fl
H H H H H H H 000 ‘0 H 0 00’;- 0
II
II
I
I
II
I
I
I
I
II
1111111
11111
‘0’C 0 ‘0’. ‘0’0 ‘0’. ‘0’. ‘0-..’. NNNNHNHHNNNNNN I
HHHH
HHH
0C-uHN-.O’C’CoC-o-.C/u-’Co’C-’C’o-C-,C/uco--.C-fl
-0--u’.
1111111111111111 ‘000000 0--- ‘.J CC/u’o-D;- N -0 0 0 H
1111111111111111
HHHHHH
‘0’. C-’ OH ‘CC-, 0’. C/u
C-n -0 C-’ C-’
I+I+I+I+I+I+I+I+I+I+l+I+I+I+l+I+I+I+l+l+I+I+I++I+l+
I+I+t+I+I+I+I+l+l+l+I+I+l+l+!+
C/u C/u C/u4’- N C-. C/u C/u C-’ C-. C/u C/u C/u N C-’ N C/u C-. N N N N C/u C/u C-’ C-’
C-’ C/u N C/u N C/u C/u C/u C/u N C-.u4’ N N N
-0 C-.
4’- ;- 4’- 4’.;-;- 4’-4’---4’- ;- 4’- ;-;-;- 4’-;-;- ;-;- 4’- ;- ;-4’-;-;C-7’C-,C-,C-fl 0’C-fl 0’C-fl 0’0’0’0’C-n 0’0’C-fl 0’0’0’0’0C-0’-0’C-fl 0’C-fl 04’-;- 0’ 0-ON- C/u N;- 0 ‘DC-fl C/u’. N N CI C-u, C/."00’ 0’ NC-0
;-4’- ;- ;- 4’-;0’C’ C’ 0’ 0’ 0’ N 0-u;- H H
+I+I+l+I+I+l+I+l+l+l+I+I+l+
I+l+I+I+I+J+I+I+I+I+I+I+I+I+I+I++I+I+l+l+l+l+I+I+I+
1+1+1+1+1+1+
C-. C-. C-’ C-. C-. N 4’- N C-’ N N N
C/u N
++++++ HHHHHHHHHHHHHH
"C 0 N N C-fl
C-,
C-fl C’ C-fl
N
4’ C/u- C-.
C-J
C/u C/ C/
C-fl
H H H H H H H H H H H H H H 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’
III HHHHHHHHHHHHHH C-. C’ C-’ C/ C-’ C/u C-’ C/ C-. C-. C/ C/ C-. C/u
III
-0;- -;- ;- - ;-..o- C-., C-fl ;- C-ui;-
C-fl C-fl ;- ;--;- ;--4-
C-fl
C-fl
C-fl C-fl C-, C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-, C-fl
"C
C-fl C-fl
III I I I I II II I I II I I II II 11111 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’.’ 0’ 0’ 0’ 0’.’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ II
I
U
I
I
I
I
I
II
I
I
I
I
II
NNNNNNNHHHHHHHHHH000000000
11111111111 III NNNNNNNNNNNNNN -0 -0 -0--- --0 -0- -0 -.0 -0 -0 --0-
I 1111111111111111111111111 CDNNNNNNNNNNNNNNNuNNNNNNC-.C-’C/uC/C/ -.0 -. -0 -0 -0 -0 -0 --0 -.0 - -.0 -.000 000CC. 0 00000000 H
I
I
I
II
I
I
I
I
I
I
I
I
I
C/uC-.C/C/C/uC-. 4’ C-fl;-;- N N N 0- C-fl ;- C/ ‘0-u I I I I I I I I I I I I II HNHHHHHHHHHHNH ‘OO’0’0’0’0’0’0’0’0’0’0 0’. ‘OO’0’0’0’0’C’0’C’C’C’0 0-C 0;- "C C-,. 0;-;- 0’. -.0’ C-fl’C
C-fl C-, C-fl C-, C-fl C-fl C-fl ‘C C-fl
III I I I I I I I I I I I I I I I I I III I I I I I HIHHHHHHHHHHHHHHHHHHHHHHHHHH ;-I4’----;-;---;-;-;---;-;-;-;-;-;--4’-4’-;-;-;-4’0’0’00’0’0’---0’0’-----0-.-0---0 N N ‘0 "C 0’ H;- C/u N ‘0’C 0’- C/u 0’. N 0’..’ H 00’C N N C-us ut I I U I I I I I I I I I I I I I II I U I I I I I HIHHHHHHHHHHHHHHHHHHHHHHHHHH ‘0I’0’C’0’C’Cu’C’C’0’0’0’0’C’C’C’C’0’0’0’0’C’OC-0-0’C’0’0 ;-If-C/u;-;-;-;---;-;-;---4’-4’-;-;-;-;-;-4’-4’--C/u;-sus IH;- 0 C/u N N 0’ 0 C-’ N H 0’ C/u 0’ C/u C/u;- N C-fl-u;- H C". C-is C-fl
"C C-fl s’C
C-fl C-fl C-fl
1111 0’ 0’ 0’ 0-0’ 0’ II
I
NNNNNNNNNNNHHH
‘0’C’0’0’0’0’0’C’0’C’C’0’0’C
4’- ;- ;- ;- 4’-;-
+++++++++++++++ +++++++++++
III
I
I
I
111
00000HHHHHHNNNN
111111111111111 C/u C/u C/u C/u C-. DC- N C/u C/u C-.
C/u C-’ C/u C/u C/u C/u C-’ C-. C-. C/u H H H H H H N N N N
-.0-0--- -u - -0’-’-. -0- -0 C-fl C-fl ‘00’.’ 0’C/ 0’- H C/u 0’C/ C/u;
I I III H H H H H H
‘0’. ‘0’CD ‘C’. ;- C-fl C-fl C-fl;-;-
o;-u H’. CO
CC0000000000000 HHHHHHHHHHHHHH
HHHHHHHHHHHHHH
**
*-
C
H
--0
0 CD
j CD
CD’O
.
.Cn
a
H H H H H H Cu C’ H H H H 000
H H a’
CuHHHHHHH CuCuHHHHHHHHHHHH HHHHHHHHHHHH 0CuHH’.000en’.HH00-0HO0HH--CuP-CuHH
H
IS Cu IS Cu H H Cu C’ H en 0 H 0’ en ‘.0 Cu 0
Cu 0 en
P-en en en P-en P-CuP-en en P- P- P- PPP-P-P-P-P-P-en PP-P-en en en en en en HCu 0 0’H 0’HCu 0-en 00 0’ Js-0-OP-en 0"0’.0’.0P-en H’.0 05’s 0 a’-.---i 00 H OH
H
HHHHHOHOH
HH
HCuCu H H H H 00 H OH 0000000 OH H 000 OH H OH H H H H H H H H H H H
H 0’ H 0’ H Cu H IS Cu ZHt1t"I
Cu a’
Cu P-
Cu Cu Cu Cu Cu Cu Cu Cu Cu C’s en S’s Cn en en S’s C’s C’s
Cu
Cu
Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cr en en en en en C’s en en en en en C’s en n en en en en en en en C’, C’s en 5,5 P-
p- P- P- P- e0 Cu Cu Cu Cu Cu Cu Cu P- P H H H H en a’ en en en en en en H H
en
en en n - en en en en en H H H 0’ H H H H H
-
en
en
0’ H
en s’s en en ‘Os en P- en en en en p- .- P- P- P- P- en P- en en en en en en en en en en en en en s’s en en en en en en H H H H H H H a’ H H H H H a’ 0’ a’ a’ a’ a’ H a’ H H IS H H H Cu Cu Cu Cu H H H H H H H H H H
en
Cu
P- P- P- P- P- P- P- P- P- P- P- P- P- P- P- P- P- P- P- P- p- p- is- - P- p- p- P- p- jr- 4r- P- p- p- p- p- p- p- P Cu P- P- - P- P- Cu Cu Cu Cu Cu Cu Cu Cu Cu P- P- P- P- Cu en en en en P- P- Cu Cu P- P- P- P e- +- P- P- P- P-
en a’
en
HHHHHH HH 000000 Sas 00
H
I
++
I
I
+
++
H H H 00 H 0 H H
o ‘a’
H H H H H H H I- H LoCus’,
-
HHHH
HH
H
liii
-I--I-
en
liii
11111111111111
‘-0 0- Cu 0’ Cu 00 en 0 Cu H 0 H F-’ H H 0 H Cu H H H H H a’ a’ H Cu Cu -0 P- -u s’s -0 en en Cu C’s H
‘.
HIS o Cu en 0
HIS
II
I+I+I+I+I+I+J+l+I+ -
HHHH
+++++++++++++++++++++++++++++++++++IIII II HHHHHHHH HHH HH H OO’0’00 a’a’a’a’a’enP-P4r-CuCuHHH HH H H H HCuHO’.0a’0CuP-’.Oa’P-HO0--P-CuHS’sa’O-0000P-H000HOHHP-a’0O
II I I Cu Cu Cu Cu Cu Cu Cu Cu Cu H H H H H H H H H HHHHHHHHH 000-i0’
Cu
HH
H
H H
++
Cu Cu Cu Cu
HHHHHH
en en en en 000000-0 0 en 00 en 0000 en en P- 00 en en en 000 H H 0 Cu
en
Cu C’s
-o en
- -
en en
Cu
+++++++++++++++++++++++++++++++++++++++++ HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH en a’- en Cu en Cu Cu CuP-Cu Cu Cu Cu Cu Cu CuP-Cu Cu Cu Cu Cu Cu Cu CuP-P-Cu Cu Cu en P- e,s P-S’s P-P-CuP- P
-0-’-
HCuC’s
o
a’
C’s
+++++++++
HHHHH ‘.0 ‘.0 ‘.0 H H H H H
H en en en
a’
H 0’
+++++++++
I’_
0 C Cs.
0 CD si .
lien
en -0
I
I
I
I
I
I
I
III
I
I
I
I
II
I
II
I
I
I
I
I
I
I
Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu
H
+
+ H I
HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH OHHHHHOHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHO H 0 Cu - 0000- -OH-’ P- a’ P- H en -u Cu’0 en 0 Cu H Cu P- H a’ 0en"s en H H 0 H 0’ 0 Cu P- P
‘-
l+l+I+l+I+I+t+t+I+I+I+I+I+I+I+t+l+I+I+I+,+I+I+I+l+I+I+I+I+I+l+I+I+I+I+I+l+l+I+I+11–
1+
enena’a’P-CuCuCuCuCuCuCuCuCuCuCuCuCuCuCuCuCuCuCuCuCuP--P-P- 0
Cu
H O
+
I I H H H en en en HHH a’ - en
HH C’s ‘a’ o H -0 Cu
en en en en en en en en en en en en Cr, en en en en en en en en en en en en en en en en en en en en en en en en en en en en HHHHHHHHHHHHHHHHHHHHHHOHHHHHHHHHOHHHHHHHO O en P- a’en H -J Cu H a’ HP-Cu-’ en en P- a’ a’Cu 0- 0 H 0 0 CuP- P- H a’ 0 ‘.0 sjs P-en Cu 05,5 H ‘0
Cu Cu
I+1+1+
1+1+
I+l+l+I+I+I-fI+I+I+I+I+I+I+I+I+I+t+l+I+I+t+I+I+I+I+I+I+I+I+l+I+I+I+J+l+I+I+I+P+I+I+
I+
HHH
H Cu
H H HH H HHCuHCuHHHH HCuH HHHHH HHHHH HCuP-HH HHH HCuHHHCu
en
+++++++++
HHHHHHHHH -0 - -i -o - - - -
++
HIS -0-0
H
-
+++++ ++++ ++ +++ +++++ +++4-+ +++++++ +++++++ ++ + H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H --.i-- --.----i----O -0-i--- ----O-- --0--0--i-i--- - -S ---------- - -
HHHHHHHHH C’s C’s C’s C’s S’s en en en Cr,
++ H? en en
+++++++++++++++++++++++++++++++++++++++++ HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en
I
II
II
I
H H H H H H H 00 I I I I I Cu Cu Cu Cu Cu Cu Cu Cu Cu -
I
en en en en en en en en I
I
C
I
I
I
I
I
Cu Cu Cu Cu Cu Cu Cu Cu Cu HHHHHHHHH HCuHHHHHHH ‘00’00 0 ‘0 Cu a’ PII
I
HHH -0-0-0 HHH
en0a’
I I I I II I II I I CIII I I I II I I I II I I II I I I II I HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
0
CD Cu Cu CD -0 0’ 0 III
I
CuICu Cu HIH CuIH
P-Ia’-0 III I
HIHH -iF- -0 HIHCu HIO0’
o
I
I
II
I
I
I
I
II
III
II
II
I
II
II
I
I
I
I
I
I
I
I
I
H H H H H H H H H H H H H H H H H H H H H Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu
I I III C I I I II I I I I I I I I II I I I I II I I I I I I I I I I C Cu Cu Cu Cu Cu Cu Cu Cu P- P- P- p- P- P- P- P- P- P- P- P- P- P- P- P- P- P- P- P- - P- P- P- P- P- P- P- P- P- P- P- P ‘0’-0’0’0--0’-0’0’0000000000HHHHHHHHHHHHHH HHHH 000000 I I Cu Cu Cu H H H H Cu H Cu H 0’
Cu H Cu 0
I I Cu Cu Cu Cu H H H H Cu Cu H Cu Cu H H Cu
I I I II I I I II I I I I II I II I I I I C I I I Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu
H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H IS H
Cu Cu Cu Cu HP-Cu Cu P-P-Cu P-P-Cu Cu H Cu Cu Cu Cu Cu Cu Cu Cs H Cu Cu H Cu Cu Cu Cu H H H a’ H ‘.0 H ‘0-00 Cu ‘.0 en H - 0 ‘00 H ‘.0 Cu en H H H 00’-.i-- HP- ‘.0 00 I I III II I I II I II III I I I II I I I I I II I I I III II I II H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H
-0 -0 -0-i--- -0-0-0- -0-0-0-0- -0-0-0-0-0-0-0-0-0-0-0-0-0-- -0-0-0-0-0-0-0-0-0-0 OHHHHHOHHHHHHHHHHHHCuHHHHHHHHHHHHHHHHHHHHH en 0 P- 0’ 0 H a’ H H -a’ 0 00’ a’P- 0 ‘0 en P-Cu HP- ‘0 H Cu 0 H Cu Cu 00’ H en en P- H a’ a’ H Cu
H 0
+ 0’.
I H
Cu I
Cu
CD H Ps CC 0 I I
‘.0k
CuICu
P-len
I II HIH
‘OIsO
‘0I’0
-Th-i
0 H
0Sn
H H
CH
O o
0
to
0
CD
*
.0’
0
- ‘J U
H-HHH ‘-0 tO
DO DO H H
a’
5-5-ODODOHHHHH 5-DODOD-DO 0-1 H H 00- 03-05-OH O0-H 003-
DO DO DO DO H H 5-. DO DO DO H a’fl H 0 0H H -55-. 0 - 5 HDOHHHDODOCs a’ 0 CO’0 0’ DO H DO - H 5J
0
- 0-0
0’0 0
_ - t O H -
_ - - - - - - 5-fl ‘-fi UI H H5-fl a’UI5-0 a’- 000 0-C
--D HtJHH H
H Cs DO H
DO DO DO DO DO DO DO DO DO DO DO DO
t .tt ‘ … t L‘ 0’ 0’ 0’ 0’ a’ a’ a’ a’ 0’ 0’ a’ C’ 0’ a’ 0’
a’ a’ a’ a’
5--. 5- 5-. 5- 5- 5- 5- 5- 5- 5- 5- 5- 5-. 5- 5-. 5-. 5-. 5-55-0 5- 5- 5-. 0’ 0’ a’ C’ a’ a’ C’ 0’ a’ C’ C’ a’ a’ a’ a’ a’ a’ C’ 0’ a’ a’ a’
C_. 5-05- 5- 5-05- 5- 5-. Srn. Ci 5-. 5-fl 5-fl 5-fl 5-fl 5-fl UI 5-fl 5-fl 5-fl 5-fl 51
5-. 5- 5-. 5-. 5-. 5-. 5- 5- 5-05-. 5-. 5-. 5-. 5-. 5- 5- 5- 5- 5. 5-. 5. 5-. a’ a’ 0’ 0’ 0’ a’ 0’ 0’ C’ C’ C’ C’ a’ a’ a’ a’ a’ a’ a’ a’ a’ a’
5-fl 5-fl 5-fl 5-fl 5-fl 5-fl 51 5-fl 5-fl 51 5-fl 5
‘00 ‘0
L.t ?0s to to 0’ to .n Co ts
0
HO
0Htoto
-
- -
…__
a’a’a’0’a’o’ J
t
- - -
-
a’0’0-’a’a’a’a’a’
C . C - - - - - -
t - - -
5 - -
_
5
0’ a’ 0’ a’ ts
-
- - - -
H H H H H H H H H H H H H H 0 0000000 0 00000
HHHH 0000
fl - 0-
H
is - 00
+t+
+ + + + + a’ a’- a’
- -
0
0
H
+ + + + + + + a’ 0 a’ a’
- a’ 00
HHHHHHHHHHHHHHH t… t. C’ -0 -10000 H H H 0000
OH
-
a’- DO
++++ 0 - -1 0’ 51
DO 0
5J
+++++++++++++++ ‘000 0 ‘OO’0 00000 ‘-a 00 0 ‘0000 ‘00 ‘00 ‘0 ‘0’00 ‘0’-0 ‘-00 -0 OH’-0 t0 0 0 i’00 s
++++
I+I+I+I+J+I+I+I+I+I+I+I+t+I+I+
1+1+1+1+
5
DO DO Cs DO
+-f-++++ -------
-----0
5HHHDOC
DODOsHDOtsH -DO0
1+1+1+1+1+1+
I+l+I+I+I+l+l+I+
DODODODODOH
DOH.OHHH
___
- -
_ -_
UI
I
I
I
I
I
I I I C II CCCII HHHH5-.DO
- 00 DO -1 DO 0 DO-C DO 5-o
UI
UI DO
UI - -0 H 0’ 50’
++++++++++++++++++++++ 5- F- 5- 5-b 5-. 5-. 5-. 5-. 5-b 5- 5- F- F- 5- F- 5-fl F- F- UI 5-J.’0 s-il ++++++++++C DO DO F- F- F- 5- 5‘0- H UI 5. H - UI - UI
H H DO DO DO …. 5-. 5-. F H a’ CO H 5-0 00
- -05-. 5-fl
+ +++++++++ ++ ++++++++++ H H H H H H H H H H H H H H H H H H H H H H a’a’------- a’---a’--O-OHHH’OH DO’.05-. OH a’H O5-0030H’00H
DOS a’ s-fl
000000000000 I
CCI
‘-51 - 5fl
I
I
5-fl 5-i 5 5. 5- 5- DO 5-.
a’- a’ a’ 5-fl 5-fl UI UI UI
-
5-fl
5
++++++++++
UI 510’ a’ DO UI 5-. UI’0 DO 5-0 H 0 ‘0
I IC I CCIII I 5-05--. 5- 5-05- 5-05-. 5-. 5- 5- 5-
DO0DODO
HHHHHHHHHHHH DO H UI a’UI - - 4e- H0
I+l+I+l+l+I-4-I+I+l+I+I+I+I+I+I+I+I+14-l+I+I+I+ 5-. 5- 5- 5-a 5- 5- 5- 5-. …-. 5- 5-. 5-. F- FC
-1-0 -1-5
H H H H H H H H H H H
II
11111
III
DODOD
5-. UI
-
++++++++
a’…0
5- 5-. 5- 5-i i F- F- F- F- F- F- F- F- F- F- F5. 5-.
HHHHHHHHHHHHHHHHHHHHHH 0000000000000000000000 I
-
DO DO DO DO H DO
5-. 5-. 5-. 5-. 5-. 5- 5-. 5- 5-. 5- …-.
C I C C HHHHHHHHH
CI
s
5. 5- 5-o - _ -
0- C0------- 003
tIll
I
I
I
I
I
C
C
a’ a’ a’ C’ a’ 00’
ICC
II
I
C
II
-1 - -0-0 - -1 - - -1 - -0 -0-0---0-0---0--0 5-.DO DOs.HOOr O’0 03-’00H-- Oa"0ODOO5-h0
- - - - - - - -
4e-
1111111 C III H H H H H H H H H H H
51 UI 5-fl 515-11 ‘051 UI 5-115151
HHHHHHF-’HHHH DOHUI ODO DOF- H a’5J1 DO
1+1+1+1+
+l+t+l+lI+l+l+I+I+I+l+I+I+I+I+f+I+tI+I+
l+l+I+I+I+I+l+I+I+I+I+l
Cs
DO DOH0DODO
HDODOHHHDOHHDODOD
H DO H
1-5-1
+++++++++++++++
++++
H H H H H H
H H H H H H H H H
H H H H
0000000000000000c00000
DODODODODODODODODODODOD -3 - - - - -0- - -3-0-
000000000000000
0000
+ +++ ++++++++++ + +++++++ HHHHHHHHHHHHHHHHHHHHHH
UI UI 5-fl 5-5151 5-fl 51515fl 51 5-fl
CI
I
000000000000000
DO DO 5 DO
111111111111111
CI
F-- F- F- F-- F- F- F- F- F- F- F- F- F- F- FF- F- F- F- F- F- F- 5-fl 5-fl 5-il UI UI UI 0’ 0’
C
C
C’-F- a’
0’OUI
++++++ HHHHHH F-DO5-. H0ODO’OH
a’F- HUI a’-0’0
++++++4-+ HHHHHHHH s5-DO OHODO-35-.-’03 ODODOC-.
C H
0 to
CCC
C
I
C
C
I
I
I
CI
I
I
I
I
CCI
I
F- F- F-- F
I C I C CDI C C C C C I C C C I I I I I I I C CD F- F- F- F- F- F- F- F-- F- F- 4- F-- F-- F-- F-- F-- F-- F-- F- F-- F-- F‘0- ‘0 ‘0 ‘0 ‘-0 ‘0’0 00 0000 03 000 -3-0 - -0
0000
HIH H H H H H H H H H H H H H H H H H H H H H DOIH H H H H H H DO DO DO H DO DO DO H DO H DO DO DO DO DO
C
C
‘0’0 ‘C’0
+1+ 0 000 000 000 000 0 CO a’ F- F- 5-. UI 51 5-fl 5-fl UI UI s-fl 0 UI F- F
C
5--. 5-. 5-05-. 5-. 5-. 5-. …-. 5-. 5-. 5-. …. 5-. … DO DO DO DO DO DO DO
5-51515151 DO 5-. 5-. H
++++ H H H H
DO DO DO DO 5-fl
-
050
DO DO DO DO
aCD
+ + ++ + + + + + + + + + + ++ + ++++
++++++++++++ DODODODODODODODODODODOD 111111
I
CCCI
5-05-. 5-05-. 5-. 5-. 5-. 5-.
DO
DO DO
CDI CCCIII CCIII C 5-. 5-. 5-0 5-. 5-05-. 5- 5-. 5-. 5-. 5-0 5151 F- F- F- F- F- F-- F- F-- F11111
CIII
CIII
5-DO 5-. 5.05- 5-05.35- 5-. 5-05-. 5-0… DOIDO DO DO DO DO DO DO DO DO DO DO DOIDO DO DO DO DO DO DO DO DO DO DO
O103-’0’00--’00DODO’0 OUIO’05-.0ODOOHDO
a’DOF-HUIa’UI-Sli0
+1+
CII I C C C I C C I C C HCH H H H H H H H H H H ------3---- CHIH H H H H H H H OH H F-I5-1F-- H 5-05-51 a". 0’ 000
+ + + + + + + + + + + + + + + + + + + + +
0310 0000000 00 0 00 0000030000 UI 5-il 5-fl 5-51515-5151 F- F- F-- F- 51 5-fiF- 51 UI 5-fl F- UI OIH H H 0 0 0 0 0 H O-0 ‘0- 00 00 H UI H -3 H
UI F-fl UI UI
aCD CD
*11
o H 0
a H 0
a H 0
aCD CD
aa-
HHCD* 0CDCDs
0 CD
0
sO O ts 0
-. O"O0 ‘7’
0 CD
0 0
0
-
0’
-H-
I-
- - - - - - - - - ‘.7’ - - - - - 07 - ‘ 07 0 ‘.0 O 0’ 0.0000 H 0 H OH t’. ‘...
0’1HH
07
0
07
‘.77010101 00 ‘.700
‘7
U 0
‘77
01070101 000
‘C CY’ H CX O’.’
O"O ‘0-.7 ‘0’J 01
‘-7’ ‘. 01070707 U 0107 01 ‘.77 07 01 ‘.7’ ‘.77 010101 ‘.7’ ‘.7’ 07 7’ ‘.7707 ‘.7’
01 r
HO H ‘00 0’ HP-
0
O’- OH ‘0
‘.7’ ‘.7 M ‘7 77 ‘.7’ 0000 ‘.J ‘..0000
000
000 …..’... 00 ‘. … 7 0 ‘.7’ M
7’
0000000’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0
7
‘.770’
GJ01
J1 07 7’
‘.fl 0707 ‘.7707070701 11 01010101070101
C.. ‘. ‘.0 000’. 0000
00
-0 0HHr
H H -
HH-HHF
HO
-H OO’.
- - - P- - - - - - - - - 07 U ‘.77 07 ‘.J7 ‘.7’ .‘ 07 ‘.77 77 0107 ‘.
-F-H
00
O-
07
‘.77 ‘.11 ‘.77 ‘.77 ‘.. 0 L
0
‘..
0000
0 0 L0 0 0 0000
0’O’O 0000
00
HF-F-HHHHHI-H 00000000.00000 O0’4D O
H-Hi00000000 u
I I Cliii 1111 .0 v--
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + G’,’..fl C’. t.H C. HHHH H HH 1? O’O’.fl a’..OOsC-
C I I III 0’-. O’0100
HHHHI-H 07 ‘.7’ 0101
01
HHHH J
00
+++++++++++++++++++++++ J M H
?l i’.
‘
H
---‘H
‘J
‘.71000
-
HHHi-H 00000
+++++++++++++
C.
–+++++++++++++IIIi O… I-’.O
O’
H’O-
I- C.i0 0’
‘.‘H
00
0’
-
-.
0
-]‘0 H
01
0’ 0’
Q
007
00 H H
77 07
iuuIIIIIII I 11CC III HHHHHHF--H H H H H I- I- l- H H H H H H H H ‘.77 ‘.7707 ‘.7701 07 0107 07 ‘J ‘.7701 ‘.77 ‘J -. ‘00 H ‘0 t’. 070’ 0 - 01 I0
++++++++++++++++++++++++++++++++++++++ ‘C’0 ‘.0 4D D ‘O’0 ‘ ‘O Q ‘0 ‘O’0 O O’0 a ‘0 0sO 0 0 ‘0 sO ‘.O’0 ‘.0 0 ‘0 ‘0 ‘ OOOOOOO0OOO’OOOO0OO’.OOOOOHHOOOOO H I’. H 0 H ‘ H a ? t 0 ‘0 - 0 0 H ‘Or- 0’-. 0 Os- ‘C -. 00 H 0’
I+l+t+P+I+I+l+I+I+I+I+I+I+I+I+I+I+I+
I+I+I+I+I+I+t+I+I+I+I+I+I+I+I+I+I+J+I+p+J+I+I+I+I+I+I+I+I+I+I+I+l+I++i+I+ C. t’rt ‘J MC. C.
++++4-+++++++++++++
+
t+I+I+I+I+J+I+t+t+t+I+I+I+I+I+I+I+I+ 0 C’. t
‘
0 i’.
‘
t C. 00
-
++++++++++++++++++++++++++++++
-.7
o H H 00 - H 00 H 0000 0000 ‘OH O07s t’ ‘J- O’07 0.0’- I-
O
---
H
OQ’.o0 O’0’CO
1+
I+I+t+I+I+I+I+I+I+I+I+I+J+I+I+I+I+I+I+I+I+I+I+I+t+I+I+I+I+I
- t’.
+++++++++ COO 0000000000000000000000 000 OHI-HHH HHHH I
I
I
I
IC
I
I
I
III
II
III
++ HHHHHHHHHHHHHHHHHHH000000000
- - - - - - - - - - - - - - - ,- - -
IC
I
‘ ?‘.
I
I
I
C
III I I III 111111 .. ?. I 0 0 t 0000000
I
I
I
I
I
IC
I
ICC
I
I
I
I
I
I
I
I
I
I
lull
i;i
C
IC
IC
C
I
I
I
I
II
111111111
C
I
1111
IC
II
II I I III I I HHH HHi-’HOOO
Illillil
CICCII
I
CI
I
-HOHHOh-HHOI--Hoo ‘.77 - I P 0 O C J .. II II III I CCCIII 0…00 t H JHH t 007QC010JO0.010O
0701’.70’07010107 00 ‘0 H 4 ‘0 0’ 00’ H 0 0’ - - 0 001 J ‘.
+
+
+++++++++++++++++++++++++++
-
HHHHHHHHHHHHHHHHHHHHHF--
0 07
C
H 0
II
H H F- I- H H H C
H 0
‘D’F-
C
0
i’
C. r., ? C
H
0
0
CD CO
t ?
H CD
a’.
C’
0
"0 CD 0 H H H H to to C H H H H O to H 0000 O’- to 000
toto
-o 0’ itO
o H to
-
0 HO
H
HO ‘C
H H H to to to to H to H H 00
-
tototOtoHH it-00 H -0 00-0
it CD
C
0
r
X II’
OH 110
CD 0
0
*
totoH
toH to 000
totototo itO’OoD Otto H
0000 000 0 ‘0 Ot’0’00’0 00 00 00--0--t 0-0 00 0
_
ttoH
*
H
HHH 0-00’
to to to H H 0 ‘0 H 0
HHHHH0O 00 - 000
H 0’
000 00 - ‘0 0
HtoOtoHto
OOH
H HtotoHtoOitHtotoH00it0-
-
0
00 H
‘0 to 00
to 0
H H
0
- ;-
-
- - - - - - - - - - - - - - - - 00 00 0000 0 0 00 00 00’ 00’ 0’ 0’
;- - - - 000000
0
- - 000
- 00000
0000000000000 to to to to H H HH H - HHH
00 to to
00000000000000 000000 00000000000000 - - - - - -
00000000 000000 to it
000 it to it
00000 00000
0000000000000 to to to to H H H H H H H H H
00 H to
00000000000000 - it -
000 OtoO
000 it to it
00000 00000
HHH
HHHHHHHHH
HH 00
HHHHHHHHH HH HHHHH O000O0000’000Oa0OOO00
HHHH HH 0000 - 000
HH O 0
HHHH
++
++++i
It
II
liii t HH H 0 to 0 H 0-0 HO
000
0 to to to t
toHtoHto
HHH
I- to to to t
++++++++
+++ HHH 000 toNH
H H H H H 0 to to H H 0 ‘0 0 0 0
iii HHH HHH 000
11111 HHHHH HHHHH 00000
1+1+1+
1+1+1+1+1+
toHto
HtotoHto
000 ‘0 0 H 0000000 liii
H HO 0 to to to H to to 0O’J I
I
ii
I
I
I
I
000 0’ 0’ 0’ 0’ 0 H H H H 0
HHHHHHHHHHHHH 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0000 0 H 0 0 - 00 to 0000
tea
Hto
HH to 0
0
Z
CD C
it ii
00 00
-
1111111 Cliii iii H HHHH 0’- 4- 0 H H 00-] 00O to to i’00
1111111
lilt
II
0000000-]00000000tOotO’0
++
++++++++++++++l
to H
0000-0000 to to 0-0000000 J- 00000 to
+++
liii
to 00 - Ot - H - 000
to toO HO to
-
Ii HH 00’
tot-
111111 III 111111111 HHHHHHHHHHHHHHHHHHH - - - - - - - - - - - - - - - - - - 000000’0’-0000’0’0000000’ 0’000-’0HO-]00’Oa4e-O0’0Ooc0
I+I+l+l+l+I+I+I+I+l+I+I+I+
1+1+
I–I+p+I+l+I+I+I+I+I+l+I+I+I+I+I+I+I+l+
H H Hitto0H H H to H H
toto
liii
Ci
111111111111111111
H H H to H to H H H to H H H -0 ‘0 ‘0 0000 ‘0 ‘00’0 ‘0 ‘0 -0 0’0’0-]00000’-0--] -]
HH ‘00 00’
HHHHHHtoHHHHHtotoHHHH ‘000000 00000000’0’000 ‘000’0’000’-0toH-- 000
f+I+I+l+I+I+I+I+I+I+I+l+I+
1+1+
I+l+l+I+l+I+J+l+I+l+I+I+I+I+J+I+I+I+
toHtoOHtoHHHHHHH
HH
HHHHHHHtoHtoHHtoOtoHtoto
1111111111111
II
Cliii
tototototototototototototo
toto
000 00000 0 0000
00 ii
liii
liii
0000000000000
H H
to to to to
to to 00000000 to to to to to to
1111111111111 0000000000000’
II 0-0’
i 111111 Cliii liii liii CD00000000000000-000xOxQ--Ox 0000000000 itO to to
lilt HHHHHHHHHHHHH 0000000000000 0 to 000 - 0000000 000000000’ 0’0"-0
H H 00 too
HIHHHHHHHHHHHHHHHHHHH 000000000000000000 00000 to to it to to it ittot 000000
liii lit 111111 HHHHHHHHHHHHH 0000000000000 000 to 00000000 HH to 0 000 0’toO-] 0
_
to to to to to to
CD CD CD H C
ID
-OO0’
+++
+++++
H ‘0
0
HH 00 00
HHH 0 ‘0
HHH HOH 0-00
HHHHH OHHOO cxtHto’0s
1+
1+1+
J++I+
1+1+1+
I+t+I+I+I+
-0
-00
toto0
totototoO
++++++++
+++
+++++
totototototototototototototototototototo
HHHHHHHH
HHH
HHHHH
lii
11111
00000000000000000000
_ _ _ ;- - _ _ _ 000
HHHHHt
111111111111111
i 0’
liii
lit
11111
I
IlIlIIliIiilIItIi
to it-C H 0-] 00’ 000 - it to to
11111111111111111
HIHHHHHHHHHHHHHHHHHH
ittO00O0O0OO0000000O t0’00O0’00H0-]to00’OOto
I
H 0 C 0CO
ii
I
I
I
0000 to H 00 t 1111111 CD00000000 00000 H toO IjilIlilli
HCHHHHHHHH to to to tO to to to q 0 0 0 H 00 0
-
00-0 H SM 0’-
I
Ii
H
HH
it itO H HH ‘0 to 00’ ‘
0 0 0CD
HH’0
+++
iii itO too ‘00
-
++
liii
OH
-
I I I it HHHHHHHH HHHHHHHH 0000 it 00 000
I
000 OH to to to to to 000
00000
Il
1111111
00’
111111111 liii H H H H H H H H H H H H H - - . - - - - - - - - - 0’ 0’ 0’ 0’ -0 - ----0--]-0 - -0 0-] 000 0’ H to 0 H H -
11111111
-
DC CD CD C-"
C
OlD
Ill
HHH
000 HHto s0-]P00 HF00 00 C-C00
I
Ii
CD000
I
11111 00000 000000
IlI
11111
HHHH to to to to H 0
HHHHH
to
0
liii
HHHH
it itO toHtoto C’-] ‘00 H 00 DC .Cfl 0
C’ to to to t ‘C
t
11111
HHHHH
00000 Cttototot t00000’
C
H
0 0
C
ci an cat ,0
un 0
un C
a
ci ci
a ‘0 C
C 0 H U
0
0
o
H
o
HOH’00’N HSOO1N 0000 H’0’ 0’ c" 0’ N 0’ N 0’ N N 0’ 0’ N N 0’ N 0’ N N N N N 0’ N 0’ NIC’
0’inin’0OinNin0’N0’40’C’Nin4O’00-40 0’ 0 0’ 0-a-- 0 0’- 0 0 0’ 00 0 0’ 00 0’ 0’ 0 0’ 0 0’ 0 H N H H H N H N N H N N N H H N H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H I I I I I I I I I I I I I I I I I I
000’0’C’0’0000000000000O00O0’C’0’ ‘0-C inininininininininininininininininininininininin ci I till lilt liii 11111
HHHHNNNNNNNNNNNNNNNNNNHHH 0-0-0-0-0-0-0-0-0-0-C-0-C--C--0-0-0111111 1111111 I III liii
000 H H H N N N N 0’ 0’ 00’ 00’ 0’ 0’ 0’ 0’ 00’ ON N N
N N N N N N 00’ 0’ 0’ 0’ 0’ 00’ 0’ 0’ ON N N N N N N H
1111111
II
1111111111
1111111111111111111111111
0000000
0000000000000000
0000000000000000000000000
N
NNNNNNN
NNNNNNNNNNNNC’INNN
0000000000000000000000000
1111111
1111111111111111
+I+l+i+i+l+I+I+I+I+I+i+l+I+I+I+l+l+l
in C-C’ 0’ 0’ 40 in in 0 0’ in C-CO 4 N in 0-0-H 0 C-CO H C’- N 0’ 0’0’ 0’ 0’0’ 0’ 0’ 0’ 0’0’ 0’ 0’ 0’ 0’00’ 000 0’ 0’ 0’ 0 0’0’ H H H H H H H H H H H H H H H N H H H N H H H N H H
NHin000’0’0-Hinin000-’0H’C NNNNHHHNONNNNONNNN
I
I
Ill
II
I
i
II
I
lIlt
II
I
I
I
in C-C’ 0’ 40 in ‘C N 00 in 4 in O in in in 0’ -00’ in 0-0’ N H ‘C C 0 ‘C ‘C’C’0 ‘0’0’C 0 ‘0 ‘C’-C ‘0 ‘0 0’0’0 ‘0-0’C’C in C- in
TOJ
OONNHHHNNHHHHHNHNNOHHHHHH
+I+l+l+l+l+I+i+l+l+l+I+l+I+li+l+l+l+l+I+I+l+I+I+
444444444-4-444-4444444-4444-44
0 0’ H CO in 0’ C-’0 4040’ 0’0 00 N 00’ H H 0"0-4 H 0 H -4 0’ N N N H 0’ 0000 C’-’C ‘C in -40’ N H H H H H H H H H H H
NO 0’ -4’-- 0’O N 4’0 4’0 -0 CO H 0-0’ 0 OH OH 0 HO’ NN44inin’0’0O0O’0HNNO4-44 HH HHHHHHHH I+++++++++++++++++++++ ill
in 0’ in in in it’0 H H-C C--n 0-000 0-
H H H H H H H H H H H H H H H H H H H H H H H H H
‘0in in
H 0 in
CC
in
in H in in in
lilt
liii
1111111111
lilt
II
II
I
II
I
II
I
II
I
i
II
I
I
I
I
I
lilt
UO0JJJ0
UOLPUI1XJ JL’!UJZJJ
-JbP
HHHHHHHHHHH.-IHHHHHH +++-f++++++++++++++
HON NN’000-040-CO0’0-4C--OC’in-000inO NONNNNNNONNNNHHNNHHHHNHNN HHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHH III 1111111111111111111111
H H H H H H H H H H H H H H H H H H H H H H H H H H I III III lilt I It I I I i I II I I I I
Job ioJ
in in in in in in in in in in in in in in in in in in
II
+I+I+I+I+I+I+H-I+i+I+I+I+I+l+I+I+l+I+l+I+l+l+l+I+I+I
UOUi
NNNNNNNOONNONNNNNN
+l+I+l+l+I+I+I+I+I+i+l+l+I+l+I+I+I+l+i+l+I+I+I+I+l+i
N H H H N C’ H H N H H N H N ON N N 0’ 0’ 0’ 0’ 0440-
aucpucdcp
4 0’ 0 H H H H I
0
II
JO
cci
,o
ONHOO’00O0-0-40C’N H N 0’ N N N N N N N N H H N H N 0 N C-N-’-’-C’0-0-0-0-C’-’N N N N N N N N N N N N N N N N N N II Ii I I I I I Ill II Ill
N H H N N N H H N H H H H H H N H H H N OH N N N 4
-Xc
cc ‘0 C 0 H cc,
‘o
H H H H H H H H H H H H H H H H H H H H H H H H H H1H I I I I I I lii II I I Ill I I 0-C’HH’000-040H00-0000-’0ON HinH N N 00’ N 0’ N N N N 0’ N N N C’ N N N N N N N 0’ N 0’ -110’ in in in in in in in in in 0’ in in in in in in in in in in in in in in in inlin H H H H H H H H H H H H H H H H H H H H H H H H H HIH I I I I I I I I I I I lit I I I I I I I I I I I
till
uOcccI0c cUCSTQ 0’
ci ci ci
C’-
UOflJJO
lJU?1d JO sainstacil JO Jaqu01-l
-o
N 0’ 0’ N 0 H H 44 N 000 H 0 0’ C-C---4C----O 0- COO H H HHH 11111111111 l-t--+I-i--I--f--II I
CO’0 40N NN NNHHO HHH HOH H00 HOHH
00000000000000000000000000 H H H H H H H H H H H H H H H H H H H H H H H H H
000000 0’O 000000000 00000000 H HHHH HHHHHHHHHHHHHHHHHH
11111
+
I
I++
1+
++++
C’ON N 000N N in in in in in
4-$44444inin44-4inin0000
N N N N N ON N N 000’ N N 00’ 00’ 00’ N 00’ ON N in in in in in in in in in in in in in in in in in in in in in in in in in in
‘C-C in in in’C’0 C’0 -0 ‘C’0-C N N ‘0-0-0 N N in in in in 4444444444444 in in 444 in in 4444
N N N N N ON N N 000NN N in
4
++++++
in
in in in in in in it in in in it in in
in
in in in in in
in 44-4 in in in -4-4 in in in in in in in in 0’ in in in 44444-4444444444-44-4444
SliUCJfl
in in in in in in in in in in in in in in in in in in
4400044444-4-4-4-4-4-4-4 44444444444444444
-4000NN 444-444
0 OO’C-C in-C 00-H 4-4H H 0’N’0 004 eOdOOO00C’HHc’OWci4-4
444404000’ N N H H N N H 0 N 0 H H N 0 H
CO -4 ‘0 0-COOn-C’ 0N -4-04 C’ -4000 in 0 H N H C’ N H N H H H H H H H H H H H H H H H N H H H
COO 0’0-0-00 ininC--CO 0’0’0 00 NO -4in4-4-444-4-3-444in4c-4in4
in
HHN
HHHNN
in
in 0’ in
HHHHNNN
HHNN
C’ in-C 0’ ci
H
OH -4’0 C-O 440400
040-0 40’ H N N 00-004000’ 00 H in 0-00’ HHNN HHNNNOHHHHHNN
0
U 0
z
U ci 0
CD
‘O
0 CD
U’
C
20
2
2
-
‘0
CH P’’U
CD 0’
2 II
‘0
CC
00’
NHH 0 U"U H 0’U
‘U H H N N H H N
NHHH NNNHHNN NNNNHH N O’U’U HO N-U H U’’U H H’US.fl’U’U’U N H 0-U’U 0
‘U ‘U ‘U U"U U"U 0 0
- ‘U ‘U
HHHNN NU’U’U H N 0 ‘U N 0 0 0 ‘U 000 N -U 0 U’ U’ 0-0 -U U’ ‘U
NNHHH NHHH H 0 ‘0 U’ ‘U ‘U ‘U -U ‘U ‘U CD ‘U CD H ‘ ‘U’U’U -]0U"U ‘USJSH’U5SHHCDU’
N NN H 00 N H H H H N N H 000000
N N ‘U ‘U ‘U CD ‘U N N CD- N N H H
‘U ‘U ‘U
‘U H H -U H 0 H 0
000 00DH ‘U H
‘U’U0’U’U’U t’t1H
- - - - - -
‘U H
‘U ‘U ‘U U’ U’ ‘U U’
‘U ‘U ‘U ‘U ‘U ‘U ‘U
‘U ‘U ‘U ‘J ‘U ‘U ‘U
‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U
‘U ‘U ‘U
‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U
‘U
‘UCD-CD-’U’U
_ - - _ - _ _ _ _ _ - CD-N CD - - -
CD
CD- CD CD CD- CD CD CD CD-
- CD-CD-CD CD CD - CD CD- ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U
- - 55 ‘U SM ‘U ‘U ‘U ‘U ‘U CD
‘U ‘U ‘U ‘U SM ‘U ‘U ‘U ‘U ‘U ‘U CD ‘U N N N ‘U N ‘U N N N N H H H
‘U ‘U 55 ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U 55 ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U
CD
‘U CD
‘U CD
CD- CD- CD
CD- -I
CD
CD
CD- C
CD ‘
CD- CD- CD
55 ‘U ‘U
‘U ‘U ‘U’U
‘U ‘U
‘
‘U ‘U ‘U ‘
‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U
‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U
‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U
‘U ‘U ‘U 55 ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U CD- CD CD- CD CD- CD- CD- CD CD CD CD CD ‘U ‘U ‘U ‘U CD CD- CD- CD
CDCD’U
H H H H H H 000000
H H H H H H H 00000000
H HH H H H H U’ 0’ U’ U’ -U -U 0 U’ U’ 0 U’ U’ U’ U’ - 0 U’ 0’ U’ 00 - 0 ‘U 0
HHHH HHHHHHHHH 000000000 ‘U 0000
1111 H
11111111 III C +111 C ++ N H H H H H CD ‘U ‘U ‘U U’ H 00 N 0 N ‘U CD- ‘U N 0 ‘U N H 0000 H H
N N N N NCD
-
+++++++
+++I
N N N ‘U H H N
H
+++++++
0’ N N N
+ + + + + +
‘U
+j
I
I
I
I
I
I
CDC
I
H H NP N’U’UP
11111111111
111
‘U ‘U ‘U ‘U ‘U ‘U ‘U
‘U ‘U ‘U ‘0 ‘U ‘U ‘U ‘U
H HHHHHHHH H ‘U ‘U ‘U ‘U N H 00 ‘U ‘U ‘U 0 ‘U ‘U ‘U ‘U 0 ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U
H H H H H H H H H H H H H
+++++++ HHHHHHH ‘U ‘U ‘U - - U’ 0’ ‘U ‘U 0 ‘U N
++++++++ H H H ‘U ‘U ‘U -0 0- -U N 0 ‘U H ‘U ‘U- ‘U 0
++ + + + ++ ++++ + ++ ++ + + + + +++ HHHHHHHHHHHHHHHHHH ‘U ‘U CD CD ‘U U’ -U 0 ‘U ‘U ‘U CD- ‘U ‘U U’ U’ -U 00000000 N 0 N U’ H ‘U N CD- H ‘U U’ H U’ ‘U N CD- U’ H ‘U ‘U ‘U CD ‘U ‘U ‘U
-
II I III HHHHHHH ‘U ‘U ‘U ‘U ‘U ‘U ‘U N N N N H H H N’U 0 0’U O"U
III II II I H H H H H H H H ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U HHHHHHHH - ‘U U’ U’ U’ ‘U 0’
II I II I I I I I I I I I II I I I I I I I II -NN U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ CD- ‘U CD- CD- ‘U CD CD-CD- ‘U ‘U ‘U ‘U ‘U ‘U ‘U CD- ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U CD H 00 ‘U OH 0 ‘U 0 ‘U ‘U 0 U’ COO N -U U’- U"U -U -U ‘U 0
11111111111111 H H H H H H H F- H H H H H H H H H H H H H H H H H H N N H N N N N N H Cs N N N 0 U’ ‘U CD -U ‘U CD CD ‘U ‘U ‘U ‘U U’ C
I+I+I+I+l+I+I+I+
l+I+Il+I+I+lI+l+I+l+I+l+l+l+l+l+l+I++I+l+I+I+I+
N’U’U U’--N’U
N ‘U ‘U ‘U N N N
U’
O U’U’U’U’CDCDCD N N’U N N N N Cs
N
HHHHHHHHHHHHHH ‘U ‘U CD
‘U N ‘U ‘U 0’0 N CD- ‘U
l+l+l+l+I+l+l+I+l+l+I+l+l+I
N N N N N N N N
H N H N H N H H H
-
N N N
++++
++++++++
++ +
+++ HHH
+ H
++ HH
++++ HHHH
‘U
‘U ‘U
‘U ‘U ‘U ‘
U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ 00’- U’ 0 N
NNNNNNNNNNNNNNNNNNNNNNNNN CD ‘U CD ‘U ‘U ‘U ‘U ‘U ‘U ‘U 55 ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U U’ U’ 0 ‘U H 0 H 00 N ‘U N 5s CD H ‘U H ‘U U’ 0 ‘U - CD CD N
‘U ‘U ‘U
0’ U’ 0’ U’ U’ 0’ U’ U’ 0000 ‘U 0’
HHN 0- ‘U
0 ‘U
HH N N
HHHN ‘U CO H
I+I+I+I+I+t+I+
I+t+I+I+I+l+I+I+
l+J+t+l+l+I+ll+l+I+l+l+l+I+l+l+l+l+l+I+l+l+I+l+l+
1+1+1+
1+
1+1+
l+l+l+l
H H H H N H H
‘U H H ‘U N N N 0
N CD ‘U
‘U
‘U ‘U
‘U ‘U N
+++
I
I
‘U ‘U ‘U I
I
I
I
II
‘U ‘U ‘U ‘U
I
III
I
II
II
‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U
II
I
I
C
I
I
00 H 01
011 0-ID InC-a.
I
I
II
I
I
I
I
I
II
I
I
II
I
I
I
II
I
I
I
N N N N N N N N N N N N’Us’U5s’U’U’U’U’U’U’U’U’U I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
II
I
I
I
I
00000000000000
I
++
I 1111111 00000000
I I I I I I I I I I I I I I I I I I I I I I I I I -U -U - -U ID -U -U - -U - -U -U -U -U -U -U -U -U -U -U -U -U -U -t ‘ ‘U ‘U ‘U ‘U N N N N N N N N ‘U ‘U ‘U ‘U CD- CD CD CD CD- ‘U ‘U - 0
‘U ‘U ‘U 0’ ‘U ‘U ‘U ‘U
-U-U U"U-U’U0U’N
N ‘U N N ‘U ‘U N N N N N ‘U H
NNNHHHHH000000
liii I I I 0000000 ‘U ‘U ‘U ‘U ‘U ‘U
CD-e-CD-CD-
N ‘U ‘U N ‘U N N ‘U H N N
‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U N N N N H H H H 000000000
I
1111111 HHHHHHH
+++ ++ ++++++
N N N ‘U ‘U ‘U ‘U N
000 H H H H
I I I H H H CD-CD-CDH 00 0-U U’
+
HH0000000 00000
‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U
I H CD H H
+++ +
H H H H H H H H H H H H N N N N N N N N N N N N N
‘U ‘U ‘U ‘U ‘U ‘U ‘U
II I H H H CDH H 0 OH-SO
+++ ++ +
I
II
I
I
I I I I I I H H H H H CD-CD-CDCD- CD 0 0 0 0 0 CO’U 0-U
I I H H CD0 0 U’0
11111111 HHHHHHHH
CD
-CD-CD-
-U-U-U---‘UU’CD’UCDO C
H 0
0 0CD
III NIN -UI-U HIH -Uj’U
I I N N -U -U H H U’0
I I N N -UN H H’U
I I N N -U -U H H 0-
I N -U N
I N -U H
I N -U H
I N -U H
I N -U H
I N -U H
I N -U H
I N -U H
oCD- H’UCD5s-U-U
I I I N N N -U -U -U N H H H’U’U
I I N N -U -U H H U"U
I I I I N N N N -U -U -U -U H H H H O-
I N -U N N
11111111111111111111111111 NNNNNNNNNNNNNNNNNNNNNNNNNN
‘U’U’UU’U’U’U’U’U’U’U’U’U’U’U’U’U’U’U’U’U’U’U’U’U’U U’U’-UU’-UU’U’U’U’--U’U’U’U’U’U’--U’U’U’-U’-U0’U’-U 0CDH’U’U’U ‘UHN-U’U--0’U’UCD-’UOOHOOH 0 H 0
0 0CD
0’0 H 0-CD InID CD P’H
0 H 0 U
0In -
0 ID 0 0-
:C-’ 0 10-
CD ‘
I
I
I
I
I
I
I
1111111111111 U’0’U’U’U’U’U’U’U’ U’U’U’U’U U’U’U’U’U’U’- -U--J-U--- 0-
0 III HIH HIH ‘UlO
I H H ‘U
I H H CO
OICOCD’U 11111 NINNN
-UI-U----
OOHO -U’HU’
I I H H H H ‘U ‘U HI N 0 ‘U
I I H H H H ‘U ‘U ON
I H H ‘U N
I I H H H H 0 ‘U U’N
I H H ‘U N
I I H H H H ‘U ‘U NCD
1111
II NN -U-U 00 CDCD
--UUOHOH
‘U0JSC 00 HH 00
11 C’ In
I1P 11
‘U
IC’
IC’
d
5. N N H H H-0 NsO H5.o
C H
5.S N
r5 H H H CDCD
N 00 0 000 H 5. 5.. 0’ 5..
SM SM
- - -
-
- - - SM 0’ SM
op SM SM SM SM SM SM ‘.5 - _ _ - SM
-
CD
SM SM SM SM SM SM _ _ - - SM
II
II
0 0
-
SM SM SM SM SM SM
++++++
-
+++
0’0SMSM 0
++++++++++ HHH SM SM H ‘0 sO sO sO 50 sO ‘0
H 0CC n
SM SM SM SM SM
H HHHH H 000000000
.ii ‘ii
N N
H H H H H H N N t C 0 0’ 0 -0 - - 000 0’
++++++++++ HHHHHHH 000 SM’000 ‘0 sO SM H 0 sO SM SM SM 0
.
III I I I III H H H H H H H H H H SM SM SM SM SM SM SM SM SM SM HHHNHHNHNH HNSMsO 000HsO
N
i+I+I+I+t+I+l+I+I+I+ _ -
SM SM SM N N N SM SM
cl
H H D’ i-
++++++++++
0505 o’0’0-a- 0005 0 -C ‘0 - 00000 sO
I+I+I+I+I+I+I+I+I+I+ N
N N H H H H H H H H
H
II
I
II
I
I
I
I
I
SM SM SM SM SM SM SM SM SM SM III
I
I
I
SM SM SM SM SM SM III
I
I
I
I
I
I
SM SM SM SM
I
SM SM SM N N N H 000 II C
H -
I!
liii
O000HHHNN
0
III I I I I I I I I I F-IHHHHHHHHHH - - - - - - g- - OIs000H000000 N 00 - 0-a m 0 O
p-N
11111 H ‘_5 H CD
CC H
o
*
lii
I000---a---------aSMso-aSM Q- 05.5
0 0CD
* HH-4HHHH
HHHHHHHHHH,-4H HHHHHHHHH I’C 4O-0"0 4N-1’N C U U N- C U U U N- U N- U ‘N 1 U NC H H H H H H H H H H H -4 H H H HH 11111111111111111
N-’NNU N’NO’C U U U N- U U U U U N- N- U C U ‘N’Ncc H H H H H H H H H H H -4 -4 H ii liii I II
sO ‘N ‘N ‘NO’ N-SO U ‘0 H ‘0 4 ‘0 N- ‘N H U C U U ‘N ‘N U U C 0 ‘N N- ‘N U U ‘N 0 U N- N- N- N- N- N- N- N- N- N- N- N- N- N- N- U N-
N- H 0 ‘NsO ‘0 ‘N ‘N U N- ‘N ‘N H ‘N 0’ U U N- N- N- N- N- N- N- N- N- U U N- N- N- N- N- N- N- N- N- N- N- N- N- N-
C’N
N- N N H N 0 N- U ‘N ‘NsO N- - ‘NO ‘0 0I’-O H H H H N H 4 -4 H H H H H H H H H NIH ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
9’N iii
I
I
I
I
I
II
I
I
II
II
III
I
I
I
I
I
I
I
I
I
I
CsCNHHHHHHHO
HHHC’1NN I
I
Ii
11111
I
++++++++++++++++ H H H H H H H H H H H H H H H H ++++++++++++++++ ‘N N ‘N N
‘N ‘N
‘Ns0 ‘N’0 4 ‘N ‘N 4 ‘N
I
I
I
I
I
I
I
I
I
I
0000000000 00000
000 000000000000 H H H H H H H H H H H H H H ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N
+ + + + ++ +++ + + ++++
N NN ‘NN’N’N’NN4N’NNN
+I+I+I+I+I+I+I+I+I+I+I+I++I+I ON-H 0 ‘N 0 ‘0 ‘NsO
I
11111
‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N
N- N- N- 444444444444444
I
+‘+I+I+I+I+I+I+I+I+I+I+I+I+I
4U 00 N-44N N Q:’N 4 U U 00 ‘N ‘N ‘N 0 ‘N 00 ‘N ‘N’NsOsO ‘N’NSNSO ‘NSO’0 ‘N
0’NN-U’OH$4C’’N’NN-NH H000HHHHHOOHHOO ‘0 ‘.0 ‘.0 ‘OsO ‘OsO sO s0’-0 ‘0 ‘OsO ‘Os
+++++++++++++++ c’N
+I+I+I+I+I+J+I+I+i+l+I+I++I+I+I+I+I ‘N U U ‘N 4 U ‘N 0 N- N- U ‘N ‘0 U N- N U N NHHHCsHHNHHHHHHHH-4N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N N ‘N ‘N
I
I
I
I
III
I
I
I
I
III
I
I
II
I
I
II
I
I
I
NNNC’
‘N
‘N
HNNN’
+H-I+I+I
+1
+1
+I+I+I+I
‘N444U U ‘NN-N N-sO 4’O N-’NN U U C ‘N ‘N U U U U C N- ‘N U U ‘NO N- N- N- N- N- N- N- N- N- N- N- N- N- N- N- C
N-SO ‘NO H H 0 H ‘N N N-C’ N-U U U U U U U N-U U U N- N- U U N- N- N- N- N- N- N- N- N- N- N- N- N- N-
I
H 0 ‘N U H ‘N 4 ‘N ‘0 N- H ‘N 4 ‘0 U H N ‘N SN ‘N 4s0 N- N- N- N- N- N- U U U 0 U 0’ ‘N ‘N I
‘N4N N’0 N N N N C’ ‘NC’ ‘N +J+I+I+I+t+l+I+I+I+L+I+I+I+I+I+
N N
I
III
111111
I
4 ‘N NO N-sO ‘NC ‘0 ‘N N U N--’ 4 ‘N U U U U N- N-sO ‘OsO sOsO ‘N ‘N ‘N ‘N ‘N liii
I
III
III
I
I
‘NC N-sO ‘0 -.0 sO ‘0 ‘N’Ns0’.OsO ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N
11111
I
I
II
111111
I
U U U U C U U U U U U U U U
‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N
++++++++1-++++++
+-*-++++++++++++
NONN
N H N HO ‘NO 000000000
OH H HO N HO N H H HH H
0’OOsOU 0000000000000 HHHHHHHHHHHHH HH
0000 ‘NO 0 ‘N’O 0 0 000 0-45 HHHH HH HHHHHHH
N-N-N-U
‘N’N’NN’N’N’NNNN
‘III
‘N
‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N
+++
++
000 ‘NO sO HHH H
‘N ‘N
+++
‘0
‘N ‘N
I++
000 ‘N ‘N ‘N HH-4
‘.0 ‘N ‘N ‘N ‘N ‘N ‘N Sf’. ‘N ‘N ‘N ‘N ‘N ‘N 444444444444444 ‘N
‘N ‘N ‘N ‘N ‘N ‘N ‘N 4 44444444
‘N N ‘N ‘N
4 ‘N 55’. ‘N 4444
00 H ‘N ‘04 ‘0 C C C N-C H 0
‘N H ‘N ‘NC U U N- 4 U N- ‘N ‘0
‘04
‘N
000 H H H H H H H H H H C’ H N N N
00000000H0000000
‘N N N 0 ‘NC U ‘NO C ‘N ‘N ‘N ‘N N-U C N 444N H H H H N H H H H H H H H H
‘NH’NN N ‘NO 0 N ‘NC CsO-5 4’N4’N’N4’N’N’N44444
-.0 N- N 0 ‘N ‘NsO N- C ‘N N 4 ‘N N-U H N ‘N H H H H H H H H N N N C- N
4 4.
H 0 0
‘NQ H55
‘N"
N- 0 H N-U 0 H 4 U H N HHHHNNNN
‘N 4 ‘N’.’
N 4N-N NO N N-U OsO N5OH
H00 OHH00000NOHO H N- N- ‘N U U ‘N 4 C H N U 0 H 4 ‘N ‘N ‘N ‘N N ‘N ‘N N ‘N ‘N ‘N ‘N ‘N
U H 4’O O’N ‘N4’O N-N’Ns0 N’ N HHHHHNNN
-.H *1
*
0
-
0’ N i-
-HH N H 0 - C’- C’ N
-
N0E-H ….. 0 O"-h H 0….. H
so
NHH ….. …...
-
HHHHH’J ….. C’ 0’ - 0 H ….. - 0’ sO …... 0 ‘0 000 s0 -.0 N N ‘0 0 N 000 ….. H N N N N N N H H N N H H H H H H H H 0 H H H
-
- - - - - - - - - - - - - - ‘ …J ‘.J ….1 ‘. h U ….fl ‘J ‘J ….7
-
- - ‘..7 … J
-
- - 5J
-
- -
-
…Y
.- -
H H 00 H 0 H 0 H
- - - - - - - - ;J sJ ‘. fl ….fl 5.fl J1 J
- - - - - ….fl ….
- - - - - ….I ….7 sfl
C-.
C...
*
-
-
L.N …..NNNNNHHHHHH NsOO- 0’ N H H 0 s H 0 ‘0 0 N H OsO0-. 0’ H H H H N N N N H N H N N H H N N N N N N N ….. N ‘050 0sO 0 N H N- N so ….. N ‘050 C’
N. N H N H N N N H N H N H 00 H 0 H H H H 0
- …. …7
- - - ‘M …. .fl …X
‘J ….7 ….1 …X 5J T …. 7 ‘ ‘0 ? ‘J J fl N N N N N N N N N N N N N N N N N N N N N N N N N N N N H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H 000000000000000 000000000000000 11111 I I Ill I III III ill I II I I HNNHHHHHHHH H HH H H H 0O…..’0H000N00H 0-000 0…J-.0Z--0
;- -
- -
- - -
liii -
II
Ii
-
I
-
000 ….. 0 -0 N -0 C’ liii
I
‘o
….. …..
ill
I
….. ….. . ….. ….. ….. ii
H 0 H
III
I
N H
till
I
II 500
II
I
I
…... ….. ….. …... …..
…..
Ii
I
Ii
I
- -0 0’ C’ 0’ C’ -00 H 11111
Ii
I
….. …..
…
liii -
J
II
NNNHNNHNHHHHHHHHHHHHHHHHHHHHHH C’N H NsO 00 C’ 0 …M 0-. - H T ui N 0 V Q’- 0 - - N ‘. C’…..
HHHHH 00000
….’
‘j …i
1111111111 …..
C’ 0’ N
C’ C’
‘.fl
III
00 C’
III
HH OH
…..
I
I
III
I
eY …-’ J … SJ’ U ‘
II++I
H N N H N H 000 H
H N 0
C’ .7 C’ C’ C’ …J
-0 N
II
C’ …
…
till
Ii
V ‘.X
‘J 5J I
I
I
5J
it
0000--. - - - -0 C’ C’ C’ C’ C". …J … ….. N 00….. N 0 0 n ‘00-. C’sO 0- … 11111111
I
II
II
II
I
I
I
II
7
Ii
‘ …
II
-0-0- -0- -0- -0- -0- -0- -0- -0- -0- -0- ‘0000-. 0-.-. 0500-. 0- 0’0 0sO 0000 0 C’ 0- s … ….. 050 N … 00’ H 0 ‘0 50 ‘0 s 0
I’.
I+I+t+I+?+I+I+I++I+I+I+I+I+I+I+J+I+I+I+l+I+I+I+I+I+I+I+I+I+ C-
N…..…..NNNNNHH…..NH N NNHNHHH N…..N HNNH N ++++++++++++++++++++++++ HHHHHHHHHHHHHHHHHHHHHHHH H00000000H0000000HOOH000 -.0 0 sO -0 ‘0 050 sOsO sO 50 sO ‘0 O 0 sO ‘0 ‘0 sOsO so 0’00’00’0000’J’0’00H’0-N0--C’
+++ HHH HH 00 0NsO
I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I++I+I+t+I+I+I+
1+1+1+
HHNNHNNNNNNNNHNH…..HNHNNNH
NHN
-.ooo
….. ….. …...
…..
N ….. N N’... N N N
N C’
‘...
+++++++++4-++++++++++++
….flC’C’-.C’C’C’C’C’C’C’C’C’C’…0’C’C’C"J’C’ sO H-. C’H OH HOC OH 0050 OH 005000 COsO- C’0’J N’.7.- 0-i C"... 00 H 050…
I+t+I+I+I+I+I+I+I+I+I+I+I+ITI+I+I+I+I+I+I+I N
H N ….. N N
N
….. N …. ‘.e’ ….. ….. ‘. ….. …... …
…
++++++++++++++++++++++++++++++
++++++++++++++++++++++ H H H H H H H H H H
++ ++++++++++++++++++++ ++++++++ HHHHHHHHHHHH HHHHHHHHHHF-HH n … ….fl ….P …. ….. ….. ….. ….. …-h ….. ….. ….. ….. ….. ….. ….. - - - - - - - - -
++++4-+ +++++++ + +++ H H H H H H H H H H H ….. ….. ….. ….. ….. ….. …. ….. ‘a’.. 000000000000
till NNNNNNNNNNNH00000
Il
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
0000000HHHN
I
I
I
I
I
I
H H H H HIH H H H H H H H H H H H H H Hf- C’-. J H s 0….. H 00’.. ….. 0 00 00 N 0 H
…’
‘-a
-00--0---0-------- N N N N N - 0’ 0’ 0’ C’ C’ C’ C’ 0’ C’ C’ C’ C’
c-
H H C
t+I+l+l+I+I+I+I+I+I+I+l+I+I+I+l+I+I+I+I+I+
I
I
C’-.o
I
tIll IIIIIII1IIIIIIIIIIII HHHHHHHHHHHHHHHHHHHHHHHH H H H H H H H H H H H H H H H 0 H H H 0 H 0 00 H o 0 0 0 0 0 0 0 0 0 0 0 0 ‘0 0 0 OsO OsO sOsO N-H…….H…J,SJ0C’NCOHNCOC’--s0sO 00’
o
0000000000
I
I
I
I
H H H 0050 H III HHH H H H 0 0 0 NC’U
3… …’ …
… …J…
‘.X… ‘SJ
.fl U 5J …
II
II
liii
I
III
III
I
I
I
I
I
I
NNNNNNNNNNNNNNHHHHHHHH
III
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
0F-0 0050 - 0--- 050 0-0 0- 0 0-0 000 00 ….. .1…s0 0….. -.0 0 N N 0…’ 0’ …fl 0 ‘J…s0 C’ N N 0’ lIlt HIHH …aN. COIsO 0 0’IN….
IIIIII1IIIIIII 1111 HHHHHHHHHHHHHHHHHH ….. ….. ….. ….. …... …... ….. ….. ….. ….. ….. ….. ….. ….. …. ….. ….. 00 0 0 00000 ‘0 00 C0 sO’0sO0CONsO0.0’..
0000 HHHHHHHHPHH I-..
+
…
+++ +
=jCH
P’’0
p’d’ 0
-HuH
0? 00
H H
CD
‘-1 SMSM5HHHHH
555OHHHHH
SMH
0’
MCH
HHHH5NNHHHH
N
-
SM SM SM SM 0 ‘0
SM
SM SM
0"0 -
H 0
0 H
H H 00 H
H H N H H N 55 H H H H 55 C’ 5- 555 ‘000 0 ‘O’0 005 00 CO ‘0-C 0 0 40 CS C’ 40 SM 005 00 H 0’0 5 SM 540-40- -0 SM 0’ 0’ H 5 5 O’40 SM
0 N 00’
SM
HHHHHHHH000000000000HOHH0HHHOHHHOHHHHHOHOHHH0HH
00 - SM -0 SM ‘0 L’lt,jt
-
SM SM SM SM SM SM SM SM SM SM ‘is ‘Js SM SM SM
SM SM SM SM SM SM SM SM SM SM SM SM SM SM 00’ 0’ 00’ 00’ 00’ 0’ 0’ 00’ 0’ 40 40SM SM SM SM SM SM SM SM SM SM ‘is SM 505 SM SM SM SM 505 SM SM SM SM SM 40 40 40 SM SM SM
SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM
SMSMSMSMSMSMSMSMSMSMSMSMSMSM0’0’0’0’0’0’00’0’0’0’0’0’0Hu40Hu40 SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM 40 SM SM SM SM 40-
‘is SM ‘is SM SM SM SM SM SM SM SM SM SM 0 SM SM
SMSMSMSMSMSMSMSMSMSMSM SMSMSMSM’JSSMMSMSMSMSM
HHHH
H
00 000 000 0 00
SM SO
till H
-
0000 ‘0 SM 5
HH
HHHHHH
SMSM 0’ SMSMSM
00’ SMSM
0000’ SMSMSMSM
SM
40 4040-40- 40 400’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’
SM
0’0’0’040Hu 40 SMSMSMMSM4040 0’0’0’0’0’0’-0’0’0’0’
HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
00-0000000-00000000000 OSMSMSMSMSMSMSMSMSMSMSMSMSMSM OSM 0000000000
+ + 000000NHH’0’000O’0’0’00000’0000O0SMSM’00"000’0’0SMSM50 000H0
+++++++++++++++++++++++++++++++++++++++++++++++ 40- 40 I
5
‘is SM
I
I
I
I
40- 40 40-40-40-40-- ‘0SM SM SM SM SM SM SM SM SM SM SM SM SM 40-40- SM 40-40-40- SM 40-40-40- SM 40-40-40-40-40- SM 40- SM 40-40-40- SM 40
I
SM SM SM 0’ 0000 OSM 0’SM’0 0’
HHHHHHSO1 0’ 00 40 ‘000 SM 0 5
I
I
I
liii
I
I
I
I
0000 C50’0’0’0’0’SMSMSM H 0-CC’ 0-0’ SM 40- H 040-40- H SM
I
I
I
I
40-40-
40-40-SM Cs
II
I
II
II
III
I
I
III
I
I
I
I
I
40-
II
HH SMSMSMSMSMSMOC----0-’0--000’0’0’OHH -000 5 SM SM SM 0’0’--000 Cs SM -SM 000-C 40- 0000 H
++++ +++++++++++++ +++++++ ++++ ++++++ ++++++++ +++++ -0-0-0-0 -0 --0-0’0 -0-0-0-0-0 - ‘0- -0-0 -0 - -0-0 ‘0-0-0-0-0-0 -0- -0 - -0-0-0 -0--- -0 --0----0 ‘00
00- 0’s0-0 00’0’0’0’C’C’0’C C0’0-0’O’0 0-400-0 0’0’C 0 CC’0’0-0--0’OsO 0050-0 0’0s0s0’0 CDH-0’0’0’0 H 0 SM 005 -0 0’ 5 H Cs 5 0’SM ‘050 SM Cs H 40- 00 H sO SM-C H H’0 asH 0 0 40 N H 0’SM 5 0 H 5 000 C’ 40 SM N
-0 SM SM SM H H 55’0
N H SM
00000 ‘-0 ‘0 ‘0000005000000 0 000’0 00-C 0 sO ‘0 00 ‘0 H - ‘0 ‘0000’ 0’ 0’ 0’ SM SM 00’ SM 0’
111111 ‘0’0 ‘00 ‘0 ‘0’0 000 ‘0000 40- SM - ‘0-
+++++++++++ -0--0-----0-0--’0 -000SM’00s0s0-0D00 0’ 0 ‘0 0 H’0O N ‘Os 050
+++ -0---
++
++++
+++++++++++++++++++++++
‘UsD50 -OH N
--5000 SM 0’
-0-0-0’C0s000’ 0’ SM I’ SM
0. -0 0000’0000’Cs00’0’0000’0’00’000’0’O’O5 C N-000 H 40- 40- H 040- 40-0000’00 5 Ns000 50
l+I+t+l+I+I+l+
I+++I+l+I+I+I+I+I+I+
1+1+1+
1+1+
I+I+I++
I+II+I+l+I+I+l+l+l+I++I+I+I+I+I+l+I+I+I+I+l+I
5 SM 5 I’ 5 H N
N H H H H H H H
HHHHHHHHHHH 40-SMSMSM000SMHOH
HHH 000
HH 00
HHHH OCSHSM
HHHHHHHHHHHHHHHHHHHHHHH HSMSOSOHSOSOSMHSONSMSM00000HOOHH
ooooooooooooooooooooooooooo000ooooooo000000000c’
++++++++ SM 5 5 5 5 5 5 5
00000000000000000000000000000000000000000000000
1111 I HOOHHN5J5
III lilt I II III II 11111 II I I II II I NSOSOSOSOSOHHHHHHHH0OOO000O0O0O0000HHHHHHSO0SOSOSOSONSO5CsNS
++++++++
+1+
H H H H H H H C40’0 H
-0- -0--------- -0-0-0 - -0 -----0--0-- --‘0---0----0 -0-- -0 ‘0- -- -0-- ‘0-0 -0-0-0-0 OH-0 0- 0"OsO 0’0’0’O’C’0’0s0 0s0505050 05000-0 OsO’0 0 00’0’0’C0’0’0 0’0’0 00 0’0’0’0 Cca’OsO’0S0 0’ SM 000’ ‘is H OH H SM 40-5 ‘0 SM Cs H 40- 0 H -C SM-C H H -0-- H 00’0 H 0 ‘05 N H 0"00 40 40 005 SM 0
+++++++ 50’0-0s00 ‘O’0 NH5H NOON 40- ‘040 00540- 0’
+++ + +++++ + ++ + + + + + + + ++ + + + + ++ + + + + + + + + +++ ++ + + ++++
1+I++I
III
I++
0L000H0SMHSMSM0
I++I
I+++I+l
111+1
II
1+1
1+
+11+
I++I
SMH
HSM
SO5SM
H’0SM00’5’0HSM’00SMSO00000SM0N00’00S
eH
C-.
‘0 Us
-H H-HI0HHH toHHi ‘C ‘0 ‘C 03 ‘C H 03-0 Us’0 03 ‘0 03 0 ‘C 0’ H sjs ‘C to Us H 0’0 H - Us 0 0300’ Us to - 030’ ‘C 00’ ‘C ‘C ‘C to ‘C ‘C ‘C ‘C L ‘C ‘C ‘C ‘C Us Us Us Us Us Us to to to 0 to -3 to to ‘C to to to to ‘C C to 0 ‘C ‘C ‘C H to 0-a to 0’ to Us Us 03 0 0 H 0 ‘C 0’ ‘C Us Us H ‘C Us 0 Us ‘C H to H 0 ‘C 0"C Us ‘C
totototo tototoHH 0-to 0C-’CC-’C C- O
toHHtoHHHOOHH0000to000HHOH000HOHOH000HHH000HHHHH
HHHHH000HO
Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us U. U. Us Us U. Us Us U. Us Us Us Us Us Us Us Us Us Us Us --- tol.’C’C
U. US Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us US
Us Us Us Us Us Us Us Us Ui Us Us Us Us Us Us Us Us ‘J5 e Us Us Us Us ‘C - ‘C ‘C - - - ‘C - - - Us Us Us Us Us Us Us
Us Us Us Us Us Us Us Us Us Us Us Us Us Us U. Us US Us Us Us
‘C
Us SJS Us Us US Us
.0
- - - - - - - - - ;- - - - - - - - - - - - - - - - - Us Us Us U. ‘C - ‘C ‘C Us Us Us
;- -
ototo-3totototototo HO to to HO 00- C"C
Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us U. ‘C ‘C ‘C ‘C ‘C ‘C - -
- ;- - - - - - -
Us Us Us US US Us Us Us
- ‘C ‘C ‘C ‘C ‘C ‘C - - - -
‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C
HHHHHHHHH H HHH HHH HHHHHHHHHHHHHHHHHHHHHHH 0 00’O’0’C 00 OUs 0000000000000000000000 0’C 000000000030
H HH H HH 0’ 000300- 00030
++++++++++++++++++++++++4-++++++++++++++++++++ HHHHHHHHHHHHHHHtoHHHHtoHHHHHHHHHH -00303
00000000 H 0
+
++++++++++++++++++-l-++++++++++++++++++++++++++
0-0-C-C-C-C- ‘CC- C- C-
‘C to Cl to to to to to to to to to to to to ‘C to to to to to to Cl to to to to to to to to to to to to Cl to to to to to to to to to
HHHHHHHHHH 03UsC-’C to’CH0-’C07
I+I+I+I+I+l+t+I1-14-I+l+I+l+I+l+l+l+l+I+I+l+l+l+14-l+l+l+l+l+I+I+I+l+I+I+I+l+I+?+14-I+I+l+I+I+
!+I+I++I+l4-I+I+I+i+
I
I
I
I
I
I
I
I
I
Iii
I
I
I
I
I
I
II
III
I
I
II
tototoHHtotototo’CtoHH’CtotoHHtotototototoHHHtoHHtototoHtoHHtotototoHHto H ‘C to to Us -3-- 030 ‘C 57 03 0 H 0 ‘C H to 03- 0’ H Us ‘C ‘C Us 0’ 0 to Us 0’ Us Cl 0’ to -3-- to ‘C ‘.0 0’ H -3 ‘C H
III
I
I
-3---- G’0’UsUsUsUsC0"C H Us 0- 0’ H H 0’C
liii
I
Ii
I ii I I HHHHHH e- - - - - - ‘C ‘C ‘C ‘C ‘C ‘C is- - - - - - Us Us Us 0-C’ 0’ -3 - 0 H H to to to ‘C 03-0-000’ 0’ Us Us Us to03’Cto03totoO0’003O30303030000’03HtoNiUs0’C’C0 I
++++++++++
Us
‘C 0’ ‘C ‘C ‘C
to
‘C ‘C to to H H to to to H
III lilt 1111111111 liii II to to to to to to to to to to to to to to to to to to to Cl to to to - ‘C ‘C ‘C - - 0- - - - H 000 H 00000 0’C 00 OH 0 0’C’C 00000 H 0- to ‘C 0 Us Us -3 ‘C 0-0- ‘C H ‘C -3 0 ‘C ‘C 0 ‘C ‘C 0- G’Us to
Ci ‘C’C07 ‘C ‘C’0’0 ‘COO ‘C 0000 -30- H ‘C to C- C- t
‘C ‘C ‘C ‘C ‘C ‘C ‘C
Us ‘C ‘C ‘C
111111111111115 to to to to to to to to to to to to to to to to ‘C - - ‘C ‘C - - - - - ‘C ‘C ‘C H’C 00’C’C 0000 0s0’O’C OH H -0 to ‘C 0- 0’ H ‘C 0-0-0- ‘C ‘C ‘C -3 0
liii to to to to - r- ‘C 0 0’C H 03 to ‘C to
‘C
‘C
to Cl Cl ‘C ‘C to to to to
I
l+l+l+ll+l+I+lI+l+l+II+I+l+I+l+I+II+l+I+l+Il+l+I+I+Il+I+I+ll+l+I+Ill+lI+I+I+l+l+ -3 Us
0-
H H H’Cto H toH
‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘
H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H
++++++++++ C- C- C- C
++++++++++++++++++++++4-++++++++++++++++++++++
0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-C-C-C-C-C-C-C-C-0-0-0-0-0-0-0-0-0-0-0-0-0- 0-
0’ 0’ 0’ 0- C- Cill
111111111111111
III
III
I+l+I+l+l+I+l+I+
Us Us Us 0- ‘C ‘C 0- ‘C ‘C ‘C ‘C 0- Us ‘C ‘C ‘C 0-0- ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C 0- ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C Us ‘C ‘C ‘C ‘C Us
111111111
III
I
I
I
I
I
Ii
to to Cl H H H H H H H
totototoHHHHHHHH000000000000000000HHHHHHtototototototototo
+1+
+ + + + + + + + +
to totoHHtotototo’CtoHH’CtotoHHtotototototoHHHtoHtiJtototoHtoHHtotototoHHtoH 03 Us 0- ‘C H C- ‘C to Cl Us -3 0 ‘C H C- ‘C ‘C H to H C- to ‘C ‘C CC- to 0’ 0 ‘C Us 0’ 03 to Us Us C- H Us H 0’ Ci’ H 03
HH H H H H H H H H t 0’Us Us C- Us ‘C 0’Us 0
+++++-Cl+++++++++++++++++++++++++++++++++++++++
+ ‘C
C- to to to H to to Cl Cl ‘C ‘C H Cl C- ‘C ‘C ‘C Cl to ‘C ‘C ‘C to to ‘C to to ‘C Cl to ‘C to ‘C ‘C ‘C to to ‘C H to to Cl to to N Us Us 00’ 003’C’C’C to’C 0 H H -3 00- ‘C -.3
Us
H -.3 ‘C Cl 0’ Us to -000-0 H H Cl 0-. 0 0-
-
- ‘C Us’C ‘C
to O
++++++++
‘C’.0’C’C’C’C’C’ HtoHHHtototo Us00’U50’HO’C
5.
5’. 0 ‘-5
5’ H
0
j
5’ ‘5
tDP’’O
C
O0C’
‘0
0
‘C 5. 5 5’ H S. S. Is S. Sc 5’ H H Sc S. ‘C Is S. H H H H 5’ 5’ Is 0-.’CH-300"C’CHOOtC-J’CH’COH O’C0-Os’CH’C
H
5050501050 50 H’C’C 0J0
H H 0’0 50 ‘C ‘COO’ 0
Ss’C C"-0 0’C’C- C’C"C 0’C’C 15 0
SOHHHH000000H00000HHHHHHHHOH H
‘C
0’ 0
‘C
550 ‘C 50 H ‘CO
‘C
S. H
H
C’
o
?OSCHHHH ioroH HHH ‘C ‘C ‘CO-C ‘C ‘C ‘C H ‘C ‘COO 0 ‘C ‘C ‘C -
‘C ‘C ‘C 0500 ‘C
-
15 O
15 ‘5
-
‘C H
‘C
‘C
NHH HH H 00 ‘C H
-
‘C ‘C ‘COO 0 0 ‘COO 0 ‘C 0 - ‘COO ‘C ‘C 50 H ‘C ‘C ‘C H
000 00 00 OOHOO 00 00000 050 50 0 5’ H 5’ 5’
0 C’
‘C Is
‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C
‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C 000 ‘C ‘C 0 ‘C 000000000 ‘C 00 ‘C ‘C ‘C ‘C
00000 ‘C
‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C 000 4- 0000 ‘C ‘C ‘C 00000 - ‘C ‘C ‘C 5’ ‘C 5’
‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C 00 ‘C 000 ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C H H H H
‘COO 0 ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘CO ‘C ‘C ‘C H ‘C ‘C ‘C H H H H H H H H H H ‘C H H H
00000 ‘0 ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C H H H H H
000 ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C 0 ‘C ‘C ‘C ‘C ‘C SM H H S. H H H H H H H ‘C H H H
000000000000000000000000000 C’50 HHHHH
H H H H H H H H H H H H H H H H H 0000 O’CO5O 000000 0C’OC’- 0 C’OceO’C 50
HHH 000
III II 111111 I I I I I II I I I I I I H H H SOt’0000C’C’C’C’O’0’-C’-0000C’C’C’C’C’C’-’C’-’
5’ 50 5’ 5’ 5’J 5’ H H H 5’ 5’ H H 00 ‘C
‘CHHHHHHS.HHHHHHHHHS.HHHO
I I I J tIll I ill II I I H H H H H H H H H H H H H H H H 5’ H H H 5’ 5’ H 5’ 5’ SC ‘C ‘C O ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C C ‘000 ‘C ‘C ‘0 5’ 5’ ‘C S. 5’ ‘C
II -3-C ‘C 5’
I
11111
II
tIll
II
Ii
I
I
I
I
C’ C’O 00000000 ‘C ‘COO ‘C ‘C ‘C ‘C 0 C’ S. -3 0’ ‘C 0 ‘C S. S. 0000 ‘C - ‘CO ‘C C’
I
I
I
I
HH
HHHHHHHHHHHHHHHHH
II
I
0 0 005CC
‘C ‘C
II
H
O’0 0 C"C 0000000000000000000
I
I
II
-
111111 it HHHH HH 5’ 0 0’ 0 - ‘C 0 0’ ‘C ‘C
II
I I II II I I I I I H H H H OH 5’ 5’ -C C" S. 0-’ HO O’C 0 OH H 5O-C’C’C’C H OH 00 O’C
++ +++++++++++++++++ ++ +++++ + HHHHHHHHHHHHHHHHHHHHHHHHHHH ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C50’CSs C5s’C’C’CS.S. S. 0000053 C’0 H-C050’C-COO’0-’C’C 0-OH 00 H500 00H’C’C
5’ 50 5’ 5 5. 5 5. 53 5 53 5’ 5’ 5’ 55 5’ 5 5’ 5’ 5’ 5’ 5 5’ 5. 10 5’ 5 ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘CO ‘C ‘CS ‘C ‘C ‘C ‘C ‘C ‘C ‘CS. ‘C ‘C ‘C S. ‘C 50 ‘C- 0’-’C-- S. C"C CP- 5’C H’C H H-’C 0 S.’C S. C’
l+l+l+l+l+I+I+l+i+l+l+l+l+l+I+l+l+I+l+l+I+l+I+I+l+l+l+
+I+I+l+I+I+l+t+I+I+I+I+l+T++I–I+I+I+I+l+I+I+l+ I+lI+
+++ ++++ +++++++++ +++++++ ++++
S.’ 50505’ 5 H S. H 5’ S. 5055 H 5 H S. H H H S. H H SOS. ‘C ‘C Is S.
0 ‘CO 00 ‘COO 00000000 C’O
‘C ‘C 0
++ ++++++++++++ +++++ ++++ +++ + HHHHHHHHHHHHHHHHHHHHHHHHHHH C’ C’- -30’ 0’ 0’- -3 C’ C’- - C’ C’ 0’- C’ C’ C’ C’ C’ C’ C’ C’ C’ C’ O ‘C 0 0 C’- COO 0 O"C ‘C H -3 -3 ‘C 00’ 0" C"C C"C C"C H
II ‘C ‘C ‘C ‘C ‘C ‘C 00 ‘C C’ ‘C ‘C
I ‘C ‘C ‘C ‘C
I+I+l+l+l+l+l+l+l+l+I+l+l+l+l+I+I+l+I+I+l+l+l+l+l+l+l+
I+I+I+I+I+I+I+I+I+I+I++I+I+I++l+I+,+I+I+I+I+!+I+l+I+
‘C ‘C 0 ‘C SCSs ‘C Is ‘C S. ‘C ‘C ‘C ‘C ‘C ‘C 5050505050 ‘C ‘C ‘C ‘C 50 I
I
III
I
III
I
III
I
II
II
I
I
I
I
I
50505050S.SC505050SC505050S.S.50S.Is ‘C ‘C ‘C ‘C ‘C ‘C I
I
II
III
II
I
III
I
III
I
I
I
I
I
I
I
I
I ‘C ‘C ‘C 0
‘C ‘C ‘C H
0 ‘C 0 0 0 ‘C
Ii I I ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C 0 ‘C ‘C S. ‘C ‘C H ‘C
I ‘C ‘C 0 ‘C
I ‘C ‘C ‘C H
‘C ‘C 0 ‘C
HHHHHHHHHHHHHHHHHHHHHHHHHHH HHH HHHHHHHHHHHHHSCHHS.’C’CH’COC’C’
000 000000000000000000000000
I
111111111
5015 S.HH000000000 0000HHHH HHS. S. Is
++ ++++++++++++++++++++++++ + HHHHHHHHHHHHHHHHHHHHHHHHHHH ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C 505 5050S.’C000’C5050505050 5050505050 505 S.0SOHH ‘C I’ 0 C"C ‘C -3 0 ‘C ‘C ‘CO -3 0 0 C’O 0 0 0’ 100 ‘CO ‘C ‘C ++ ++++++++++++ +++++++++++++ HHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHHH C’ ‘C ‘C 0’ -3 -3 -3-3-CC’ ‘C ‘C C’ C’ C’ C’ C’ ‘C C’ C’ ‘C C’ C’ ‘C ‘C ‘C ‘CO 0 5 0 ‘C ‘C C"C 0 ‘C ‘C ‘C H S. H 00 00 S.- 0 ‘C ‘CO C’ ‘C
II I ‘C’ ‘C ‘C ‘C ‘ ‘C ‘C ‘0 ‘C 00 H 00 ‘C
I
‘C ‘C ‘C
H H HHH HHHHHHHHH HHHH’C’C’C’C’C’C000 11111
I I I I I II I ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C 000000000 H 0 H ‘C 05’ -C 00
000000000000000000000000 000 11111
111111111111
F-’ H H HH000000000 OH H HH S. Sc S. S. S. Is S. S.
+1+ 515’
+ +
+ + + +
+ + + + + + + + +
+ + + +
+ + + +
+ + +
S. S. 50 50 5 5’ 155 S. 5 S. S. 5 5’ S. 5’ 5 S. S. S. 5’ 5. 5’ 5. 5 S. 0500 ‘C ‘C ‘C ‘C’ ‘C ‘CO ‘C ‘C S.’ ‘C ‘C ‘C ‘C ‘C S. 53 ‘C 5. ‘C S. ‘C Oj0 O"C C’O- 5. 0"C C’O0’C0 5. Ic o 5 O’C’C H 00 HO
‘C 5’fl ‘C ‘C ‘C 5M ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C
0100-----0---- 0-C’C-- 00000000000-0-CO-010 ‘C 0-C 5 -3-0 0 ‘C ‘C 0 10 000 H 0 ‘C ‘C H 00 ‘C ‘C 0 H ‘C
+
S
.
"jH CDO
PS
o’o’ H
COH it0Cu COHH HH 0OH’0HHCu’.7,O H
H H
I-’. ‘1
tO 0
0 H Ot 0
‘JS
HH
0’C
-4 ‘0 ‘0
---i,-0’ H 0’ 0’ 0 -
HCD
H00?000H00000000HH
tOC
CD
0"J’-i-’H 0"00tOHtfl’"0’
HC
1 CD ‘1 PC
‘Jr"J
CD
r- sJssJ-
5+
CD H H H I-’ H H H C000’J’-00’000’-0000"0’0
0’0
II
C CD 1-’ 00 CD
III! H to 4’- 0 H
I
III
II
111111111
HH CO
‘o t-.a to 4’- ‘-o to k-. 4’- 0’
-
1111111111
++ HH
HHHHHHHHHHHHHHHHH 11111111111 ,, ,, i,.,
5+
4’
-
-44’- tO 0 tO
III
C
Il
C H
4’ 4’- 53 4’- 4’- ‘Ji 51, 0’ -4 0 ‘0 0 00 0 ta 04’- 4i- - ‘J ‘-O H 0
-0 0 4’-0
0’ CD
I-H ‘.-. 5-.
-
H
*
CD
tO
I+l+I+l+I+I+I+l+I+l+l+I+l+I+I+t+I+
1+1+
H4’HHtoHHtoHHHHHHCs
HH
II
H H
to C’
8
H
H
H H H H H H H H H H H H H 0 0’0 C5-0 000 0C 0 ‘0’ 514’H
11CC Cl 11111111111 HHHHHHHHHH 0’ H 0"-0 51 0’ 0’4’ ‘as 0’ H H 5151- 51 51s
‘0’0-3’0--4’0-O---O--O--40’----4
HH 0’-4 0 H
COHCOHHHHHHHHCOCOC’
4’4’
00000000000000000
COCO
a 5+
+1+
I * II
11111111111111111
II
0 H
COCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO
HH
o
C
+
+ +
+
I
I
I
C
C
C
I
I
I
COHHH00000HHHHCOCOtoCO
I
toto
PS
Cl-
CD Ii +
CD PS
+I+++++++++++++++++ HH H HHHHHHHH HIH Oi00’0O0s0OO0OO0O0O00 C,0 0’.0
I! O 5 Cl-
‘4 Ce
0 Cs 0 0-04’1,
51 0’51-44’-’0
+I+++++++++++++++++
HIHHHHHHHHHHHHHHHHH "51515 s 00’-O---O--4--4--4-O-O----4--4’to0to-451to4’H--4OHCO---44’-tO51to
0 +I++ HIHH
COHHC - 0 0-
+++ HHH F-’ H H 4 0’ CO O
. A sinular corrective terum for the magnitude difference between the planet and comparison star 13 is given in the 13th column of Tables IX and X. As can he seen in Table II most of tIme rleterminations of the coefficient A5 were made be tween January and April. Therefore the assumeri values of this coefficient for other snnnths are usually highly uncertain. For estimating errors of corrective terms given in the 12th and 13th columns we should also take into consideration the uncertainty of the gradient color indices, B-V’. of the planets. The uncertainty of terms A S B-V seems to lie the principal source of inaccuracy in our observations.
tu the present author
star A. Such mean values, corrected for extinction effects anti with distance corrections added, are given in the 10th column of Tables IX and X. They are accompanied by their mean errors computed by taking into consideration the scatter of individual measures and uncertainty of extinction corrections. Ve can see in Figure 4 that the r.m.s. deviation of the nightly value of the extinction coefficient Qs1 from its mean seasonal value equals approximately 5 of this mean seasonal value. Assuming the same relative uncertainty for coefficient Qb2 the mean errors given in the 10th column are computed from the formula {r-- Ql,SM
51+
C. P/test cud Obtateuess Effects. ‘l’he coefficients rlescribing the dependence of brightness of Uranus
[Q5MSI3V:5]2 }‘h
36
anrl Neptune on their phase were computed by Sinton 1 3, who used the observations made in the present program. These coefficients, a, and the phase angles, i, are userl for emnputing the phase corrections, S
where m is the mean error of the mean nagniturle difference between the planet and the comparison star A computed from the scatter of individual meas ures corrected for extinction. This intrinsic mean error r1 is computed either froni the sum of squares of the deviations or from the approximate formula [ef Pearson 12] Max X
--
Mm
X/n
a2, which are given in the 14th column of Tables IX and X. The maximumn phase angle is about 30 for Uranus and 2 for Neptune.
The polar axis of Uranus is situated approximately in the plane of the ecliptic anrl in November 1945 it was directed approximately towards the earth. For the purpose of eliminating the photometric effects of the changing tlireetion of Uranus’ polar axis relative to the earth, two assumptions are mane. First, we assume that the equatorial plane of Uranus coincides with the mean orbital plane of its four brightest satellites Second, because of tIme lack of quantitative inforsnation about the brightness distrihution on time disk of Uranus, we assume that it is
‘
‘where Max X and Mm X are the largest and the smallest values of magnitude difference and n is the number of values used. The formula 37 gives for 10 the estimates of mean error of mean values which do not differ systematically from those com puted from the sum of squares of the deviations, and are only slightly less accurate. For the obser vations near the meridian under good atmospheric conditions values of m b e t w e e n –O’P0006 and –090012 were obtained. The 11th colurrin of Tables IX and X gives the mnagnitude difference between the comparison stars B and A, corrected for extinction. The extinction corrections were computed for every measure of star 13. using the equations 31 - 35, in which the values for the planet are replaced by corresponding values for comparison star B. The mean errors are emputed from equation 36 The magnitude difference between the planet and comparison star A reduced to the BV photometric system can be obtained by adding the corrective term A8 SB-V to the values in the 10th column of Tables IX and X. The values SB-V found from equation 31 and the mean seasonal values of the transfor mnation coefficient A given in Table II are used for computing the values of this corrective term given in the 12th column of the above mentioned tables for the years 1953 - 1954 the values of A5 given in the last column of Table I are used the observations used for deternuning these values were not available
uniform and hence that the total brightness of Uranus is proportional to its projected area, as seen lrmn the earth. The last assumption is, of course, a very rough approximation to the real situation. On these assumptions Uranus is brightest when its polar axis is directed towards the earth. The cor rections are added to all the observerl magnitudes of Uranus to give them the values to be expected on our simplifying assumptions if the polar axis of Uranus is directed towards the earth. These oblate ness corrections are computed from the following formula, resulting from the expression for the projeeterl area and from the rlefinition of stellar magnitu rle, obl =
1.25 log [l--l-hU eos o1L]
.
38
where the square of the ratio of the polar-tn-equa torial axis is h2 0.833 according mu Lowell 14 and time longitude of tile node of the orbits of Uranus’ satellites referred to the earth equator is i3 = 165981 for the epoch 1900 and I 66 53 for the epoch 1950 according to Nesvcomnh 15 for tile period covered 221
adopted magnitude differences between the p1amet and the comparison stars, computed from the for mulas
b’s the obser’s aflons here reported we assume 166965. By L is denoted the geocentric longitude of Uranus which can be found from the formula ob tained by simple trigonometry,
sinL -
=
R
-
cosL
+
0
ABplanet-star A AB’pianet-star A
Lhel
+ A5[B-V’
Lhel
B-V A
All planet-star II
Mean of Final Valar,
i’sBU-UA
BU-UB
40
All’ plan’t-star A
-AB’star B-star A
A5[ B-v star A + A
TABLE XI. Mean of Final Values
A
phi
39 where L Itel is the heliocentric longitude of Uranus given in Nautical Almanac, L0 is longitude of the sun and B. is the distance of Uranus from the sun, expressed in astronomical units. The ohlatencss corrections computed from equa tion 38 are given in the 15th column of Table IX. The 16th and 17th columns give the finally
star
-
B-V star B 41
– A ubl
Blue Magnitudes of Uranus
Blue Magnitude of Star A in Syttrru of TenYear Staudords
Slur Magnitude of Star B far Systrroof TenYear Staudards
Blue Magnitude of TJrannss deeivrd from Star A
Blur Maooitnnfsnsf Uranno drrivr-d frotrr Star B
B
B
Corers hoe Corses nor to he to he added ta arided to B if B if N N firer tie photomortris sfstsrvrd ohlatenem afar for of Urania Stuns, reel mealIer than
Ofnsrtratioot
arolla-ts]
Tn
Feoem
B
B UA
1953, 1953, 1953, 1954, 1954, 1955, 1955, 1955, 1956, 1957, 1957, 1957, 1958, 1960, 1960,
Jan. Feb. Oct. Mar. Oct. Feb. Sep. Nov. Sep. Feb. Sep. Dec. Oct. Jan. Oct.
21 23 30 15 11 10 23 16 22 1 21 26 3 28 20
1953, 1953, 1954, 1954, 1955, 1955, 1955, 1956, 1957, 1957, 1957, 1958, 1959, 1960, 1961,
Feb. Apr. Mar. Apr. Jan. Apr. Nov. May Jan. May Dec. Jun. Apr. May May
-0.161 -0.159 -1.472 -0.934: -3.234 -3.226 +0.120: +0.132: -1.210 -1.207 -1.533 -1.531 -1.190 -2.717 -1.407
19 25 5 26 12 26 8 17 18 2 12 1 10 28 21
-0.272 -1.945 -1.997: -1.722 -1.714 +0.850 +0.855 -1.324 -1.319 -1.334 -1.332 -2.707 -2.968 -1.475
me.
6229 6.229 7.540 7.005 9.303 9.303 5.939 5.939 7.262 7.262 7.583 7.583 7.237 8.758 7.441
TABLE XII. Mean of I F I
Mr.soof F- I Values
1ITB
+0.004 +0.004 –0.003 +0.004 +0.004 +0.084 –0.004 –0.004 –0.003 –0.003 –0.003 –0.003 –0.083 –0.004 –0.003
nor.
m 8.012 8.085 7.790 7.790 5.204 5.204 7.369 7.369 7.383 7.383 8.761 9.012 7.508
+0.004 –0.005 –0.004 +0.004 +0.004 –0.004 –0.004 –0.004 –0.004 +0.004 Th.0O4 +0.003 –0.003
U
6O68 6uO7O 6.068 6.071: 6.069 6.077 6.059: 6.071: 6.052 6.055 6.050 6.052 6.047 6.041 6.034
S 11
5 color
+0.012 +0,011 +0.015 +0.013 +0.020 +0.017 +0.024 +0.022 +0.028 +0.025 +0.033 +0.030 +0.034 +0.038 +0.042
Blur Magretade Maaoitrsdr of Nrjrt urea1 Ni-yturse dinned doris-rd
ta hr added to B if
6O67 6.088: 6.068 6.076 6.054 6.059 6.045 6.050 6.049 6.051 6.054
6.044 6.033
Blue Magnitudes 0f Neptune
Blue Mognitude nl 5tar A fin System of TenYear Stoned rds
Blue Magnitude of Star B firs Sv,trmo of TenYear Staedardn
Star’s
Star B
1953, 1954, 1954, 1955, 1956, 1957, 1958, 1959, 1960, 1961, *
Mar. 6 Feb. 4 Mar. 28 Jan. 12 Jan. 17 Jan. 17 Jan. 8 Jan. 11 Jan. 29 Feb. 10
To
1953, 1954, 1954, 1955, 1956, 1957, 1958, 1959, 1960, 1961,
if directly obnrrvrd Neptune in used
Olamrmations Frnm
uhl
-0.013 -0.017 -0.012 -0.019 -0.021 -0.021 -0.010 -0.010 -0.010 -0.010 -0.010 -0.010 -0.008 -0.006 -0.004
Jul. Mar. Jul. Jul. Jun. Jun. Jul. Jun. Jul. Jun.
3 6 1 8 27 24
5 10 16 28
‘sBN-NA
Brm-NB
-0.516 -0.788 -0.782: -0.011 +0.790 +0.017 +0.020 +0.234 +1.327 +0.102
-1.383 -1.386: -1.105 -0.001 +0.920 +2.427 +3.580 +1.162 +1.574
BNA
8784* 9.035 9.035 8.260 7.455 8.225 8.208 8.001 6.908 8.135
Not to be reduced to the system of Ten-Year Standards
me.
–0.004 –0.004 –0.004 –0.004 –0.005 –0.004 –0.004 –0.003 –0.004
BNB
9’i632 9.632 9.356 8.240 7.316 5.807 4.646 7.075 6.662
B are.
–0.005 –0.005 –0.008 –0.004 +0.005 -4-0.003 –0.004 +0.003 +0.005
8268* 8.247 8.253: 8.249 8.245 8.242 8.228 8.235 8.235 8.237
BN
8I249 8.246: 8.251 8.239 8.236 8.234 8.226 8.237 8.236
rolnr
-0.017 -0.015 -0.022 -0.026 -0.013 -0.017 -0.013 -0.011 -0.009 -0.007
TABLE XIII.
Since the errors of the coefficients A8, of the plane tary gradient color indices B-V’ and of the oblate ncss corrections are not known, the mean errors of the final magnitude differences, computed from equations 40 and 41, can not he estimated. Their weighted mean values are computed for every inter val of several months during which A5 apparently rlirl not change rapidly. These mean values are given in the corresponding columns of Tables IX and X and in the 2nd and 3rd columns of Tables XI and XII. The weights osed for computing the mean val ues of Bplanet - star A are taken as inverse squares of mean errors given in the 10th column of Tables IX and X. The mean errors given in the 10th and 11th columns of these tables are used for com pting the weights of B planet - star B
The mean blue magnitudes, B, for the two planets, obtained assuming H. L. Johnson’s gradient colorindices of planets antI photometric oblateness of Uranus equal to geometric.
Opposition 1953 1954 1955 1956 1957 1958 1959 1960 1961
D. Variations in Brightness of Uranus and Neptune. The mean magnitude differences between the plan ets and their comparison stars, the blue magnitudes of comparison stars and the blue magnitudes of the planets obtained by comparison with star A and, separately, by comparison with star B, are given in the 3rd to 8th columns of Tables XI and XII. The blue magnitudes of the comparison stars, given in these tables, are reduced to the system of Ten-Year Standards and obtained by adding the yellow magni tudes and blue-yellow colors of the same stars given in Table VI. The blue magnitudes of the planets given in the 7th and 8th columns of Tables XI and XII are obtained by adding the 3rd and 5th or 4th and 6th columns of these tables, respectively. The values for the year 1954 marked by colons are ob
I
Uranus 6.069 6.068 6.072 6.056 6.050 6.050 6.050 6.042 6.034
I
I
8.248 8.250 8.242 8.239 8.231 8.230 8.236 8.236
I
I
I
Neptune
I
I
I
Uranus 5!b04
C
I
I
I
I
0
0
0
I
I
I
0
0
tained with Lallemand’s multiplier tube and may not
1953
he directly comparable with other values which were all obtained with the 1P21 multiplier tubes. There is no obvious evidence of variability of any of the comparison stars except for UAS6 tsCnc. The values obtained by comparison with this star are marked by colons in Table XI. The blue magnitudes reduced to the system of Ten-Year Standards ace not avail able for the comparison stars LB 53 = HD 50692 and NA 53 = HD 116681. The value for this last star obtained by comparisons with primary standard stars during the year 1 953 is given in Table XII in parentheses. For every opposition the average of blue magni tudes given in the 7th and 8th columus of Tables XI and XII is computed omitting the values with colons and in parentheses and given in Table XIII. The blue magnitudes of the planets given in this table are plotted in Figure 6. This figure shows an in crease in brightness of Uranus by about O’t’035 and an increase in brightness of Neptune by about 07014. Examining the mean values of the transforma tion coefficient A5 given in Tables I and II we no-
Neptune
I
I
I 54
I 55
I SB
I 57
I
I SB
59
I 60
61
Figurc 6. The nican bloc niognit odes for the two planets obtained using H.L. Jo/i uson’s calues of the gradient of th energy distribution in the spectra of these plan ets within tli c blue filter spectral region. For Uranus it is assumed that the distribution of brightness ozcr the apparent disc of the planet £c uniform.
tice that the values of this coefficient are tlecreasing during the lseriorl covererl by the present observa tions. Therefore, if we assume another value for the gradient color-index of the planets we would obtain another rate of increase in their brightness. In par ticular, assuming for the reduction to the BV systens and for correction for the color-dependence of ex tinction the directly observed color-indices of the planets as given in Table VIII, instead of gradient color-indices B-V’ given by the equations 28 and 29, we must add to the blue magnitudes of 223
Figuie 7. No significant change irs hiichtness of Nep tune can he seen in these data. The brightness of Uranus also will not show the significant chanste in the years 1953 - 1961 ii, in ad dition to assuming the lirectI obsers cci color-index. we shall assume that the photometric effects of ohlateness of Uranus are half those computed on the assuusption of unifoi us hi ighitness distribution on the disc of the planet. 1 aking into consideration the presence of equatorial belts and limb darkening on Uranus this last assumption seems reasonable. The cm rections which should he added to the blue magnitudes of Uranus if ‘photonietric oblateness is half the geometric. are given irs the last colunin of Table XI. The final blue magnitudes of Uranus ‘a ith the con ections from the last two col umns of Table XI are given in Table XIV and in Figure 7. Our pm esent kno’a ledge of the distribution of energy in the spectra of Ltranus and Neptune and of the distribution of brightness on the disc of Uranus is not satisfactory for deciding whethei there are an changes in brightness of Uranus and Neptune caused by variability of solam energy output As soon as these can be determined by actual observations the degree of solar variahihit can he more accurately found from existing data. V. Suggesl-ions for Future Observers in this Program Special observations should be undertaken for redetermining the gradient colors B-V’ of the planets which are used for transfom fling tile observa tions into the NV system and fom computing the corrections for the color-dependence ol extinction. It should be taken into account that these gradient colors depend criticall on the width of the band-pass for the combination of the filter, multiplier tube and the telescope. The limb darkening of Uranus and, hence, the photometric effects of its oblateness should, if pos sible, be determined from photoelectric scans across the disc of the planet. Every series of measurements of the planet in hitit’ color should he accompanied by observations of at least 4 standard stars, preferably in 2 colors. Two loss altitude 22 - 28 standard stars and two high altitude stams should he observed. One of the low altitude stars should he situated in the East and the other in the Vest. One of the standard stars observed at high altitude should 1x’ blue, the othiei red. These observations will he used for determining the coef ficients Q and A5. Planetaiy obsers ations at hour angles larger than 1 ‘/2 hours for neiative declinations and larger than 3 hours for positive declinations should not be usade. The comparison stars shosslcl he chosen so that their colors do not differ much from the gradient
the planets the corrections given iii the 9th column of Tables XI and XII. They are computed from the formula A5
color
QSM I B-V
B-V]
‘
.
42
where B-V is the dii ectly observed cob! mdcx of the planet. I’he nican blue magnitudes of Neptune cor rected in this was’ are given in Table XIV and in TABLE XIV. ‘Ihe mean blue magnitudes, B, for the two planets. obtained assuming the directly observed color-indices of planets and photometric oblateness of Uranus half as great as geometric. Neptune Uranus Opposition 6.066 1953 8.233 6.071 1954 6.070 8.224 1955 6.069 8.229 1956 6.067 8.222 1957 8.2 18 6.072 1958 6.076 8.2 19 1959 6.074 8.227 1960 6.072 8.229 1961
I
I
I
I
Uranus
0
6’8
I
I
B
I
8"22
8"24
Neptune I
I 1953
54
55
56
I 57
I 58
I 59
60
6!
Figur 7. i/se inc an blui iusagnil udes for i/se two planets obtained assuming that lb e gradient of f/u energy diuiribution m the spectrum of ‘ac/I of these planet Zit/iiii f/ic blue fili r spec tral region is the sanu as for a star hacin 1/u came B-I’ color-irids x as the planet. For Uranus it ic assumed that f/se photometric ffects due to its oblaten e us are half as great as i/so cc for f/ce o nif os in di strib u tio is of brig/i tne o 5cr the apparent disc of the planet.
224
observations of a star can be accompanied by the measurement of the standard source with only one e.g. blue filter. However, before and after measur ing the bright star for which, say, B<40 the standard source should be measured with both yel low and blue filters for checking if the fatigue of the multiplier tube is the same in both colors. The observations should be made only on photo metric nights with no trace of clouds. It is much better to have fewer but superior observing nights. The observations made on poor nights may destroy the accuracy of the whole program. When the obser vations are made in the presence of the Moon, the sky background should be measured alternately north and south from the star or planet to eliminate the influence of moonlight reflected within the telescope tube.
color-index B-V’ of the planet; one of them should be redder than the planet, another bluer. They should have very nearly the same declination as the planet. The telescope, filters, multiplier tube or ampli fier should not be changed without serious reason. If the multiplier tube must be changed, the new tube should be selected so that the coefficients A6 and A8 are very near to zero. The image of the telescope’s mirror on the cathode should be carefully centered for maximum output. The calibration of the amplifier’s gain and tests for linearity of the amplifier and recorder should be made often, preferably every 2 or 3 months. These tests should be done at widely differing tempera tures for checking any temperature effect. The battery used as a power supply for the multiplier tube and that used in the recorder should often be checked. Every observation should be made at such gain of the amplifier that the deflection of the recorder is not smaller than 0.55 and not larger than 0.95 of full scale. This means that in most cases the obser vations with the yellow filter should be made at an amplifier’s gain different from that used for the ob servations of the same star with blue filter. To avoid fatigue of the multiplier tube no standard stars should be used for which B<3’’7. In particular, i Boo, / Lib and a An should not be used as standards. The list of stars used for determining the extinction and transformation coefficients should contain not only primary standards of the UBV sys tem but at least 8 other well observed stars selected from among the secondary standards. The stars K Gem, HD 73665, Y Hya, p Leo, 109 Vir, Her, /3 Oph and i Her A may be suitable for that purpose. The accuracy of two-color observations can be highly increased if comparison stars and standard stars are all measured at the same fixed altitude. Only a few 4 to 6 standard stars should be observed at substantially different altitudes to make possible de termining the extinction coefficients. On those nights when Neptune comparison stars are observed, the fixed altitude must be low because of the low dec lination of Neptune and extinction stars can be ob served near the zenith. On these nights the Uranus comparison stars should not be observed; they should be observed on other nights when a higher value of fixed altitude is chosen. Every year each of the comparison stars used since 1953 and each of the comparison stars chosen for the next year should be observed on at least 6 nights. Eight stars or more should be included in the least-squares solution for simultaneous determination of extinction and trans formation coefficients for every night. The radioactive standard source should be ob served through color filters. Usually the two-color
Acknowledgements The constant interest and support of John W. Evans which has made this program possible, is greatly appreciated. It is a pleasure to acknowledge our indebted ness to R. H. Hardie, B. Iriarte, H. L. Johnson, C. F. Knuckles, R. I. Mitchell, J. B. Priser and W. M. Sinton-the astronomers who made most of the ob servations discussed in this paper. We also acknowl edge our indebtedness to R. Ayers, P. B. Downum, W. Livingston, C. L. Osterberg, A. H. Seeglitz, Mrs. K. Serkowska and C. V. Stableford who carried out most of the computations. The author is particularly grateful to John S. Hall for his advice and encouragement and for his many helpful suggestions on reading the manuscript. August 2, 1961
225
8. Siedentopf, H.. in Astronomical Optics, ed. Z. Kopal, North Holland Publishing Co., Amster dam, p. 317, 1956. 9. Banachiewicz, T.. Aj., 50, 38, 1942. 10. Kopal, Z., Close Binary Systems, John Wiley and Sons. New YoriL p. 448 ff, 1959. 11. Borgman, J., BAR., 15, 251, 1960. 12. Pearson, K., Tables for Statisticians and Bio metricians, Cambridge. vol. 2, Table XXII, 1931. 13. Sinton. W.M.. Lowell Obs. BulL, 4, 93. 1959. 14. Lowell, P., Lowell Ob.c. Bull., 2, 81, 1915. 15. Newcomb, S., Washington Observations, App. I, p. 65, 1873.
R.f.nncn I. Johnson, H.L., and Iriarte, B., Lowell Obs. Bull., 4, 99, 1959. 2. Giclas, ILL., 4/., 59, 128, 1954. 3. Hardic, ILH., and Giclas, H.L., Ap.J., 122, 460, 1955. 4. Mitchell, ILl., P.A.S.P., 69, 565, 1957. 5. Johnson, H.L., Lowell Obs. Bull., 4, 123, 1959. 6. Schoenberg. E., Handbucli der Astrophysik, TI/I, Table XII a, 1929. 1. Johnson, H. L., and Harris, D.L., Ap.J., 120, 196, 1954.
226