Preview only show first 10 pages with watermark. For full document please download

Wednesday, December 07, 2005

   EMBED


Share

Transcript

VOL. V FLAGSTAFF, ARIZONA NO. I I THE SUN AS A VARIABLE STAR II Photometric Observations of Uranus, Neptune and Standard Stars in the Years 1953 - 1961 K. Serkowski Warsaw University Observatory and Lowell Observatory Abstract B. Observations of planets in blue color C. Phase and oblateness effects D. Variations in brightness of Uranus and Nep tune V. Suggestions for future observers in this program Acknowledgements The method used in the reduction of two-color photometric observations is described. Sixteen stand ard stars of nearly solar type were regularly observed for 7 years and no systematic changes in their bright ness were found. The r.m.s. deviation of the yearly mean blue magnitude for none of these stars exceeds –O’OO9. No systematic change in the blue magni tudes of Uranus and Neptune over a period of nine oppositions is obtained if the following conditions are fulfilled: 1 the gradient of the energy distribution in the spectrum of each of these planets within the blue filter spectral region is assumed to be the same as for a star with the same B-V color-index as the planet, and 2 with regard to Uranus only, the photometric effects due to its oblateness are half as great as those for the uniform distribution of bright ness over the apparent disc of the planet. I. Introduction An outline of the purpose of this work, the methods used and the preliminary results were given in the first part of this paper by Johnson and Iriarte 1 and in earlier papers by Giclas 2, by Hardie and Giclas 3 and by Mitchell 4. The determination of the precise magnitudes of Uranus and Neptune in blue color is accomplished in three steps. First, atmospheric extinction and the coefficients of transformation from the instrumental to the BV photometric system are determined from the observations of primary standard stars in blue and yellow colors. discussed in Section II. Second ly, the magnitudes and colors of the comparison stars situated along the paths of Uranus and Neptune are determined by comparison with the mean values for 16 bright stars called "Ten Year Standards" Section III. Finally, the difference of blue magnitudes be tween each of the planets and two comparison stars situated at small angular distances from the planet is determined Section IV. The resulting magni tudes of Uranus and Neptune can be used as indi cators of the variability of the Sun. Contents I. Introduction II. Atmospheric extinction and transformations to the BV system A. Transformation equations B. Solution of transformation equations C. Observers and instruments D. Extinction coefficients III. Magnitudes and colors of standard and com parison stars A. Accuracy of two-color observations B. Results for Ten - Year Standards and com parison stars C. Improved magnitudes and colors for primary standards of the UBV system IV. Magnitudes and colors of Uranus and Neptune A. Color-indices of Uranus and Neptune The observations and their discussion were car ried on at the Lowell Obervatory, with the financial support of the U. S. Air Force.* *Contracts Nos. AF 19604-291, 19604-2077 and 19604-8031. 157 B II. Atmospheric Extinction and mu,,, + C Transformations to The BV System Q22 The following observing schedule is used for all two-color photo metric observations in the present program. The star is measured first with a blue filter 5mm Corning .51330 filter -1- 2mm Schott CC 13 and next with a yellow filter 3.6mm Corning 3384. For each color two deflections of the Brown recorder which are separated by the deflection for sky background are always obtained. All the measurements of the star and sky background, both with blue and yellow filters are always taken with the same amplifier gain. The observation is concluded by measuring the deflection for a radioactive standard light source without a filter. This source is green in color and is measured at a fixed amplifier gain, such as that used for meas uring 4th magnitude stars. The amplifier gain is selected so that the deflections with the blue filter and with the standard source are larger than 0.6 of full scale on the recorder. The deflections with a yellov filter for early-type stars were sometimes only 0.15 of full scale; this probably diminished the ac curacy of measures with the yellow filter. We denote by B’ the mean of two deflections for a star observed with the blue filter minus the deflection for sky background with the same filter. By V’ we denote the similar difference with a yellow filter and by 5’ the deflection for the standard source minus the rlcfleetion for rlark current at the same gain. Furthermore, let S denote the magnitude dif ference between the star under consideration and an imaginary star which would give the same deflections at a certain fixed, arbitrarily chosen amplifier gain, the same for all the stars in the program. A. Transformation m21, = = --2.5 log B’/Y’ 2.5 log Y’/S’ 5 A A7 A5 2,1 Ql,2 QO M 5 = = = A/A2 H-A5 6 I -i- A5-l/A2 7 -f K A,, 8 Qn4K25A2 9 251 The coefficients K2 and 252 describing the colordependence of extinction are small and their varia tions are also proportionally smaller than the varia tions of other coefficients in equations 3 and 4. Therefore, instead of using the nightly values of co efficients K2 and Q, it is snore reasonable to use the mean values obtained by averaging the values from many nights. Since, howeser. the behaviour of these coefficients is not sufficiently well known and since rheir dependence on K and Q5’ must be investi gated, the coefficients K2 and 252 are determined for every night on which a sufficient number of pri mary standards was observed. 1 2 3 V=m5 + A5 H- A5 B-V-Q1 M = The coefficients of equations 3 and 4 are determined only from the observations of the pri mary standards of tIme TJBV system. The following 8 stars were considered as such standards: fi Cnc, ii Hya, HR 4550, 90 Leo A + B, a Ser, Lib, s CrB and r Her. The magnitudes and colors which were assumed for these stars are those given by Johnson and Harris 7 ; the values taken from this paper arc hence-forth denoted by B-V and V,. 1 + K2 M M M B-V B-V ‘1he air mass at tlse time of observation, denoted by M, is computed by using the hour angle of a star as i-cad on the telescope’s setting circle at the middle of each observation. Tables and graphs facilitating computation of air mass accurate to 0.00 1 were pre pared on the basis of Bcmporad’s tables of air mass reprinted by Schoenberg 6. s- A1 C,. -K1 M = -252 A0 in: 1 .2,5,6,7,8 are the coefficients of svherc A transformations to the BV system, K, H- B-V K2 is the extinction coefficient for blue-yellow color-index while 21 – B-V 252 and Q’ – B-V Q are the extinction coefficients for the yellow and blue mag nitudes.* Equation 5 is obtained by adding the equations 3 and 4 and by making the following substitutions The color index B-V and the yellow and blue mag nitudes of the BV photometric system are connected with C,0 and m20 by the equations: B-V -- Equations. We define now the quantities: C2. + A7 *‘j’hc coefficients K1 and K. are connected with coefficients k and k, in the instrumental system, defined by Johnson 5, by the relations: K1 = A2k, -- A5k, and K. = k2. 4 B-V 158 will mean A’5 etc. For a reliable determination of the extinction coefficients for each night, at least two primary stan dards should be observed at low altitude. It was found most practical to observe such stars at alti tudes between 22 and 28. The accuracy of such observations is of course much lower than that of the observations made near the zenith. Following Sieden topf 8, we assume that the mean errors of photo metric observations are proportional to the air mass for air masses between I and 3. Therefore, before nsaking the least-squares solution of equations 10 and 11 for determining the extinction and trans formation coefficients, we divide each of these equa tions by the air mass M. Moreover, since C5 is sub ject to observational errors and B-V is assumed to be exactly known, we must transform these equa tions so that the free term is C10 M and not B-V ,,/M. The final form* of these equations which ‘vere solved for every night when at least 6 primary standards were observed is After multiplying equation 3 by 1 + K2M we notice that the coefficients B-V M for the unknowns are not independent of the coefficients K1 and of other unknowns. Therefore a simultaneous deter mination of K2 and Q, with other unknowns of equations 3 and 4 results in a drastic diminution of the weights of these other unknowns, particularly of A2 and A6. To avoid such loss of accuracy, we may write equations 3 and 4 in the form: B-V -K20M B-V +A’5+A2C,-K’1M 10 -K2-K20 M-M [B-V--V] V my0 -F = -Q A’, + A’6 B-V -Q’5 M-M [BVE:v] M , 11 where and IVV are the mean air mass and the mean color-index of the primary standards observed that night, K2 is the assumed approximate value of K2 and the new unknowns are connected with the old ones by the relations: A’5=[l-K2-K2M] 18 A + K2-K20 M ThV A’. K’1 = = [1-K2-K0M]A2 [1- = A’6 = = A5 + , 12 -Q51 13 where the coefficients are K2-K2i]K, + K9-K20 :v A’5 K,/A2 -a A,/A2 --Bl/A2 Q12M B-V A,-Q12M + , Q12EV , , 14 a = b = c d 15 + a A5 + BA6-cQ5.2D = = B 1 16 = , 1/M B-V. [1/M + K2] [1-M/M] [B-V6--V5] C05/ M B-V1/M V. in20 /M - 19 20 21 22 23 24 25 One of the main factors limiting the accuracy of photometric observations is the change of extinc tion during the night. The first step towards elimi nating the influence of this change is to assume that extinction is changing linearly during the night. To eliminate extinction changes of this type we need two groups of observations of standard stars during each night. preferably one near the beginning and the other near the end of the observations of the program stars. Each of these groups should consist 17 It can be easily shown that equations 10 and 11 are equivalent to equations 3 and 4 if only the term proportional to K2-K20 is neglected. The accuracy with which the primed coefficients are determined from equations 10 and 11 remains practically unchanged whether we determine K2 K2 and Q2 from these equations or whether we neglect the terms containing K2-K2 and Q2. Since the accuracy of determining K2-K2 and from one night’s observations is very low and since for the purposes of this work except for improving V and B-V of the primary standards we can assume that Q5.20, the difference between A,, A2, A3, A6, K5 and and the corresponding primed coefficients de fined by equations 12 to 17 can he neglected. Henceforth we shall omit the prime symbols and A5 *Unfortunately ouly for a few nights in 1961 could the equations in "final’ focus be solved. For all the other nights the equations 10 and 11 were solved by the least squares nicthod. This means that for most of the observa tions of primary standards discnsserl in this section the changc of accuracy with air mass was not taken into con sideration. The values of A2, A5 and A5 which are used throughoot this paper may be subject to small systematic error, usually not exceeding 0.002, resulting from treating B-V., as a random variable and Crs as exactly known. 159 of at least 4 stars, two of them at low altitude and two at high altitude. The least-squares solution of equations 18 and 19 is then made for both groups together, but the extinction coefficients K1 and Q are determined in this solution for each group separately. When reducing the observations of program stars, values of extinction coefficients inter polated between the two pairs obtained from the least-squares solution are used. B. Solution of Transformation Equations. Since equations 18 and 19 are likely to be used not only by the future observers in this program but also by other photometric observers, it seems worthwhile to give some details of the least-squares solution of these equations. We assume that the observations of standard stars made on any one night can be divided into two groups; let the number of stars in these groups be denoted by n’ and n11. The coefficients A,, A2, A2, A1, K2-K2 and Qy2 are determined for both groups together while K, and Q, are computed for each group separately, so that two pairs, K, Q,, and K Q1, of these coefficients are obtained. Following Gauss we shall denote in this section only by square brackets the sums of the terms in these brackets. If the symbol in brackets has a roman numeral I or II, this means that it should be summed only over the first or second group of standard stars. If there are no roman numerals, the summation is over both groups together. = 853 [] 831 ‘11 ‘ 61 = 863 833 41 ={b’] /811 843 = 51 =a [ab] - [a’] /811 2’ j 2 83 - , [ad = [a"] 2 32 = [bcj- 52 ol 2 42 2 - = [iJ_ 8 1C i. 55 2] s S 2 - 8 8 51 65 s - = Ed] S 53 63 [B’] = /s - - 51 s s -s 33 - 2 53 - 52 [I] 831 t41 42 32 - t62 , /811 62 44 $ . - S 8 61 54 /8 [aB] =[] 42 62 2 52 62 843853/833 - - S 32 83/S33 - 61 41 - S t41 55 41 -S 8, 31 /s 61 - 32 62 /822 =[2]_ t1 - t - t3/s33 t41 851 - 42 - t43s53/s33 [BDJ- t t61 - t t62 - t43t63/s33 [BC] ] - Is 32 = 31 ‘ r ] - S - 854 = d hij 62 t63 =[aD]_ s =[b 31 41 ‘ - j]J 11b 21 t44 1 32 52 - " 22 32 851 I =[‘] t61 ‘ 83 - We introduce the following auxiliary quantities* s11n [ac] = I Ill C j ‘22 ‘ = [c 2 2 ] - 51 - 2 52 - 2 s53/s33-t4/t44 51 6l *The least-squares solution presented here is based om, the cracovian algorithm introduced by Banachiewicz 9 and thoroughly described by Kopal 10. Our s are conr for nected with Kopal’s r by the relations: s for j3. 1, 2 and s j j - = 161 - 52 853t61833t54t64/t44 62 The mean errors of Ilie unknowns are computed from the formulas: A2 s/ = K A1 = - s64-s54s65/s55 K = A2 s43-A2s63+K2-Ks53 = eA6 65’55 /533 Q , = A5 = = A6 A2 eK = I I . 1 E B-v />204-M I t63_A6t43+Q2s53/s33 A5s316t41-s51-t61/s11 ‘ If the unknowns are calculated correctly, tile following two control equations are fulfilled: [abj A1 [bdj + A2 - [bc K2-K - [b’ ]K B-V and The mean errors of a single observation of V at zenith, are I A , EB_V/555 22 EB. 1/s+554/ss55 ‘22 A5s32+A6tk2_Q72852_t62/522 n ‘ i/t+t4Itt55 Ev eK2-K A1s32+A2s62-K2-Ks52-s42 and A are given by for the mean errors of K2-K20, A2 and of the ex tinction coefficients the approximate expressions carl be used: , A1s31+A2s61-K2-K551-S41 /s11 = 55 V’ - Q, - II [b"] K" 4- [b2] 1 - n1+n-m E2 B-V , a 82/n’+n"_m = {aDJ A5 + [BD] A6 - [cDJ - [D’] , III n +n EV aS2/n’+n11_m = - , 8B-V aA1 + - C * K2-K - b - K1 I = [D2]_ n’+n"-m e the terms containing and m v are usually negligible if, as seems to be most convenient, all the calculations are made with four digits after the deci mal point. are clevia respectively, where a8 n:v and a8 tions, reduced to zenith, which should be computed for every star from the formulas a [D] C. Observeys and lnstrumelltl. The observers working on the photometry of Uranus and Neptune and the instruments used are listed in Table I. , The tube 1 P21 No. 12 which has been used since December 1957 is characterized by an exceptionally large dark current when unrefrigeratecl. Vhen the tube is refrigerated with dry ice the clark current from tile cathode amounts to only about 20 electrons per mill ute. The sensitivity of this tube increases by several per cent, or more. when the tube is illuminated by a 8=aA5+BA6_CQ72_D_Q, where in denotes the number of unknowns deter mined from each of the systems of unknowns de scribed in equations 18 and 19. If the stars are divided into two groups, we have m = 5. For only one group nTm = 0 and m = 4; if, moreover, K-K and Q, are not determined we should re t j and -j place c by zero, omit all the terms i 1, . . .. 6 and assume iii 3. a bright star, especially if the tube was previously illuminated without applying voltage. When tile tulle is illuminated by a second magnitude star in the focus of the 21-inch telescope, an appreciable in161 now changed to A and time resistance box is adjusted so as to give thesariie deflection of the recorder. crease of sensitivity can be noticed during the first 10 minutes of illumination. After this time the sensi tivity becomes stable and drops down very slowly when the tube is not illuminated. When the tube is initially illuminated by a fainter star, the time neces sary for reaching the stable sensitivity is proportion ally longer. The sensitivity of multiplier tubes used until 1957 decreased, rather than increased, after illumination by a bright star. ‘lo secure stable sensitivity of the multiplier tribe the voltage is applied 1… hours before observations are started and the tube is illuminated throughout this interval by the standard radioactive light source. Dry ice is put in immediately after applying the voltage. During all the observations, the voltage applied to the multiplier tube is taken from a 900-volt battery constructed from 30-volt batteries connected in ser ies; this is believed to affect the linearity of the mu! tiplier tube less than other types of power supplies. The calibration of the amplifier and the testing of its linearity were performed at intervals of sev eral months or years. A precision decade resistance box was used for this purpose. The presently used General Radio type 1230-A d.c. amplifier with gain resistors taken from the previously used amplifier No. 4 is calibrated hy a procedure similar to that de scribed by Borgman 11 . For determining the exact value of any 2.5-magnitude step, the switch is set in position B Figure 1 and the fine gain ‘/2 magni tude steps of the amplifier is adjusted so as to give a full scale deflection of the recorder. The switch is Figure 1. Wino diagram of sun pie arraugcuieut for calibrating the General Radio d.c. am plif or amid testing its tin cant’. The fine gain steps are calibrated and linearity is tested with the switch at position A. For every finegain step the resistance box is adjusted so as to give the same deflection of the recorder. Linearity was checked at every fine-gain step separately by chang ing the setting of the resistance box and comparing the defleetions of the recorder with tIme expected values. No corrections for nonlinearity were applied. In all the amplifiers userl in this program, both coarse-gain and fine-gain resistors were wire-wound. TABLE I Observers and Instruments Period To From 1953, Feb. ii 1953, Jan. 21 1953, 1953, 1953, 1954, 1954, 1954, 1955, 1955, 1956, 1957, 1957, 1958, 1960, 1960, Feb. 23 Jun. 10 Oct. 30 Mar. 15 Jun. 17 Oct. 11 Apr. 28 Sep. 23 Sep. 22 Sep. 21 Dec. 26 Oct. 3 Jan. 28 Nov. 17 1953, Apr. 1953, Jul. 1954, Mar. 1954, Jun. 1954, Jul. 1955, Apr. 1955, Jul. 1956, Jun. 1957, Jun. 1957, Dee. 1958, Jul. 1959, Jun. 1960, Oct. 1961, Jun. 25 3 6 16 1 26 8 27 24 12 5 10 20 28 Observer I-I. L. Johnson H. L. Johnson H. L. Johnson IC H. Hardie R. H. Hardie R. H. Hardie IC H. Hardie IC H. Hardie R. H. Hardie C. F. Knuckles R. I. Mitchell W. M. Sinton W. M. Sinton B. Iriarte K. Serkowski J. Priser & K. Serkowski Telescope McDonald 13-inch McDonald 82-inch Lowell 42-inch Lowell 21-inch Lowell 21-inch Lowell 21-inch Lowell 21-inch Lowell 21-inch Lowell 21-inch Lowell 21-inch Lowell 21-inch Lowell 21-inch Lowell 21-inch Lowell 21-inch Lowell 21-inch Lowell 21-inch Refrigerated **Urmrefrigerated Lall. = Lallemand 162 Tube Type 1P21 1P21 1P21 1P21 1P21 Lall. 1P21 1P21 1P21 lP2l 1P21 1P21 1P21 lP2l 1P21 1P21 Tube Desig. Y Y 2-Ref Y_TJnref** i0-Ref. 10-Ref. 10-Ref. 12-Ref. 12-Ref. 12-Ref. 12-Ref. A5 A8 A8 A8 A8 A5 A8 A8 - = fl = = == = = -F 0.030 +0.018 +0.046 +0.024 +0.017 + 0.063 +0.017 + 0.073 A8 = +0.005 amplifier No. 4 amplifier No. 4 amplifier No. 4 amplifier No. 4 amplifier No. 4 General Radio Amplifier No. 838 in this table, as in all other tables in this paper, refer to UT. The tlurd column gives the number of obser vations of primary standard stars used for determining the transformation coefficients. The extinction co efficients, K1 and Q were determined together with The corrections for the gain steps, based on the cali bration of the amplifier, however small, were ap plied to all the observations. The coefficients A2, A and A5, determined on particular nights, are given in Table II. The dates TABLE H. Transformation Coefficients DATE 1955 Feb. 2 24 Apr. 4 11 20 21 25 n A2 A, A5 REMARKS 2 11 18 7 13 17 7 1.076 1.072 1.090 1.087 1.091 1.077 1.090 -0.040 -0.001 -0.019 -0.008 -0.005 -0.006 -0.007 +0.031: +0.066 + 0.064: + 0.072 + 0.079 + 0.066 sky dusty wind 1P21 Y-U 2nd set of filters May 4 6 28 ii 18 11 1.014 1.012 1.018 -1- 0.010 +0.021 +0.012 mean +0.073 + 0.024 + 0.033 + 0.030 lP2l Y-U 1st set of filters Jun. 20 21 22 27 8 8 8 8 1.055 1.055 1.051 1.045 +0.034 +0.035 +0.029 +0.028 mean + 0.029 + 0.086 + 0.087 + 0.078 + 0.071 TUBE 1P21 No. 2U* 1P21 No. 2-1 lP2l No. 10-R Oct. 27 28 30 31 Nov. 4 7 8 16 19 20 27 1956 Jan. 17 19 20 Feb. 3 10 14 Mar. 5 14 19 Api. 5 18 -1-0.076 4 4 4 4 2 4 4 2 2 2 2 1.012 1.022 1.015 1.023 1.024 1.014 1.023 1.020 1.018 1.027 1.028 -0.011 -0.017 -0.014 -0.005 -0.015 -0.003 -0.010 -0.018 -0.015 ---0.021 -0.022 mean + 0.080 + 0.001 + 0.005 + 0.001 – 0.017 +0.009 + 0.011 -i-0.012 + 0.002 H- 0.003 + 0.005 + 0. 005 25 4 4 19 22 23 5 8 36 24 12 1.029 1.021 1.027 1.006 1.026 1.054 1.021 1.011 1.006 1.012 1.005 -0.018 0.000 +0.006 -0.004 -0.019 -0.031 -0.024 -0.006 +0.003 -0.005 -0.011 + 0.008 +0.021: + 0.032: +0.002 + 0.006 + 0.020 -0.003 + 0.005 + 0.009 --10.006 -0.006 mean + 0.005 *Refrigerated Unrefrigerated 163 clouds at end clouds at end hazy hazy clouds clouds TABLE II. Transformflon Coefficients Contd TUBE 1P21 No. 10-k 1P21 No. 12-k DATE 1957 Mar. 23 24 26 28 31 Apr. 5 6 7 9 15 16 18 19 20 24 26 May 1 3 5 n A2 A A5 13 15 3 4 3 13 8 4 3 10 3 7 4 5 4 5 10 8 6 1.024 1.019 1.012 1.011 1.022 1.015 1.015 1.018 1.018 1.015 1.019 .013 1.011 1.020 1.018 1.008 1.015 1.017 1.015 0.014 0.004 -0.008 +0.018 0.013 --0.001 +0.013 -0.006 -0.015 0.000 -0.014 +0.011 -0.003 +0.003 +0.030 -0.002 -0.007 -0.002 -0.006 +0.010 +0.015 +0.004 -+0.029 +0.009 +0.014 +0.028 -H0.012 +0.003 +0.015 +0.005 + 0.024 H-0.008 +0.017 +0.048 +0.006 +0.008 +0.015 +0.009 May 30 Jun. 1 13 14 5 4 2 2 1.009 1.016 1.009 1.022 +0.019 +0.016 +0.018 +0.007 mean H-O.015 + 0.028 +0.032 +0.027 +0.029 Jun. 22 24 25 4 4 6 1.014 1.016 1.012 +0.026 +0.025 +0.021 mean +0.029 +0.040 +0.037 +0.037 Dec. 27 1958 Jan. 8 9 16 Feb. 11 27 Mar. 20 Apr. 10 11 15 May 4 9 10 5 1.043 -0.070 irlean -F 0.038 -0.029: 6 8 9 8 9 9 10 10 10 10 10 10 1.046 1.036 1.039 1.039 1.043 1.046 1.038 1.041 1.043 1.042 1.044 1.047 -0.046 -0.027 -0.035 -0.036 -0.016 -0.023 -0.027 -0.026 -0.025 -0.029 -0.023 -0.027 -0.002 +0.008 -J-0.003 +0.002 +0.025 +0.021 +0.010 +0.013 +0.016 +0.011 +0.019 +0.018 REMARKS wind clouds at end clouds poor seeing clouds at end clouds clouds clouds clouds 1P12 No. 12-k 4 4 4 2 4 1.025 1.043 1.047 1.031 1.047 -0.034 -0.034 -0,048 -0.044 -0.043 164 -0.010 –0.007 -0.003 0.014 –0.002 end end end end clouds at end extinction changing clouds clouds ? clouds P clouds P clouds P clouds mean –0.013 1959 Jan. 5 11 24 29 31 at at at at clouds TABLE II. TransformaHon Coefficients Contd TU BE 1P21 No. 12-R DATE 1959 Feb. 2 4 5 26 28 Mar. 1 3 n A2 A A5 2 4 4 4 4 4 4 1.061 1.051 1.049 1.040 1.043 1.039 1.041 -0.05 1 -0.046 -0.049 -0.038 -0.032 -0.041 -0.041 + 0.007 + 0.003 0.002 0.000 + 0.003 -0.003 -0.002 9 15 16 27 28 2 2 2 2 2 1034 1.044 1.041 1.068 1.061 -0.009 ---0.015 -0.028 -0.019 -0.015 1960 Jan. 20 28 29 Feb. 17 18 21 23 25 Mar. 15 17 18 19 21 2 4 2 6 2 4 6 2 6 6 8 6 6 1.026 1.026 1.022 1.023 1.026 1.021 1.025 1.030 1.027 1.023 1.018 1.021 1.024 -0.067 -0.045 -0.052 -0.040 -0.05 1 -0.040 -0.041 -0.052 -0.042 --0.040 -0.035 -0.032 -0.034 Mar. 26 30 Apr. 3 4 6 4 6 6 2 4 1.028 1.026 1.033 1.017 1.044 -0.024 -0.030 -0.038 -0.046 -0.038 clouds - mean May REMARKS 0.000 +0.024 + 0.027 +0.011 + 0.045: –0.043: 0.042 -0.020 -0.020 0.0 18 -0.026 -0.019 -0.0 17 -0.023 -0.016 -0.018 -0.0 17 -0.011 -0.010 - mean -0.020 + 0.003 -0.005 -0.006 -0.029 -F 0.004 clouds at end clouds bad seeing clouds clouds clouds at end clouds at end mean -0.007 1961 Feb. 6 8 10 15 22 24 Mar. 1 8 23 31 Apr. 4 9 12 6 9 8 4 4 3 8 4 8 4 6 7 13 1.024 1.028 1.044 1.022 1.005 1.038 1.032 1.034 1.027 1.029 1.023 1.024 1.024 -0.052 -0.036 -0.027 -0.046 -0.041 -0.057 -0.050 -0.050 --0.032 -0.057 -0.040 -0.040 -0.036 -0.029 -0.009 -0.009 -0.024 -0.036 -0.020 -0.019 -0.0 17 -0.006 -0.029 -0.018 -0.017 -0.0 13 mean -0.019 165 clouds at end clouds at end clouds at end strong wind clouds at end TABLE III. Err of single obsrroatiorc Extinction for B-V colors Extinction Coefficients Exrinc Con for V magnitudes 1955 Feb. Apr. m 0.099 0.161 0.117 0.113 0.126 0.129 0.128 0.126 0.117 0.088 m +0.009 +0.017 –0.014 –0.004 +0.007 +0.007 +0.005 +0.005 –0.008 –0.014 m 0.145 0.138 0.132 0.176 0.133 0.120 0.114 0.184 0.089 0.124 +0T029 –0.031 +0.017 +0.004 +0.018 0.011 –0.009 4-0.006 +0.001 –0.021 0237 0.286 0.239 0.287 0.257 0.246 0.240 0.207 0.204 0.210 2.2 9.8 0.5 1.0 1.0 –0.009 –0.011 –0.009 –0.011 –0.008 –0.011 –0.011 –0.006 –0.010 –0.024 –0.015 –0.016 –0.012 –0.009 –0.017 –0.016 0.108 0.118 0.117 0.102 0.122 0.105 0.128 0.128 +0.004 –0.007 –0.004 +0.007 +0.002 –0.015 –0.010 –0.005 0.138 0.151 0.158 0.164 0.144 0.158 0.198 0.172 –0.005 –0.018 –0.000 –0.011 –0.004 –0.012 –0.017 –0.016 3 2.6 1.0 0.8 0.4 1.3 1.5 1.3 0.4 +0.005 –0.008 –0.010 –0.009 –0.007 –0.005 –0.009 –0.007 –0.010 –0.014 –0.014 –0.016 –0.011 –0.008 –0.027 –0.017 0.109 0.138 0.110 0.124 0.132 0.132 0.145 0.113 +0.003 +0.008 +0.010 +0.015 –0.006 –0.004 –0.008 –0.011 8 9 16 10 11 15 4 9 10 1.2 0.8 1.0 1.3 2.1 3.5 3.6 5.0 7.2 –0.021 –0.010 –0.006 –0.007 –0.004 +0.008 +0.009 –0.008 –0.008 –0.013 –0.021 –0.013 –0.011 –0.014 –0.007 –0.016 –0.016 –0.025 0.116 0.132 0.116 0.110 0.105 0.121 0.130 0.127 0.116 28 0.6 +0.009 –0.011 0.118 1956 Jan. Feb. 17 3.5 1.2 Mar. 10 14 19 19 5 Apr. 3 5 1957 Mar. Apr. May 1958 Jan. Apr. May 1959 Feb. 1960 Mar. 1961 Jan. Feb. Mar. Apr. May Jun. 23 24 5 6 15 26 1 3.5 15 17 18 19 21 0.4 0.5 0.5 0.4 0.6 10 11 6 8 10 15 24 1 22 23 31 4 9 12 1.4 0.4 1.8 2.8 1.3 1.1 0.5 2.5 1.8 4.7 2.9 1.9 3.4 8.4 29 9 16 17 19 21 2 8 10 28 0.5 1.0 0.5 2.5 0.9 4.5 1.1 1.1 0.8 0.8 –0.005 –0.008 –0.004 –0.008 –0.005 –0. 010 –0.015 –0. 022 –0. 016 –0. 012 –0.005 –0.007 –0. 005 –0. 005 –0.007 –0. 012 –0.009 –0.007 –0.009 –. 009 –0.011 –0.004 –0. 004 –0. 005 –0.018 –0.005 –0.008 –0. 012 –0. 014 0.088 0.114 0.125 0.090 0.105 0.117 0.105 0.122 0.097 0.130 0.115 0.115 0.094 0.126 0.108 0.102 0.129 0.127 0.097 0.109 0.078 0.110 0.131 0.119 0.111 0.122 0.120 0.113 0.115 0.146 me. me, bi m +0.018 –0.025 –0.017 –0.009 –0.015 +0.009 +0.015 +0.007 –0.001 –0.017 0.4 0.7 1.0 5.9 0.8 0.9 3.1 1.4 0.9 0.7 Nov. me. m.r me. m +0.006 +0.014 +0.015 +0.010 +0.006 +0.007 –0.008 +0.006 –0.008 –0.012 24 4 21 6 27 28 30 31 7 8 May Oct. toe, K2 Q K1 M-Mc- DATE Coefficients of coIordrprndeoon of extinction Extinction for B mags. r -0.033 +0.005 +0.002 –0.006 0.243 0.268 0.272 0.261 0.265 0.262 0.325 0.298 -0.023 –0.006 -0.007 –0.007 -0.017 -0.034 -0.028 –0.006 +0.010 +0.004 0.000 +0.008 -0.010 –0.010 0.185 –0.006 0.142 –0.014 0.136 –0.016 0.160 –0.028 0.212 40.010 0.264 –0.007 0.296 –0.024 0.178 –0.027 0.291 0.277 0.244 0.282 0.342 0.395 0.439 0.289 -0.028 –0.005 +0.003 –0.010 –0.019 +0.010 Th.006 –0.006 –0.003 –0.004 –0.004 –0.003 –0.003 0.121 –0.012 0.156 –0.027 0.134 –0.013 0.258 –0.010 0.257 –0.010 0.174 –0.004 0.187 –0.009 0.219 –0.007 0.228 –0.009 0.232 0.283 0.246 0.364 0.358 0.290 0.312 0.341 0.339 -0.026 -0.031 -0.034 -0.030 -0.032 -0.030 –0.008 –0.003 +0.005 +0.006 +0.004 –0.004 -0.002 +0.015 +0.007 +0.007 +0.008 +0.002 –0.012 –0.012 –0.005 –0.011 –0.008 –0.012 –0.011 0.127 –0.014 0.240 0.167 0.203 0.172 0.140 0.142 –0. 015 –0. 020 +0.032 –0. 026 –0.015 0.253 0.314 0.295 0.228 0.244 +0.008 -0.055 -0.001 –0.007 –0.024 –0.024 -0.092 –0.020 -0.013 –0.020 +0.003 –0.017 – 0.007 –0. 011 –0.006 –0.012 –0. 005 –0.004 –0.004 –0. 004 –0. 005 –0. 012 –0. 006 –0.004 –0.007 –0.003 –0.002 –0.003 –0.003 0.105 0.151 0.147 0.107 0.131 0.146 0.171 0.097 0.160 0.133 0.134 0.135 0.147 0.147 0.145 0.105 0.151 0.202 0.214 0.179 0.177 0.157 0.175 0.247 0.226 166 –0. 005 –0. 007 –0. 008 –0. 007 –0.014 –0.006 –0.008 –0.003 +0.006 0.006 –0.007 –0.007 0.219 0.253 0.266 -0.032 –0.012 0.201 -0.057 –0.013 0.258 -0.029 –0.012 0.258 0.283 0.189 -0.057 –0.009 0.283 0.238 0.233 0.261 -0.044 –0.010 0.271 0.241 -0.017 –0.005 0.251 0.241 0.258 0.330 0.330 0.287 0.296 0.274 0.285 0.359 0.368 –0.015 –0.006 Yellow the transformation coefficients on only those nights for which M-M 2 for the primary standards was larger than 0.3. These nights arc listed in Table III. October. November December through March 10 March 11 through April 20 April 21 through July Exaiuioing ‘table II we notice that the values of A,5 are usually higher irs the summer nsonths when the temperature of the air is high and refrigeration with dry ice is not so effective as in tile winter. Nu merous experiments made by I-I. L. Johnson proved that for most multiplier tubes the transformation co efficients depend strongly on temperature when the tubes are not refrigerated. Blue Q, Qs 07120 .138 .150 .190 Oi’232 .250 .262 .300 ‘the dependence of extinction on humidity was in vestigated hut no clearly expressed correlation was fotind. The last two columns of Table III give the co efficients K1 and Q2 which describe the color-de pendence of extinction; K, = -0.030 and Q, 0.002 arc their mean values. In reducing the ob servations it was, however, assumed that Q,2 = 0 and that Q, had the value -0.033. D. Extinction Coefficients. The values of the extinction coefficients determined from the observa tions of primary standard stars arc given with their mean errors in Table III. The second column gives iM-M 2 which can be considered as the weight of the extinction deternonation. The third and fourth columns give the mean errors of a single observation of B-V and V as obtained from the least-squares solution. The number of observations used in the solution can be found in the third column ofT able II. The mean errors arc not given in Table III for those nights when only 2 or 3 primary standards were observed. The values of K,, Q,-, and Qs listed in the 5th, 6th and 7th columns of Table III arc plot ted as a function of season in Figures 2, 3 and 4. The coefficient K1 does not seem to vary with the sea son. Its mean value can he assumed as 0’’l 15. The mean seasonal values of the extinction coefficients with yellow and hluc filters coefficients Q, and Qi,’ used for reducing the observations are: Ill. Magnitudes and Colors of Standard and Comparison Stars A. Accuracy of Two-Color Observations. The mag nitudes and colors of the ‘1en-Year Standards and comparison stars Ivere computed from equations 3 and 4. where the values K2 = ---0.03 and Q,2 = 0 were always assumed. The values of A1. A2, A, and A, were determined from the observations of primary standards for every night when two color observations were made. They were never averaged over several nights. The nightly values of the extinction coefficients K, and were used only for those nights which are listed in Table III. For other nights the seasonal K1 d96 SN 4 d2 &O 8 Figure 2. The atmospheric extinction coefficients K, for the blue-yellow color index as determined at Lowell Observatory. I 1crti al lines chow the mean errors of nightly values. Open circles represent values based on 2 or 3 standard stars, filled circles those based on 4 or more stars. Horizontal line represents the assumed mean value. 167 ___ Figure 3. The atmospheric extinction coefficients Q5, for the yellow magnitudes. Notations are the same as in Figure 2. Horizontal lines represent the assumed mean seasonal values. I bI Qm3 5 I *I I I I O.395IO.49 . EXTINCTION FOR B MAGNITUDES 0 0 . * . m 0.30 *. * 0 S S 0m25 _* I . .% 0 S S * ** S 0 *. . . * 0 0 . **. 0 0 . 0 0 . 00 I OCT I NOV DEC I JAN Figure 4. The atmospIeric extinction as in Figures 2 and 3. FEB coefficients Qs, mean values were used. From the scatter in Figures 2 and 3, it can he roughly estimated that the r.m.s. deviations of nightly values of K, and Q,-, from sea sonal averages are rK, –O1’025 and aQ., –OO4, respectively. The mean errors for a typi cal observation of the color and magnitude of a bright star at the zenith can be assumed to be u-v M1 –OOO75 and FV M1 –OO12. ‘l’hese values are used for computing the weights of the observations of the Ten-Year Standards and com parison stars, as described below. MAR APRIL MAY JUNE for the blue magnitudes. Notations are the same We denote by M the mean air mass for the primary standard stars used for determining the transformation coefficients A,. A2, A2 and A,. If these coefficients were the only unknowns determined from the equations 3 and 4, A, and A2 would be distorted by any deviation of extinction coefficients K, and Q’ from the assumed seasonal mean values K1 and Q,. Instead of the true values for A, and A2, we obtain from the least-squares solution of equa tions 3 and 4 the coefficients A" and A"2 con nected with the true coefficients by the relations: 168 A"1 A1 A2 - - 21 K1-4K1M 25 1ST Q iQri M=1 M ={M2r2BV B-V 22 which are valid when the deviations of K2 and Qy2 from their assumed values can be neglected. The equations 3 and 4 now take the form rvM ={M2rJM=l + MM2o2Q.,Il/2 26 B-Vl+K20M ‘A",H-A2C20 23 V-m22 = If the weight of the observation at the zenith is taken as 5, the weight of an observation at air mass Mis A"2 + A6 B-V -QQ2’ M-M 24 5 Assuming the seasonal mean values of extinction co efficients we neglect the last terms of equations 23 and 24 . Therefore, if we assume that the errors of photometric measurements are proportional to the air mass, the mean errors of the color and magni tude computed by taking into account the uncertain ty of extinction are W =M2 - M-M 2 [aQyi / v M1 ]2 27 Ihis equation was used for computing the weights of all observations given in Tables IV and V. For Table IV. Observations of Ten Year Standards p DATE 1955 Feb. Apr. May 24 4 11 20 21 4 6 4t169 4.210 4.170 4.162 4.191 4.169 4.168 V Wt. + 01322 .328 .308 3 4 .311 5 4 3 3 .326 .327 .321 V B-V System of DATE Mar. Apr. 1957 Mar. Apr. 23 24 5 9 15 20 4.173 4.190 4.193 4.193 4.140 4.179 4.194 4.174 4.182 4.194 4.167 4.187 4.166 4.157 .321 .298 .314 .308 .316 .323 .300 .333 .302 .311 .312 .316 .304 .308 primary stds. 1957 May 41159 4.214 +0’1319 .318 4.171 4.192 4.172 4.163 .310 322 .330 –0 .325 Dec. 1958 Jan. +0 .320 Feb. 3 41188 4.191 H- 0’1331 .312 27 4.192 .320 4 1956 17 3 10 14 5 19 5 18 +0 .318 4 4 4 4 4.181 4.188 4.184 4.183 2 4J78 3 4 2 4.182 4.187 4.170 .300 .313 .304 .321 .315 .302 +0.342 mean 4 .183 +0 312 5 4 4.181 4.199 9 4.176 16 4.177 11 27 Mar. 20 Apr. 10 11 15 4.179 4.149 4.181 4.178 4.168 4.175 May 4 4.194 9 10 4.190 4.226 .331 .315 .313 .311 .309 .314 .321 .308 .318 .302 .311 5 12 24 29 31 2 5 26 4.141 4.185 4.187 4.177 4.183 4.187 4.168 4.167 .322 .321 .301 .309 .312 .308 .331 .322 1959 Jan. +0 .304 .305 4 2 3 2 Feb. 4.163 B-V System of V System of 10-year stds. mean 4.180 Jan. Feb. p Gem B-V Gem B-V V System of primary stds. .308 169 Wt. 10-year stds. 41177 4.194 0111327 +0.311 mean 4.184 4 +0 .309 2 3 3 3 2 4 2 4 4 4 3 3 3 mean 4 2 3 5 4 4 4 4 4 .180 4 .188 +0 .314 .307 4 .175 4 .178 4 .168 4 .196 4 .187 4 .220 .307 .309 .315 .304 .317 .310 +0.306 4 .183 4 .173 4 .190 4.191 +0.310 +0.326 .323 .317 4.192 317 4 .173 4.183 .332 .314 4.171 Table IV. Observations of Ten Year Standards Contd 10 U Ma p Gem B-V System of primary stds. V DATE Wt. V B-V V System of 10-year stds. DATE 1955 May 1959 Feb. Mar. 28 4m215 +011330 1 3 4.185 4.195 .313 .316 1960 Jan. 20 28 Feb. 21 23 MaL 15 17 18 19 21 26 30 Apr. 3 6 4.184 4.181 4.190 4.192 4170 4.179 4.201 4.173 4.170 4.169 4.178 4.169 4.200 411209 +01331 4.187 4.218 +0 .330 mean 4 .189 +0 .324 3 3 3 .315 .314 .321 .315 .317 .315 .314 .320 .340 .327 .313 .309 .319 4 3 2 4.184 4.181 1 2 2 3 3 1 0 2 3 2 4.193 4.171 4.173 4.186 4.181 4.176 4.162 4.183 4.175 4.192 mean 4 .181 1961 Feb. 6 8 10 15 21 22 24 Mar. 1 8 23 31 Apr. 4 9 12 4.183 4.211 4 .181 4 .186 4.181 4 .167 4 .165 4 .183 4 .181 4 .158 4 .189 4 .192 4.171 4 .183 .310 .311 .315 .314 .315 .313 .318 .309 .313 .312 .310 .323 .306 .316 5 4 4.183 4.206 4 4.174 3 4.173 .323 1956 Jan. Feb. Mar. +0 .314 .321 .313 Apr. .324 .321 .313 .321 .315 .329 .315 .313 +0 .325 4.177 4.173 4.176 4.169 4.154 4.183 4.185 2 4.177 4.180 +0.315 mean 4.177 B-V System of primary stds. DATE 1955 Feb. Apr. May V Wt. 31966 +01432 4 31956 4 11 3 .967 3.974 3 .977 3 3 4 3.971 20 .453 .433 .440 4 3 .966 .433 3 3.969 6 3 .964 .436 4 3.959 3.986 3 .955 3 .970 3 .976 .439 14 3 .994 5 3 .930 19 3.971 5 18 3 .954 3 .978 mean 4 4 .420 .430 4 .427 5 .432 2 3n979 + 011442 3 .970 3.963 3.968 3.967 + 0 .438 +0.436 .422 .429 .423 .437 .435 4 3.984 3.968 3.974 4 3.947 .427 1 3.974 .437 +0.436 mean 3 .968 +0 .430 3 .942 3 .994 +0 .453 .428 3 .968 .432 3 .985 .442 .441 +0 .433 .451 S 3 .989 4 5 9 3 .958 3.978 .434 .428 .430 15 20 26 1 3 3 .971 3 .963 3 .976 3 .996 3.963 .428 3 .442 2 .437 .429 5 1 3 4 3.986 27 3 .960 .445 8 9 16 11 3 .992 3.955 3 .981 3.995 .428 .458 27 3 .957 Mar. 20 3 .984 Apr. 10 11 15 4 9 10 3 .987 3.967 3 .979 3 .975 3.972 3 .988 May .424 .420 .423 .431 .430 .440 .427 .427 .432 .440 B-V 1959 Jan. + 011429 .443 Feb. .439 .436 .440 170 2 .446 .442 .430 Feb. +0.311 3 .438 Dec. 1958 Jan. System of 10-year stds. 24 17 3 10 3 3 .943 10 U Ma V 00444 24 May +0 .308 .302 .309 .314 4 311980 Mar. 23 Apr. +0.318 .309 .304 .306 .311 .311 .325 .318 .312 28 Wt. B-V V System of 10-year stds. 1957 4 4 3 4 4 4 3 3 B-V System of primary stds. 5 3 .930 12 24 3.970 3 .972 29 31 2 4 5 3 .963 3 .957 3 .949 3.962 3.974 .432 .434 .422 .435 .449 .426 .431 .432 3 .966 3 .975 mean 3 .969 3 +0 .440 3 4 2 4 2 3.984 4.004 +0 .423 3.978 4 3.987 .429 .425 4 4 3.967 3.975 3 3.977 2 2 3.969 3.982 +0.435 mean 3 .980 +0 .427 4 2 2 .414 .434 .423 .426 .440 3.962 3.975 3.976 +0.436 3.966 .454 3.977 3.979 .436 .433 .436 .438 3 4 4 5 5 Table IV. Observations of Ten Year Standards Con+’d IlL Mi 10 U Ma B-V System of primary stds. V B-V System of 10-year stds. V DATE 1959 Feb. Mar. Wt. V B-V System of 10-year stds. DATE 1955 26 28 1 3 31947 + 0445 4 .001 3 .977 3 .974 .433 .432 .435 3963 3 .995 3 .979 3.997 +01437 .434 .442 +0.449 mean 3.976 +0.439 5 3 2 4 May 1956 Jan. Feb. 1960 Jan. 20 28 Feb. 21 23 Mar. 15 17 18 19 21 26 30 Apr. 3 6 1961 Feb. 3 .975 3 .981 3.984 3 .974 3 .968 3.985 4.007 3 .958 3 .966 3 .977 3 .962 3 .959 3 .989 4 3 4 4 3 3 .430 .427 .438 .442 .429 .429 .436 .441 .464 .437 .440 .427 .420 3.984 3 .975 3.975 3 .969 3 .979 3 .992 3 .966 3 .972 3 .970 3 .967 3.965 3.981 +0.427 iiiean 3 .974 +0 .435 2 2 2 1 3 4 3 3 .974 3 .965 3 .983 3 .987 3 .973 3 .957 3 .968 3 .973 3.981 3 .947 .434 .436 .435 .425 .435 .442 .444 .428 .431 .434 4 3 3 4 4 4 4 5 4 3 31 3.980 3 .980 .418 .436 3 3.965 3 .981 .434 .429 4 9 12 4 3 5 DATE Feb. 511412 5 .413 5.407 5 .412 5 .416 5.406 24 4 11 20 21 May 4 +01775 .778 .766 .771 .775 .764 mean 5.412 +0.772 4 4 4 5 5.414 5.392 5.403 5.412 +0.769 .782 .774 .760 5.380 .755 2 5.418 .760 .770 5 .407 .766 .756 4 4 5 .417 5 .400 5 .436 .762 .768 .436 .435 .435 .442 .439 .439 .442 .431 +0.426 +0 .432 .427 .429 .425 3 .967 .438 3 .976 .430 .966 .969 .943 .974 .973 .425 .429 .433 .433 .431 .440 +0.428 mean 3.970 –0.431 2 3 4 5 4 4 .775 .764 +0775 +0 .780 5 .414 51402 5 .417 +01772 .768 5 .421 5 .417 5.409 .770 .771 .767 .763 .770 9 15 5 .415 5.414 .776 .758 20 26 1 3 5.426 5 .424 5 .459 5 .425 .778 .760 .777 .766 27 5.397 .769 8 5 .414 .766 1 9 5.395 .783 3 16 11 27 Mar. 20 Apr. 10 11 15 May 4 5 .426 5.396 5 .393 5 .420 5 .424 5.411 5.428 5 .407 .756 .778 .770 .778 .762 .777 .782 9 5.418 .773 .757 10 5.433 .770 4 2 4 2 4 4 4 3 3 3 Feb. 1959 Jan. Feb. 171 2 5.402 5.420 5 .416 Dec. 1958 Jan. V B-V System of 10-year stds. 5 .440 1957 Mar. 23 24 Apr. 5 1955 Apr. .780 5397 5 .413 5 3.971 Wt. .772 4 3 19 Apr .5 18 11 L Mi B-V System of primary stds. 5.406 5.394 5.412 5.422 +01771 .782 Mar. 3.978 V 17 3 10 14 5402 5 .414 .438 3 .974 3 .960 3.976 3 .974 3 3 3 3 3 6 28 .440 May 6 8 10 15 21 22 24 Mar. 1 8 23 Apr. B-V System of primary stds. V 5 12 24 29 31 2 4 5 mean 5 .409 5 5.401 4 5.425 .773 4 +0 .765 +0 .768 +0.765 .764 2 3 2 1 3 4 5.411 .762 5 .448 5 .428 .773 +0 .765 mean 5.421 +0.766 4 5 .429 5 .405 +0 .755 .772 5 .414 5 .424 5.411 5.424 5 .409 .776 .757 .771 .778 .772 5.415 .765 5.427 +0.765 mean 5 .419 +0 .767 5.367 5.381 .763 .788 3 2 5.399 5.386 +0.767 .790 5 .394 5 .382 5.384 5 .401 5.398 5.409 .758 .768 .768 .775 .765 .775 2 5 4 4 5 5 5 .398 .774 5.393 .773 5.413 5.414 .770 .776 Table IV. Observations of Ten Year Standards Contd 40 Leo Ii L Mi V B-V System of primary stds. DATE 1959 Feb. + 01763 .764 .757 .752 20 28 Feb. 17 21 Mar. 15 17 18 19 21 26 30 Apr. 3 5 .412 5 .402 5.406 5 .419 5 .412 5.418 5.428 5 .398 5.404 5 .422 5.408 5 .406 .772 .776 .765 .776 .769 .756 .771 .774 .795 .766 .763 .758 2 4 3 3 2 2 3 2 3 4 6 5.419 .766 3 .774 .785 .784 .762 .767 .766 .773 .768 .768 .771 .759 .776 .762 .768 mean 4 3 3 4 4 4 4 5 4 3 4 5 4 5 1960 Jan. 1961 Feb. 6 8 10 15 21 22 24 Mar. 1 8 23 31 Apr. 4 9 12 5.400 5 .406 5 .413 5.425 5 .400 5.389 5.395 5 .402 5.402 5.390 5.402 5 .402 5 .399 5.422 System of 10-year stds. Wt. 51402 5.441 5.405 5.404 26 28 Mar. I V B-V V DATE 1956 01755 .765 .767 +0.766 5 3 2 4 51418 5.435 5.407 5.427 + mean 5 .411 +0 .769 3 5 .405 5.404 5 .410 5 .413 4 0 .776 .770 .776 5.412 5.413 5.406 5.410 5 .415 5.413 5 .412 5.411 .762 .770 .775 .770 .768 .765 .762 +0.772 5.410 5.400 5 .401 5 .406 5.412 +0.770 –0.772 .776 .778 .762 Jan. 3 10 14 Mar. 5 14 19 Apr. 5 18 .762 .759 .765 .766 .770 .774 .771 .768 –0.767 mean 5 .401 +0 .768 DATE 1955 Feb. Apr. 24 41801 4 4.793 11 4.794 20 4.796 21 4 .800 May 4 4 .797 6 4.791 28 4.796 +01450 .458 .455 .446 .455 .441 .454 .457 V 2 3 4 5 4 4 4 3 4.797 4.805 4 .801 4 .800 4.786 4.795 .445 .451 .444 .458 –0.455 .797 –0 .450 useami 4 0456 .459 .454 .441 .441 .453 .466 .445 .436 4 4 4 4 2 4 3 41791 4.786 4.784 4.791 4.797 + 011453 .461 .453 .437 .446 4.786 4 .797 4.797 .458 .447 –0.445 .790 –0 .451 5 4.793 –0.446 4 4 2 3 2 1 2 4 1 2 4.791 .458 4.787 .445 4.811 4.791 4 .788 4 .807 .466 .441 .448 +0 .448 mean 4.794 4 –0.449 3 2 .444 .464 .446 .444 .441 .454 .453 .470 .442 .445 .448 27 4 .792 .447 8 9 16 Feb. 11 27 Mar. 20 Apr. 10 11 15 May 4 9 10 4.793 4 .784 4.784 4.782 4.768 4 .792 4.794 4.794 4 .807 4 .793 4 .809 4.814 .451 1 .458 .453 .461 .457 .461 .451 .453 .448 .450 .438 .452 3 4 2 4 2 4 4 4 3 3 3 1959 Jan. Feb. 172 5 12 24 29 31 2 4 5 26 B-V System of 10-year stds. Wt. 4.794 4.786 4.782 4 .802 4.790 4 .786 4.797 4.822 4.788 4 .799 4 .807 Dec. 1958 Jan. B-V –011447 .448 411791 1- V mean 4 1957 Mar. 23 24 Apr. 5 9 15 20 26 May 1 3 5 30 System of 10-year stds. Wt. 41783 4.788 4.793 4.801 4.759 4.771 4.783 4 .804 4.801 .776 5.399 5 .403 5 .395 5.390 5.386 5.396 5 .395 5.405 5.419 B-V System of primary stds. 17 Feb. 40 Leo V B-V System of primary stds. 4.787 4.791 +0.452 .455 4 .786 4.794 4.794 4 .803 4 .795 4 .806 4.808 .459 .446 .447 .444 .449 .446 –0.447 mean 4.796 –0.449 4 .786 4.787 4.788 +0 .450 .455 .457 4.790 .446 4.794 4.810 4 .798 .450 .431 .450 4 .754 4.782 4.784 4 .776 4.781 4 .785 4.779 4.805 .446 .453 .441 .439 .441 .444 .445 .430 2 3 2 5 4 4 5 5 4 .782 .458 5 Table IV. Observations of Ten Year Standards Cont’d 36 U Ma A 40 Leo System of primary stcls. DATE 1959 Feb. Mar. 1960 Jan. Feb. Mar. Apr. Wt. System of 10-year stds. DATE Mar. Apr. 41797 –01452 3 4Y791 1 3 4 .792 4.775 .445 .432 2 4 4.794 4.798 +01453 .455 +0.446 +0.448 4.812 4.789 4.797 4.807 4.792 4.793 4.804 4.812 4.791 4.793 4.798 4.791 4.789 4.806 .456 .447 .443 .446 .452 .450 .440 .454 .440 .473 .449 .449 .448 .444 mean 4 3 2 4 3 3 3 2 2 3 2 3 4 3 4.795 20 28 17 21 23 15 17 18 19 21 26 30 3 6 4.792 4.795 4.798 4.793 4.794 4.798 4.797 4.799 4.799 4.791 4.796 4.795 4.792 -10.447 .448 .446 .450 .457 .446 .453 .441 .448 .451 .451 .452 H-0.450 mean 4.795 *0.449 6 8 10 15 21 22 24 8 23 31 4 9 12 4.786 .456 4.795 4 .800 4.808 4.794 4 .793 4.782 4 .805 4 .800 4.802 4 .792 4.783 4.807 .157 .164 .140 .450 .454 .459 .450 .446 .438 .458 .448 .454 2 3 2 3 4 4 3 4 3 4 4 1 1 mean May Wt. 4.786 4.790 4 .793 4.795 +0.454 .448 .458 .440 4 .803 4.790 4 .793 4 .796 4.796 4 .785 4.789 4.804 .450 .445 .448 .445 .453 .453 .454 +0.453 4 .793 V B-V 24 4 11 20 21 Mayl Apr. 6 System Wt. Jan. Feb. Mar. Apr. H- 05 18 17 3 10 14 5 19 5 18 4 .823 4 .833 4.847 4.833 4 .802 4.832 4 .830 4.843 .519 4 .518 4 .507 .538 .509 .521 4 4 2 3 3 4.831 4.831 4 .838 4.823 4 .840 4 .835 4 .823 .500 2 4 .839 .514 .519 .523 +0 .509 mean 4 .832 +0.518 .529 4.830 4 .852 4 .847 .528 1 .496 .521 .516 .515 3 4.861 .495 4 4 .848 .517 4 4 4.834 4.833 .519 .519 41826 4 .835 +0517 mean 4 .840 +0.515 –0.516 .520 .506 .534 .518 .526 1 4 .829 4 1 .836 –0 .520 .520 .522 3 2 3 2 4 .832 .517 2 4 .863 4 .833 4 .828 4 .839 .525 .529 .515 30 1 4 1 3 3 +0 .513 mean 4 .836 +0 .521 27 4.821 .519 1 4 4 4 4 4 4 4 4 4 4 4 .516 .528 3 .517 4 .535 .525 .514 .526 .516 .523 .516 9 24 Apr .5 9 15 20 26 1 May 3 5 Jun. Dec. 1958 jan. 8 9 16 Feb. 11 Mar. Apr. 27 20 10 11 May 10-year stds, 2 3 4i840 4 .830 4.831 4 .830 4.836 4 .835 4 .832 4 .848 4 .874 4.830 4.839 4 .839 4 .837 Mar. 23 B-V of + 01522 .527 4 1957 +0 .450 41836 4 .831 4.831 4 .838 41841 15 V System of prima my stds, DATE 28 1956 36 U Ma A 1955 Feb. B-V V System of 10-year stds. 1955 28 1961 Feb. B-V System of primary stds. V B-V V B-V V H- 01519 .519 4 9 10 .530 .512 .513 .528 5 4.824 .502 4.833 4 .835 1.830 .502 .503 Feb. 12 24 31 4 4 .837 4 .827 4 .513 .502 .528 4.830 4 .847 +0.516 .529 4 9 –0.514 mean 4.835 –0.516 4 2 2 4.856 4.838 4.839 *0 .506 4 5 4.839 4.852 5 4.832 3 4 4 1 4 4 -1 4 .512 .521 .510 .519 .515 .515 .833 .823 .838 .833 .828 .842 .852 4 4 4 .507 .519 1959 Jan. 5 173 .855 .830 .827 .838 .800 .839 .823 .838 .837 .826 .845 .858 .521 .513 .512 .522 .529 .504 .519 .518 .507 .529 Table IV. Observations of Ten Year Standards Contd /3 Vir 36 U Ma A B-V System of primary stds. V DATE Wt. V B-V V System of 10-year stds. DATE Feb. 26 28 1 Mar. 3 4823 4 .844 4.843 4 .805 +09525 .521 .508 .494 1960 28 17 21 23 Mar. 15 17 18 19 21 26 30 Apr .3 6 Jan. Feb. Mar. Apr. 6 8 10 15 21 22 24 1 8 23 31 4 9 12 4 .829 .520 4.836 4 .837 4 .835 4 .831 4.843 4 .859 4.822 4 .825 4.838 4.828 4 .832 4.839 .513 .516 .514 .518 .508 .523 .519 .545 .508 .513 .516 .512 4.837 4 .849 4 .848 4.850 4.841 4 .832 4.829 4 .846 4.859 4.836 4.840 4 .892 4.824 4.844 .517 .538 .533 .523 .517 .526 .528 .523 .522 .512 .509 .510 .509 .515 4823 4 .838 4.845 4 .828 09517 .522 .518 +0 .508 mean 4.839 +0.515 5 3 2 3 4 .832 4.834 4 .828 4 .836 4 .832 4.837 4 .844 4.830 4 .831 4.831 4.833 4 .838 4.831 +0.520 .518 .516 .512 .525 .514 .522 .520 .520 .510 .515 .520 +0.518 mean 4.833 +0.517 3 3 4 3 3 3 1 1 3 3 2 4 4 3 3 3 3 4 4 3 4 4 3 3 4 4 4 4.837 4 .844 4 .841 4.837 4 .842 4.837 4 .839 4.847 4.832 4.834 4 .885 4.830 4.841 mean 4.842 /3 B-V System of primary stds. DATE -r 0547 .550 .563 1956 jan. 17 3.589 Feb .33.59 3 .554 .568 Mar. Api. 1957 Mar. Apr. +0.515 .529 .527 .523 May Jun. .522 .514 .520 .520 .511 .524 .505 .515 +0.514 Dec. 1958 jan. Feb. Apr. +0.518 May Wt. V B-V System of 10-year stds. Wt. 4 6 28 10 14 5 14 19 5 18 3 3 3 3 3 3 3 .612 .599 .566 .600 .615 .611 .620 .540 .549 .545 .558 .547 .542 .534 39600 3 .597 3 .598 09550 mean 3 .612 3 3.597 3 3 .591 +0 .551 3 3 3 .554 0.561 10.551 .570 3 3 2 3 3 .603 3 .589 3 .604 .539 2 3 .618 3 .604 3 .616 .539 .544 -t-0 .543 mean 3 .601 +0 .548 3 1 .545 .550 23 24 5 15 20 26 1 3 5 30 1 3 .613 3 .600 3.608 3 .608 3 .591 3 .612 3 .621 3 .603 3.611 3 .613 3 .617 .542 3 3 .612 9-0 .544 .553 .558 4 3 .605 .547 .545 3 0 3 .605 .549 .558 .551 .543 .533 3 3 3 3 3 3 .550 .546 .545 2 27 3 .602 .548 8 9 16 11 10 11 15 4 9 10 3 .600 3 .598 3 .601 .546 .550 .557 .563 .561 .569 .552 .545 .547 .558 3 3 3 3 3 3 3 .587 .599 .654 .615 .600 .618 .615 .554 .550 9 9 .610 .606 .600 .613 usean 3 .608 1 2 3 3 4 3 5 3 3 3 3 .554 mO .533 +0 .547 3 .604 3 .596 3.599 3 .654 3.611 3 .602 3 .615 3 .609 +0 .556 .557 mean 3 .614 +0 .555 .556 .563 .548 .544 .555 +0.553 1959 1955 Apr. +9597 3 .602 3 .599 May Vir V Feb. B-V System of 10-year stds. 1955 1959 1961 Feb. V B-V System of primary stds. 10 24 4 11 20 21 39602 3 .645 3 .602 3.612 3 .611 3 .622 +0" 548 .555 .554 .564 .554 .549 4 4 4 3 4 3 Jan. +9635 3 .606 H 0552 .544 3 .620 3 .623 .553 .545 Feb. 174 5 3.571 .552 12 24 31 4 5 3.605 .537 .532 .545 .552 .538 3.596 3 .595 3 .576 3.597 1 3 3 4 3 2 3 .603 3 .610 3.600 3 .604 3 .591 3.602 -90.556 .539 .548 .550 .557 .539 Table IV. Observations of Ten Year Standards Con+’d /3 CVn /3 Vir B-V System of primary stds. DATE 1959 Feb. 26 37577 28 3.617 Mar .1.3 .606 3 3 .582 +01563 .547 .533 .536 Wt. 37593 3.611 3 .608 3 .605 +07555 .548 .543 +0 .550 mean 3.603 +0 .548 2 3 3 3 1960 Jan. 28 Feb. 17 3.608 3 .621 .536 .558 3 3 3.611 3 .619 –0.536 .563 21 3 .622 .543 3 3 .613 .543 23 Mar. 15 17 18 19 3 .609 3 .608 3 .612 3 .622 3.603 .556 .538 .544 .537 .548 3 3 3 2 2 3 .610 3 .609 3 .606 3 .607 3.611 .554 .545 .550 .536 .549 21 3.607 .568 3 3 .613 .543 26 30 3 6 3 .612 3 .603 3 .620 3.620 .549 .547 .547 .548 2 3 3 3 3 3 3 3 Apr. .605 .608 .626 .612 DATE 1955 May 28 1956 Jan. Feb. 17 3 10 14 Mar. 5 19 Apr. 5 18 + 0.548 Mar. 23 24 Apr. 5 3.604 3 .616 3 .605 +0.548 .550 .554 6 May 1961 Feb. 6 10 15 21 22 24 1 Mar. 8 23 4 Apr. 9 12 3 .604 3 .623 3 .618 3.604 3 .600 3 .592 3 .626 3 .627 3 .597 3 .606 3 .585 3.611 .550 .556 .554 .543 .558 .558 .555 .551 .552 .548 .543 .561 4 0 2 2 1 2 3 3 3 4 3 3 3.610 3 .600 3 .619 3 .615 3 .593 3.599 3 .591 3.608 .551 .543 .549 +0.560 mean 3 .609 +0 .550 1958 Jan. .554 .544 .552 .549 Feb. DATE B-V System of 1rinary stds. V Wt. 10 –7259 24 4.269 Apr. 4 4 .238 20 4 .243 21 4.254 4 4 .245 May 6 4.265 –07587 .591 .607 .584 .593 .583 .576 4 4 2 4 4 5 4.260 5 4.241 4.242 4 .267 4.279 4.212 4.253 4.253 4 .253 H- 07585 .589 .595 .583 .596 .570 .590 .600 .571 27 4 .262 4 .245 4 .252 4.264 4.264 4.279 4.254 4.272 4 .264 4 4 4 4 4 4 4 4 4 4 4 .246 .253 .256 .245 .256 .256 .255 .260 .254 .262 .270 .590 .598 .581 .582 .589 .596 .587 .580 .581 .585 .591 .588 .589 .592 .594 .585 .597 .586 .578 .590 B-V System of 10-year stds. 41259 4.242 4.252 4.255 4.248 8 9 16 Mar. 20 10 11 15 May 4 9 10 1959 Jan. 5 12 24 31 Feb. 4 5 26 28 Mar. 1 1955 Feb. 15 1 3 5 30 Apr. /3 CVn V 47261 Wt. 4 B-V V System of 10-year stds. 41260 + 01583 mean 4 .255 +0.585 4.249 4.240 4.258 4.269 4.250 4.256 4.246 4.249 +0 .586 .597 .582 .592 .575 .582 .602 –0 .580 mean 4 .253 +0 .587 4 4 4 4 2 5 2 2 1957 .551 .549 .551 +0.554 mean 3 .612 B-V System of primary stds. V B-V V System of 10-year stds. V + 07588 .597 .583 .589 .586 .580 175 4 .208 4.259 4 .252 4.248 4 .241 4.251 4 .244 4.261 4 .259 .562 .573 .572 .579 .581 .574 .599 .581 .575 5 4 4 4 2 2 2 2 5 4.261 4.250 +0 .592 .592 4.261 4.268 4.257 4.261 4.264 .593 .592 .586 .583 +0 .581 mean 4 .260 +0 .588 3 2 4.259 +0.587 4.250 4.256 4 .255 4.256 4.256 4.259 4.264 .590 .589 .579 .593 .585 .586 +0.585 mean 4 .257 +0 .587 3 2 4 4 5 4 3 4 2 3 3 4 5 4 4 3 2 4.240 4.264 4.256 4 .257 4.256 4.256 4 .260 4.255 4.261 .566 .575 .588 .584 .586 .575 .591 .582 .585 Table IV. ObservaHons of Ten Year Standards Cont’d 78 UMa & CVn B-V System of primary stds. V DATE 1959 Mar. Wt. DATE 3 41228 28 4 .255 17 4.262 21 4.275 23 4.261 Mar. 15 4 .253 17 4.266 18 4.282 19 4.252 21 4.245 26 4 .263 30 4 .249 Apr. 3 4 .253 6 4.262 1961 Feb. 6 8 10 15 21 22 24 Mar. 1 8 23 31 4 Apr. 9 12 4.261 4.275 4.267 4 .266 4.268 4 .261 4 .257 4 .269 4.279 4 .278 4.266 4.252 4.240 4.255 May 28 42251 +0592 mean 4.256 +0.583 4.258 4 .260 4 .266 4 .262 4 .254 4 .260 4 .267 4 .260 4.251 4 .256 4 .254 4 .259 4 .254 +0.585 .590 .580 .582 .588 .586 .585 .580 .586 .588 .586 .585 +0 .583 mean 4 .258 +0 .585 Ma +0.581 .589 .601 .590 Jun. 4 +0578 .585 .585 .580 .584 .581 .580 .586 .579 .611 .586 .584 .581 .577 2 5 4 5 3 3 1 1 3 5 2 4 4 5 2 2 3 3 3 3 3 4 4 3 5 5 5 .583 .598 .607 .590 .589 .594 .601 .593 .591 .589 .576 .594 .582 .589 4.261 4 .270 4 .260 4 .253 1956 Jan. Feb. 3 10 14 Mar. 5 19 Apr. 5 18 B-V System of primary stds. DATE Wt. Mar. 23 24 Apr. 4.271 4 .265 4 .262 4 .267 4 .274 4 .260 4 .245 4 .246 4.252 .590 .587 .590 .589 .588 .591 .589 .588 +0.588 Jan. 6 15 1 3 5 30 1 4 .939 4.910 4 .928 4.934 4 .946 4.926 4.948 4 .920 4 .915 +0.587 May 8 4.911 9 4.915 16 11 27 Mar. 20 Apr. 10 4.916 4.920 4.934 4 .929 4 .924 4.920 4 .938 4.928 4.936 4 .927 Feb. 11 V B-V System of 10-year stds. .370 .361 .368 .368 .363 .359 .362 .356 4 4930 +0358 mean 4.927 +0.364 4 4 4 4 2 4 3 2 4.923 4 .925 4.916 4.917 4 .915 4 .940 4 .926 4.925 +0.367 .363 .367 .364 .368 .351 .364 –0.365 mean 4.924 +0.363 .356 .378 .358 .359 .371 .365 .356 .371 .377 4 4 3 2 2 4 2 5 4 4 .938 4 .915 +0 .358 .372 4.931 4 .935 4 .929 4 .937 4.920 .363 .367 .364 .359 +0.371 mean 4 .928 +0 .366 10 4942 24 4.939 4 4 .925 20 4.911 21 4.928 +0348 .371 .377 .366 .361 4 4 3 5 4 4929 4 .929 4.920 4.929 mO’368 .367 .365 .357 4 4 .925 .363 4 4 .928 .366 6 4 .934 .360 4 4 .929 .364 15 4 9 10 .357 .369 .363 .377 .369 .374 .373 .370 .371 .368 .358 .376 2 3 2 3 2 2 4.919 4 .929 +0.362 .371 4 .923 4 .924 4 .920 4.934 4 .930 4 .933 4.921 .372 .368 .364 .367 .367 .366 +0.371 mean 4.926 +0.367 4 4 4 4 3 3 1959 Jan. 5 12 24 31 Feb. 4 5 26 28 Mar. 1 1955 May 4.915 4 .927 4.925 4 .927 4.877 4.937 4 .933 4.929 --0360 1957 78 UMa V 17 4931 1958 mean 4.259 Apr. Wt. V B-V System of 10-year stds. 1955 1960 Jan. Feb. Feb. B-V System of primary stds. V B-V V System of 10-year stds. 176 4 .902 4.921 4 .922 4.924 4 .910 4.924 4 .914 4 .933 4 .924 .363 .363 2 3 .347 3 4 .351 .372 .355 .373 .362 .356 4 3 3 3 2 4 .934 4 .926 4 .926 4.933 4 .925 4 .929 4 .930 4.927 4 .924 +0 .367 .365 .363 .356 .377 .356 .365 .363 .366 Table IV. Observations of Ten Year S+andards Cont’d RD 115043 78 UMa V B-V System of primary stds. DATE Wt. DATE 1956 Jan. Feb. 1959 Mar. 1960 Jan. Feb. Mar. Apr. 3 41899 –1922 +0 .365 2 4.922 +0 .369 .370 .364 .363 .337 .373 4.919 .369 17 21 23 15 17 18 19 21 26 30 3 4.925 4.931 4 .925 4.942 4.932 4.945 4.913 4.924 4.940 4 .914 4 .935 .365 5 4.923 .364 4 4.922 .365 .330 .367 .372 .361 .386 .360 .367 .366 5 4.927 3 3 1 4.943 4.926 4.930 1 4.921 6 4 .932 .361 3 4 2 4 4 4 .930 4 .933 4.919 4.941 4 .924 6 4 .935 8 4.931 10 15 21 22 4.941 4.949 4.964 4.933 24 4 .929 4 .963 4.957 Mar. 1 Apr. 23 31 4 8 4.945 4.942 9 4.936 4 .908 12 4.931 + 0o370 mean 4 .927 28 1961 Feb. 4 +01356 riiean .368 4 .387 2 .365 2 .377 .354 .378 3 .380 3 .380 3 .375 4 .371 3 .352 3 .370 4 .353 4 .383 4 4 .928 4.935 .362 .361 .362 .369 .370 61822 + 01604 3 10 14 Mar. 5 19 Apr. 5 18 6.860 6.849 6 .856 6.814 6.837 6 .860 6.822 .598 Apr. May +0.367 4.926 4.934 .359 4.936 .377 4.943 4.937 4.956 4.945 .374 4 .941 17 1957 Mar. .371 +0 .365 +0 .366 .378 Jun. .377 .373 .370 .367 –0 .382 mean 4 .935 +0 .370 23 24 6 15 I 3 30 1 B-V Systeiii of primary stds. DATE Vt. Feb. 6.818 6.819 6.832 6.833 10 6.831 12 24 31 4 6.836 6 .820 6.809 6.799 01600 5 6.814 Apr. .614 26 28 1 3 6 .804 6.818 6.837 6 .800 May 10 24 4 20 21 4 6845 6 .836 6 .821 6 .819 6.837 6 .845 0:610 .603 .624 .606 .594 .603 4 3 3 5 4 4 61826 6 .825 6 .828 6.838 6 .848 6 6.842 .596 4 6.837 28 6 .850 .606 4 6 .849 .605 .590 .606 .600 +0 .604 mean 6 .836 +0 .602 Feb. Mar. 1960 Jan. 177 28 +0 .601 2 5 4 9 1955 mean 6 .843 4 6.820 6.814 6 .830 6.835 6.836 Jan. 6.818 6.817 27 20 10 11 15 System of 10-year stds. 6.840 6.853 3 2 6.815 Feb. 1959 4 4 3 2 2 6.812 6.822 6 .809 B-V V 6.846 6.852 4 .610 .603 .610 .605 .601 .605 .605 .602 .607 .611 .615 .605 .609 .615 .603 .610 .595 .603 .607 HD 115043 V 4 2 6.811 .593 .581 .591 .602 .608 .617 .607 .592 .580 .611 + 01601 .600 .591 .616 .580 .604 .600 –0 .613 .609 6.819 Ma 6830 6.858 6.840 .602 .812 .833 .821 .841 .815 .830 .824 .814 9 16 11 .365 .359 .598 .604 4 4 4 6 6 6 6 6 6 6 6 8 Mar. Apr. .592 .620 .575 .612 Wt. B-V System of 10-year stds. 6 .816 1958 Jan. .366 4.936 4.929 4 .914 4.928 B-V System of primary stds. V V V B-V System of 10-year stds. 6.818 6.830 +0.604 .603 6.824 .607 .606 .604 .604 +0 .605 mean 6.820 +0.604 4 3 2 3 2 1 4 4 6.825 6.818 –0.610 .609 6.808 6.830 6.835 .610 4 6.832 .606 4 3 3 6.834 6.830 6.825 .594 .611 –0 .602 mean 6 .829 +0 .604 .607 .597 3 6.841 3 6.824 .597 4 3 3 6.818 6.814 6.819 .596 3 6.820 3 2 4- 6.812 6.839 +0.595 .607 .609 .609 .608 .602 6.823 +0.594 mean 6 .823 +0 .601 6.814 +0.611 2 Table IV. Observations of Ten Year Standards Contd Corn HD 115043 V B-V System of primary stds. DATE 1960 Feb. 17 21 23 Mar. 15 17 18 19 21 26 30 3 Apr. 6 1961 Feb. 61815 6.826 6.816 6 .811 6.815 6 .830 6.810 6.810 6 .825 6.813 6 .820 6 .828 +0599 .614 .603 .572 .592 .605 .602 .627 .605 .594 .608 .594 Wt. V B-V System of 10-year stds. 6813 6.817 6.817 6 .812 6.809 6 .815 6.818 6.816 6 .818 6.818 6 .826 6 .820 +0604 .614 .601 .579 .598 .604 .603 .602 .607 .596 mean 6 .817 +0 .603 5 4 5 3 3 1 1 3 4 2 4 4 1956 Mar. Apr. .611 .608 .601 .610 4 3 2 2 6.822 6 .822 6.825 6.830 +0.609 .599 .595 .610 21 22 24 Mar. 1 8 6.824 6 .833 6 .814 6.844 6.851 .609 .606 .631 .616 .614 2 2 3 3 4 6 .843 6 .822 6.837 6.839 .602 .617 .613 .612 23 31 4 9 12 6 .849 6 .826 6 .842 6.821 6.820 .610 .591 .612 .596 .610 3 3 4 4 4 6 .845 6 .820 6 .835 6.827 6.817 .609 .606 .607 .602 –0.609 mean 6.829 +0.607 B-V System of primary stds. DATE 1955 Feb. Apr. 24 4266 4 4 .245 20 4 .235 21 4.243 May 4 4 .247 6 4 .261 28 4.251 1956 Jan. Feb. 17 3 10 14 4.241 4.240 4 .264 4 .262 –01568 .588 .566 .581 .564 .561 .567 .580 .591 .567 .568 Wt. mean 4.249 +0.574 4 3 3 4 .263 4 .238 +0 .563 .568 2 4 .260 .580 2 4 4 .241 4 .249 .562 .568 5 30 1 4.247 4.254 4 .254 .564 .573 .575 2 5 4 4.236 4.254 .567 +0.573 mean 4.250 +0.569 Jan. 8 9 16 4 .232 4.243 4.250 .566 .582 .574 2 3 4 Feb. 11 4.244 Mar. 20 4.276 Apr. 10 11 15 4 .249 4 .243 4.255 .575 .581 .581 .582 .577 3 2 4 4 4 May 4 4 .248 .572 4 9 10 4.253 4.250 .566 .576 4 4 1959 Jan. 4.253 +0 .573 4.253 4.270 4 .249 4 .243 4.251 4 .250 4.250 4.244 .569 .579 .576 .576 .573 .571 .574 –0.571 mean 4 .250 +0 .573 5 4.221 .570 2 12 24 4 .258 4 .250 .567 .555 3 3 4 .263 4 .254 –0 .569 .571 31 4 5 26 28 1 Mar. 3 4.250 4 .244 4 .243 4 .240 4.246 4 .258 4 .239 .571 .560 .572 .582 .572 .556 .554 4 3 3 3 3 2 4 4.259 4 .259 4 .248 4 .256 4.240 4 .260 4 .262 .576 .565 .573 .574 .573 .566 +0 .568 mean 4.256 +0.571 mean 4.250 +0.568 1960 Jan. Feb. 28 17 21 23 Mar. 15 178 .566 +0.569 .576 1958 +0.577 .593 .567 .564 .578 .566 .569 Feb. 4.249 4.238 4 .255 4 .252 4.242 4 .266 4.250 4 .263 Jun. V B-V System of iD-year stds. –0Th77 4 .252 4 .246 +0Th65 .578 .565 .577 .567 .565 +0.565 4 4 4 5 .561 .574 .572 41244 2 4 5 3 2 1 3 41256 4 .249 4 .244 4.244 4 .250 4 .256 4.250 3 2 5 4 4 5 4 4 .264 4 .233 4 .256 –01572 .590 .586 .564 .560 Wt. V B-V System of 10-year stds. 15 May Corn V 5 41206 14 4.235 19 4.239 5 4 .273 18 4.254 1957 Mar. 23 24 Apr. 6 .612 6.822 6 .827 6.832 6.843 B-V System of primary stds. DATE +0 .600 6 8 10 15 Apr. V 4.250 4.261 4.256 4 .249 4 .259 .570 .569 .579 .579 .571 2 5 4 5 3 4.253 4.259 4.247 4 .250 4 .260 +0.570 .574 .579 .577 .578 Tab’e IV. Observations of Ten Year Standards Con+’d 61 Vir /3 Corn B-V System of primary stds. V DATE 1960 Mar Apr. 17 18 19. 21 26 30 3 6 1961 Feb. 6 8 10 15 22 24 Mar. 1 8 23 31 Apr. 4 9 12 41263 4 .273 4 .254 4.241 4.257 4 .251 4.244 4.250 4 .256 4 .249 4.250 4.278 4.241 4.246 4.251 4.251 4.259 4.249 4 .246 4.248 4.245 –01566 .574 .557 .601 .564 .567 .572 .569 .573 .569 .576 .567 .578 .588 .566 .569 .578 .559 .579 .568 .577 Wt. 4 1 1 3 5 2 4 4 +1257 4 .258 4 .262 4.247 4.250 4 .256 4.250 4.242 +01572 .573 .558 .576 .566 .569 .576 +0.575 mean 4.252 +0.574 4 .256 4 .244 4.243 4.265 4.251 4.254 4.244 4.239 4.255 4.243 4 .239 4.254 1.242 –0 .571 .560 .570 .567 .574 .574 .563 .567 .577 .574 .574 .574 –0.576 mean 4.248 –0.571 5 3 1 3 4 4 4 4 3 4 5 3 5 V B-V V System of 10-year stds. DATE 1956 Apr. B-V System of primary stds. DATE 1955 Feb. 41736 +01687 10 4.743 24 4.759 Apr. 4 4.757 20 4.810 21 4 .787 4 4.745 May 6 4.750 28 4.740 .709 .718 .679 .700 .699 .718 .704 .716 8 1956 Jan. 17 Apr. 5 Wt. 1 1 4 4 0 1 1 2 1 30 Jun. –0’1715 4.761 4.819 4 .788 4.748 4.745 4.739 .669 .699 .695 .721 .708 mean 4 .754 4.730 Feb. 3 4 .742 10 4 .742 14 4 .734 Mar. 5 4.692 19 4.727 .703 .695 .702 .729 .708 .712 2 1 2 2 1 2 4 .749 .702 2 4.738 4 .740 4 .733 4 .724 4 .730 4.730 4 .742 1 1958 ,Jan. 8 16 Mar. 20 Apr. 10 11 15 May 4 9 10 V B-V System of 10-year stds. 41’749 18 1957 Mar. 23 24 Apr. 6 15 1 May 3 5 61 Vir V B-V System of primary stds. 41775 4.726 4.724 4.761 4.730 4.714 4.748 4.774 4 .741 4 .750 –01691 .715 .701 .706 .712 .680 .710 .749 .697 .706 4.761 4.734 4.739 4.723 4.726 4.730 4 .738 4.735 4.735 .711 .707 .715 .725 .699 .706 .701 .699 .720 1959 Jan. 5 4.680 .718 Feb. 12 24 31 4 4.711 4.707 4 .726 4.704 .730 .688 .705 .675 5 4.713 .693 26 28 Mar. 1 3 4.714 4.760 4.724 4.715 .718 .699 .696 .686 Wt V B-V System of 10-year stds. 41771 +01700 mean 4.734 +0.707 0 1 0 4 1 1 1 1 1 1 4.725 4.729 +0.717 .695 4.727 4.703 4.751 4.763 4 .741 .716 .676 .709 .752 +0 .697 mean 4.735 +0.711 2 2 1 1 2 2 2 2 2 4.737 4.733 4.723 4.726 4.726 4 .740 4.732 4.729 +0.706 .713 .720 .693 .702 .700 .707 +0.715 mean 4.731 0 +0.706 0 0 0 0 0 0 1 0 1 4.716 4.711 4 .735 4.719 4.718 4.730 4.754 4.726 4.738 –0.732 .704 .710 .680 .694 .710 .700 .706 +0.700 mean 4.746 +0.700 1 960 Jan. Feb. 28 4.726 17 4.722 21 4.739 23 4 .744 Mar. 15 4.723 17 4 .682 18 4 .729 19 4 .728 21 4.733 26 4.756 30 4 .741 +0.714 +0 .699 –0.700 .697 .701 .725 .713 .704 .704 179 .705 .706 .706 .702 .716 .687 .706 .722 .740 .707 .704 1 0 1 1 2 0 2 2 2 0 1 4.729 4.720 4.730 4 .745 4.724 4 .676 4 .714 4 .736 4.739 4.749 4 .746 –0.705 .711 .706 .700 .723 .693 .705 .723 .715 .709 .706 Table IV. Observations of Ten Year Standards Confd 70 Vir 61 Vir B-V System of primary stds. V DATE Wt. V B-V V System of 10-year stds. DATE 1957 May 1960 Apr. 3 6 1961 Feb. 6 8 15 22 Mar. 1 8 23 31 Apr. 4 12 4’757 4.773 4.732 4.772 4.731 4.715 4.755 4.747 4.752 4.751 4.719 4.746 –0728 .707 .713 .722 .714 .702 .725 .705 .715 .694 .707 .723 0 1 4i763 4.765 +0732 +0.713 mean 4.734 +0.712 4.732 4.767 4.718 4.725 4.748 4.735 4.748 4.745 4.712 4.743 +0.711 .713 .714 .698 .722 .703 .714 .709 .702 +0.722 mean 4.738 +0 .712 2 1 1 1 2 1 2 2 2 2 Jun. 1958 Jan. 16 Feb. 11 Mar. 20 Apr. 10 11 15 May 4 9 10 Jan. V DATE 1955 Feb. Apr. May 1956 Jan. Feb. Mar. Apr. 1957 Mar. Apr. May +09710 .714 .710 .727 Wt. Feb. 8 10 –9984 4.990 +09707 .707 4 4 24 4 .998 .717 3 49988 +09714 4 20 4 .953 4.963 .738 .716 3 5 4 .957 4.972 .728 .715 21 4 6 28 4.959 4.977 4.995 4.975 .729 .706 .710 .711 4 4 4 4 4.960 4.980 4.990 4.974 .725 .709 .714 +0.709 17 3 4.959 4.966 mean 4.974 3 .722 4.967 .718 4 4.964 –0.716 +0.719 .720 10 4.986 .714 4 4.977 .713 14 4.990 .703 4 4.980 .699 5 4.928 .725 2 4.966 .730 14 4.983 .707 4 19 4.975 .708 4 4.978 5 4.994 .719 3 18 4.982 .691 2 Mar. 4 2 5 49986 4.980 4.979 +09709 .717 +0.710 mean 4.980 +0.708 3 3 1 3 4 4 4 3 3 4.971 4.970 5.007 4.972 4.972 4.984 4.970 4.973 4.967 +0.716 .717 .713 .720 .718 .721 .723 .704 +0.712 4 .717 .723 .715 .725 .724 .725 .724 .696 .717 snean 4.974 +0.717 24 31 4 .959 4.964 4 .969 4 .967 4 .954 4.956 1 2 3 4 2 4.969 4 .973 4 .976 4 .969 –0.717 .715 4 5 .722 .715 .699 .706 .702 .716 2 4.961 .717 26 28 4.958 4 .980 .726 .704 2 3 4.974 4 .974 .718 .705 1 3 4 .968 4.944 .707 .696 3 4 4 .970 4.967 .717 –0.710 mean 4.971 –0.713 5 12 V B-V System of 10-year stds. ‘Nt. 4.968 4.961 5.013 4.972 4.972 4.988 4 .968 4.976 4.973 1959 70 Vir B-V System of primary stds. 3 49983 5 4.991 30 4.979 1 4.968 B-V System of lO-year stds. V B-V System of primary stds. .711 .707 1960 ./1‘3 9: 4.3/4 +0.113‘ 15 4.990 4.981 4.976 ./07 .714 .713 .700 4 5 3 4.9i3 4.981 4.982 4.977 .712 .714 .711 .707 17 4.984 .708 3 4.978 .714 18 4.991 .718 1 4.976 .717 19 4.980 .705 1 4.988 .706 21 4.983 .734 3 4.989 .709 .700 26 4.995 .714 4 4.988 .716 4.987 .721 30 4.979 .714 2 4.984 .716 4.978 +0.700 mrican 4.975 +0.712 3 6 4.977 4.986 .704 .709 4 4 4.983 4.978 .708 +0.715 6 8 4.976 4.970 .717 .712 mean 4.981 4 4.976 3 4.965 +0.712 +0.715 .703 Jan. Feb. 28 1/ 21 23 Mar. Apr. 1961 Feb. 4971 . 4.9/j 23 24 4.991 4.965 .709 .710 4 3 4.990 4.970 +0.711 .704 6 15 4.983 4.987 .712 .706 3 3 4.984 .710 10 15 4.976 4.980 .722 .709 2 3 4.969 4.967 .716 .709 1 4 .978 .702 3 4 .967 .698 22 4 .965 .703 4 4 .975 .699 180 Table IV. Observailons of Ten Year Standards Contd 70 Vir 70 Vir V DATE 1961 Feb. 24 Mar. 1 8 23 31 B-V System of primary stds. +964 4.977 4.981 4.978 4.977 –01731 .714 .717 .712 .699 Wt. 3 4 4 3 3 1955 Feb Apr. May 4i972 4.970 4.969 4.974 4.971 V System DATE V V B-V System of 10-year stds. B-V System of primary stds. DATE 1961 Apr. +01717 .711 .715 .711 .704 r Boo B-V 4 9 12 41975 4.973 4.972 Wt. V Wt. 4 3 4 41968 4.979 4.969 –01718 .711 –0.716 mean 4.971 –0.711 –01723 .705 .717 BT System of 10-year stds. of primary stds. 8 41498 –01487 4 24 4 20 21 4 6 28 4 .503 4 .488 4 .482 4.475 4 .491 4.512 4.483 .488 .480 .479 .494 .476 .468 .479 3 3 5 3 4 4 4 4fl 493 4 .492 4 .491 4.476 4 .494 4.507 4.482 +01485 .470 .478 .490 .479 .472 +0.477 mean 4.491 –0.478 +0 .467 1956 Jan. Feb. 17 3 10 Mar. 14 5 14 19 Apr. 5 18 4 .493 .470 3 4 .501 4 .525 .451 4 4 .523 .453 4.520 4 .505 4 .450 4 .482 4.486 4 .498 4.495 .508 .494 .465 .499 .502 .491 .475 4 4 2 4 4 3 2 4.511 4 .495 4 .488 .507 .490 .470 4.489 4 .491 4.491 .495 .493 +0.484 mean 4.500 +0.483 1957 Mar. Apr. May 23 24 6 15 24 1 3 5 Jun. 1958 Jan. 30 1 4 .500 4 .482 4 .494 4.501 4.516 4 .479 .479 .485 .484 .481 .470 .474- 4 4 4 .499 4 .487 –0 .481 .479 3 1 2 4.498 .485 4 .468 .470 4 .493 .485 4 4 .496 .484 4 .524 4 .489 4 .487 .463 .483 .486 1 4 4 4 .513 4 .489 .466 –0 .483 mean 4 .492 H- 0 .480 8 4 .484 .483 2 16 4.488 .485 3 4.491 +0.484 Feb. 11 4 .479 .481 4 4 .488 .475 Mar. Apr. 20 10 4 .521 4 .495 .497 .489 1 3 4 .515 4 .495 .495 .484 11 4.499 .479 4 4.499 .473 181 V B-V System of 10-year stds. Table IV. Observations of Ten Year Standards Confd r Boo B-V V System of primary stds. DATE Wt. B-V V System of 10-year stds. 1958 Apr. May 1959 Jan. Feb. Mar. 1960 Jan. Feb. Mar. Apr. 1961 Feb. Mar. Apr. 15 4 4498 4 .489 + 01486 .486 4 4 4494 4 .491 9 10 4 .489 4.484 .470 .486 3 3 4 .486 4.478 +0.481 mean 4.491 +0.481 + 0482 .485 .478 5 12 24 31 4 5 26 4.479 4 .489 4.495 4 .484 4 .480 4 .491 4 .480 .481 .476 .461 475 .472 .473 .476 1 2 3 4 2 2 2 4.511 4 .494 4.499 4 .493 4 .495 4 .496 4 .496 +0.485 .478 .477 .480 .477 .474 .468 28 1 3 4 .486 4 .484 4 .471 .476 .470 .452 3 3 4 4 .480 4 .486 4 .494 .477 .480 +0 .466 mean 4.493 +0.476 28 4.497 .477 2 4.500 –0.477 17 21 23 15 17 18 19 21 26 30 3 6 4.528 4.510 4 .486 4 .493 4.492 4 .507 4.492 4 .492 4 .502 4 .493 4 .490 4.503 .439 .474 .490 .477 .481 .485 .471 .504 .480 .478 .467 .465 5 4 5 3 3 1 1 3 5 2 4 4 4.526 4.501 4 .487 4 .494 4.486 4 .492 4.500 4 .498 4 .495 4 .498 4 .496 4.495 .444 .474 .488 .484 .487 .484 .472 .479 .482 .480 .471 +0.471 mean 4 .498 +0 .475 4 .493 4.489 4 .487 4.504 4.481 4 .495 4 .491 4 .495 4 .529 4 .502 4 .493 4 .500 4.496 +0 .483 .502 .469 .480 .480 .488 .481 .470 .478 .475 .478 .475 +0.473 mean 4 .496 +0 .479 6 8 10 15 22 24 1 8 23 31 4 9 12 4 .493 4.494 4 .494 4.517 4.471 4 .487 4 .498 4 .507 4 .533 4 .508 4 .500 4 .494 4.499 .485 .511 .475 .480 .484 .502 .484 .472 .479 .460 .483 .469 .474 182 4 3 2 3 4 2 4 4 3 3 4 2 3 Table IV. Observations of Ten Year Standards ConVd ,j Boo V B-V System of primary stds. DATE 1955 Feb. Apr. May Mar. Apr. V B-V System of 10-year stds. 8 24 4 20 21 2’681 2 .693 2 .663 2 .666 2.677 +0588 .577 .601 .587 .582 4 3 3 5 4 2’683 2 .667 2 .675 2.678 +011574 4 2 .679 2.697 2 .667 .577 .571 .584 4 4 4 2 .682 2.692 2 .666 .580 .575 +0.582 mean 2 .678 +0 .581 3 4 4 4 2 4 3 2 2.694 2 .693 2 .680 2 .674 2 .681 2.657 2 .691 2.681 +0.575 .575 .584 .588 .589 .597 .583 +0.578 mean 2.681 +0.584 2 .696 2 .689 +0 .585 .588 2 .699 .580 2 .651 2 .687 2.686 .577 .583 +0.581 mean 2 .689 +0 .583 2 3 4 1 4 3 2 .680 2 .675 2 .699 2 .679 2.691 .589 .584 .579 .591 .569 6 28 1956 Jan. Feb. Wt. 17 3 10 14 5 19 5 18 2.686 2 .695 2 .689 2 .684 2 .643 2.654 2 .698 2.685 .578 .573 .585 .592 .584 .605 .581 .569 .591 .586 .578 1957 Mar. Apr. 23 24 6 15 24 May Jun. 1958 Jan. Feb. Mar. Apr. May 1959 Jan. 1 3 30 1 2 .697 2 .684 2 .691 2 .702 .583 .594 .583 .576 4 4 3 3 2 .768 .588 1 2 .662 2 .684 2.686 2 .677 .581 .584 .581 .594 1 4 5 4 8 16 11 20 10 2 2 2 2 2 .682 .677 .666 .705 .679 .585 .590 .590 .581 .596 11 15 2.691 2 .693 .575 .583 4 2 .689 .579 4 9 10 2 .677 2 .678 2.678 .591 .582 .595 4 3 3 2 .679 2 .675 2.672 .590 .590 +0.590 mean 2.681 +0.585 5 12 2 .675 2.671 .580 .586 1 2 2 .707 2.676 + 0 .584 .588 24 31 2 .676 2 .670 .570 .578 3 4 2 .680 2 .679 .586 .583 183 Table IV. Observations of Ten Year Standards Cont’d r Boo V System of DATE 1959 Feb. Mar. 1 960 Jan. Feb. Mar. Apr. 4 5 26 28 1 3 28 17 21 23 15 17 18 19 21 26 30 3 21660 2 .684 2 .644 2 .670 2.687 2 .641 2 .676 2.677 2 .695 2 .683 2 .683 2 .691 2.702 2 .681 2.678 2 .689 2 .681 2 .666 B-V primary stds. - 0578 .574.574 .591 .568 .576 Wt. V 211675 + 01583 2 .689 2 .660 2 .664 2.689 2.664 .575 .592 .578 +0.590 mean 2.677 HO.584 2 .679 2.675 2 .686 2 .684 2 .684 2 .685 2.687 2 .689 2.684 2 .682 2 .686 2 .672 -i-0 .586 2 2 1 3 3 4 .586 .579 .582 .584 .586 2 4 .574 3 .587 .571 .607 .582 .581 .584 1 1 5 5 3 3 5 2 4 mean 2 .682 1961 Feb. Mar. 6 8 10 15 22 24 1 8 23 31 Apr. 4 9 12 2 .688 2 .683 2.703 2 .689 2 .660 2 .683 2 .683 2 .684 2.719 2.693 2 .687 2 .674 2.686 V DATE 1955 Feb. .584 .588 4 3 .579 2 .584 .584 .608 .584 .586 .588 .556 .582 .582 .585 Boo B-V B-V System of 11-year stds. .584 .582 .582 .593 .580 .586 .572 .582 .584 .583 +0 .588 – 0 .584 2 .688 2 .678 2.696 2 .676 2 .670 2 .691 2 .676 2 .672 2 .715 2.687 2 .680 2 .680 2.683 +0 .582 niean 2.683 +0.582 3 4 3 4 4 3 3 4 3 3 Wt. System of primary stds. .566 V System .579 .573 .584 .580 .594 .581 .584 .587 .571 .577 .588 +0.584 B-V of 10-year stds. 8 24 41474 4 .475 +0’373 .360 4 2 41465 H 01357 Apr. 4 4.445 .384 2 4.449 .374 May 20 21 28 4.442 4.449 4 .470 .368 .371 .357 5 4 4 4.451 4.450 4 .469 .367 .367 +0.355 mean 4 .456 -I-U .364 4 .474 + 0 .365 1956 Jan. 17 4 .466 .368 184 4 Table IV. Observations of Ten Year Standards Con+’d cr Boo V System DAlE 1956 Feb. Mar. Apr 1957 Mar. Apr. May 3 10 14 5 19 5 24 5 15 24 1 3 30 Jun. 1958 Jan. Feb. Mar. Apr. 1 9 16 11 20 10 II 15 May 4 9 10 41482 4.484 4.487 4 .424 1.470 4 .463 4.450 4.460 4.476 4 .436 4 .447 4 .447 4 .458 4 .456 4.456 4.458 4.462 4 .495 4.461 4.451 4 .454 4 .459 4.452 4.447 B-V of primary stcls. 01353 .364 .371 .357 .369 .366 .370 .356 .357 .365 .357 .366 .364 .368 .363 .369 .360 .371 .372 .372 .369 .366 .357 .370 Wt. 4 5 5 2 4 3 4 4 2 B-V V System of 10-year stds. 41480 4.475 4.477 4.462 4 .473 4.456 H- 01355 * 363 * 367 .362 .361 0 .368 mean 4 .473 HO .363 4.455 +0.364 4.473 .361 4.436 4 .450 4.458 .353 .365 –0.364 mean 4 .455 +0 .363 4 .461 4.471 4.489 4.461 4.451 4.450 4.461 4.449 4.441 +0.368 .354 .369 .367 .366 .365 .365 .365 -0.365 9 2 4 5 4 3 3 4 1 3 4 4 5 3 4 mean 4 .457 1959 an. 5 12 24 4 5 4.441 4.450 4 .468 4.465 4 .449 4.453 26 4.439 28 1 3 4 .459 4 .457 4 .423 31 Feb. Mar. 1 960 Jan. Mar. 28 17 21 23 15 17 4 .467 4.458 4.476 4.460 4 .467 4.472 .357 .363 .342 .347 .356 .370 .379 .352 .352 .346 .365 .365 .353 .363 .352 .356 185 1 2 3 4 2 2 2 3 3 4 2 5 4 5 4 4 H-0 .364 4.473 4.455 4 .472 4.474 4.464 4.458 4.455 4.453 4 .459 4.446 --0.361 .365 mean 4 .460 -f0 .360 4 .470 4.456 4.467 4.461 4 .468 4.466 -HO .365 .370 .353 .361 .359 .358 .352 .361 .371 .371 .353 .362 H0 .360 .362 Table IV. Observafons of Ten Year S+andards Conid u Boo V B-V System of DATE 1960 Mar. Apr. 18 19 21 26 30 3 6 41’474 4.471 4.460 4 .475 4 .465 4.451 4.470 Wt. +0’1’376 .353 1 1 4i459 4.479 .388 4 .362 5 2 4 4 4.466 4.468 23 4 .466 4.462 4 .472 4 .455 4 .465 4 .479 4.476 4 .466 31 4.483 4 4 .468 9 4.464 12 4.466 8 10 15 Mar. 22 24 1 8 Apr. B-V stds. .360 .358 .351 .366 .369 .369 .375 .376 .362 .365 .348 .336 .365 .356 .356 H- 0i375 4.470 4.457 4.462 .354 363 * 364 .362 .362 +0.357 4 .464 f 0 .362 3 2 4.461 4.455 +0.357 .363 3 4 2 4 4 4 3 4 4.459 4.465 4.473 4.472 4.464 4.462 4.477 4.461 .369 3 4.470 5 4.463 .351 .360 .362 +0.355 mean 4.465 +0.360 mean 1961 Feb. V System of lU-year primary stds. .371 .362 .359 .363 .347 Boo V DATE 1955 Apr. May B-V Wt. System of primary stds. B-V V System of 10-year std.s. 4 20 41531 4.544 +0i781 .780 3 5 41535 4.553 21 4.530 .766 4 4.531 28 4.552 .764 4 4.551 077 I .779 .762 +0.762 mean 4 .544 +0.769 4.565 4.546 4.537 4.541 4.539 4.556 4 .564 +0.762 .754 .770 .774 .778 .769 mean 4 .550 +0.766 4 4 4 .547 2 2 2 4 5 H Corrections to system of 10-year stds. + 01004 –0 .009 01010 -0.001 +0.001 -0 .001 -0.004 +0.008 -O .002 -O .009 -O .010 –0.038 –0 .003 -0.007 -0.003 –0.002 -0.001 -0.004 3-0.005 -0.008 + 0 .002 H-O .762 +0 .005 -0.006 4.555 .776 -0.003 +0.004 4.517 4 .538 4.548 .749 .764 +0.771 -0.011 +0 .003 0.000 ----0.004 -0.001 0.000 -0.002 1956 Jan. Feb. Mar. Apr 1957 Mar. Apr. May 17 3 10 14 5 19 5 24 5 6 15 24 1 3 30 4.557 4 .548 4.546 4.551 4.501 4.553 4 .571 4 .542 4 .548 4.563 4.558 4.538 4.528 4 .535 4.548 .765 .752 .771 .778 .773 .777 .758 .768 .763 .782 .772 .773 .753 .765 .771 4 4 4 4 2 3 3 186 +0.760 Table IV. Observations of Ten Year Standards Contd s Boo V DATE 1957 Jun. 1958 Jan. Mar. Apr. May 1959 Jan. Feb. Mar. 1960 Jan. Feb. Mar. Apr. 1961 Feb. Mar. B-V Wt. System of primary stds. 1 16 20 10 11 15 4 9 10 5 12 24 31 4 5 26 28 1 3 28 17 21 23 15 17 18 19 21 26 30 3 8 10 15 22 24 1 8 23 31 4’548 4.552 4 .542 4.548 4.547 4.541 4 .546 4 .550 4.539 4.541 4.524 4.554 4.541 4 .533 4.551 4.535 4 .546 4.531 4 .507 4 .551 4.541 4 .556 4.550 4.558 4 .556 4.561 4.532 4.536 4 .550 4 .543 4.536 4 .565 4.576 4.563 4.541 4.525 4.561 4.570 4.538 4.555 +0766 .763 .756 .778 .769 .772 .766 .755 .760 .753 .774 .746 .766 .752 .766 .768 .758 .755 .749 .767 .772 .765 .764 .757 .754 .764 .758 .796 .761 .765 .761 .773 .779 .768 .774 .785 .775 .773 .778 .742 V B-V System of 10-year stds. Corrections to system of 10-year stds. 4 3 5 3 3 44 3 3 0 1 2 3 1 1 1 3 2 4 2 5 4 5 3 3 1 1 3 5 2 3 2 1 3 4 2 4 4 3 1 mean 4.543 H-U .765 4.555 4 .536 4.548 4.547 4.537 4 .548 4 .547 4.533 –0.762 .754 .773 .763 .768 .765 .763 –0.755 mean 4.543 +0.763 4.573 4.529 4.558 4.550 4 .548 4.556 4.551 4 .540 4.533 4 .530 +0.757 .776 .762 .771 .757 .767 .760 .759 .765 +0 .763 mean 4 .542 +0 .764 4 .554 4.539 4 .547 4 .551 4 .559 4 .550 4.546 4.540 4.542 4 .543 4 .548 4.542 +0 .767 .777 .765 .762 .764 .760 .763 .759 mean 4.547 +0.766 4 .560 4.569 4.550 4.551 4.533 4.554 4.558 4.534 4.549 +0 .764 .773 .768 .770 .771 .772 .771 .777 .757 187 .771 .763 .767 +0.765 +0" 003 -0 .006 0.000 0.000 -0.004 +0 .002 --0 .003 -0.006 -0001 0 .002 -0.005 -0.006 -0.004 -0 .001 +0 .008 -0.005 +0.032 +0.005 +0.004 +0.009 +0 .015 +0.005 +0.016 -0 .006 +0.002 +0 .023 +0.004 –0.002 +0.016 +0.005 +0 .005 +0.001 -0.008 +0 .001 +0.010 +0 .014 +0 .003 -0.002 -0 .009 –0 .001 H-U .001 -U .006 -0.015 +0.008 +0.006 --0 .007 +0 .005 +0.006 0 .000 +0.005 0 .000 -0 .002 +0 .007 -HO .006 -0.001 +0.001 -0.025 +0 .002 +0.002 +0.004 -0 .005 -0.007 -0.013 +0.010 +0.008 -0.007 -0.012 -0.004 -0.006 -0 .009 -0.006 0.000 -0.004 -0.014 -0.003 --0.002 -0.001 +0.015 Table IV. Observations of Ten Year Standards Con+d Boo B-V V Systeni of primary stcls. DATE 1961 Apr. Wt. 4 9 4584 4 .557 +01778 .754 4 12 4.550 +0.748 4 Corrections to system of 1 0-year stds. B-V V System of 10-year stds. 0":007 4577 4 .563 4 .547 .760 +0.006 - 0005 +0.006 +0 .747 -0 .003 --0 .001 mean 4.554 --0.767 3 +0773 -- Table V. Observations of Comparison Stars UA 53 = B-V System of primary stds. V DATE 1954 Feb. 28 5882 1 5 .853 Mar. 1961 6 5.864 Feb. 8 5 .856 10 5 .867 21 5 .885 22 5 .852 24 5.856 1 5.858 Mar. 8 5 .861 23 5 .846 31 5 .880 Apr. 4 5 .861 12 5.873 DATE 1954 May 31 Jun. 2 12 14 16 17 1961 Feb. 8 10 15 22 1 Mar. 8 23 4 Apr. 12 Wt. V B-V System of 10-year stds. + 0364 .372 3 .370 4 5864 .373 3 .380 .375 .369 .375 .374 .377 .365 .366 .379 +0.374 3 3 4 3 4 4 3 3 2 4 5 .851 5 .860 +01368 .364 374 5 .862 5.864 5.851 5.849 5 .842 5 .874 5 .854 5 .870 .365 .361 .371 .375 .364 .381 .374 +0.373 mean 5 .859 +0 .370 DATE 1954 May June 3 1961 Feb. Mar. Apr. HO 118704 NA 54 V B-V B-V V System of System of 10-year stds. Wt. primary stds. 8’1501 8.507 8 .504 8.491 8.454 8.500 8 .515 8.495 8.520 8 .475 8 .511 8.501 8.506 8.489 8.489 +0’543 .564 .552 .568 .562 .539 .546 .545 .548 .531 .547 .540 .553 .542 +0.544 NB 54 = HO 118705 V B-V B-V V System of System of 10-year stds. primary stds. Wt. 48 Gem HO 55052 80510 8.488 8.507 8 .485 8 .504 8.489 8.502 8.482 8.486 +0537 .539 .548 .527 .544 .538 .552 .537 +0.543 mean 8.494 +0.541 9 171 9 .181 9.170 9.166 9 .134 9 .180 – 01476 .476 .492 .499 .494 .469 2 2 1 2 2 1 8 10 15 22 1 8 23 4 12 9.172 9.171 9.176 9.147 9 .190 9 .178 9 .196 9.183 9.169 .475 .468 .475 .462 .458 .470 .445 .462 +0.470 2 1 2 2 3 2 2 3 UA 54 = 9167 9.164 9.163 9.157 9.183 9.166 9.192 9.176 9.166 + 01466 .462 .475 .458 .455 .468 .444 .457 -1-0 .469 mean 9.171 +0 .461 3 HO 61997 B-V System of DATE 1953 Oct. 30 Nov. 6 8 23 1954 Feb. 17 23 24 28 Mar. 29 1961 2 2 1 2 2 1 2 2 2 2 3 2 2 3 3 31 2 12 14 16 17 Feb. 188 primary stds. We 7105 7 .100 7 .102 7 .113 +0422 .416 .431 .415 3 3 2 2 7 .120 .421 .422 .434 .413 .421 3 3 3 4 3 .421 .415 .412 .411 .409 .423 4 3 3 3 4 3 7 .136 7 .144 7 .146 7.119 6 7 .133 10 15 21 22 24 7.143 7 .143 7.132 7.129 7.108 V B-V System of 10-year stds. 71133 7.136 7 .130 +01419 .409 .412 7.139 7.116 .405 .409 Table V. Observations of Comparison S+ars Contd B-V System of primary stds. 1961 Mar V B-V V System of 10-year stds. V DATE Wt. Apr. 12 7" 129 7 .139 7.122 7 .139 7.137 7.136 + DATE 4 .410 3 3 7.118 3 3 7.130 7.133 .409 .429 .413 +0.409 mean 7 .129 0.411 .414 .418 +0.410 4 7F122 7 .127 7 .133 B-V System of primary stds. Wt. - 24 Mar. .410 8 23 31 Apr. 4 12 6940 +1:047 2 UB’ 54 10-year stds. V Nov. 6 6 .938 1,047 2 Apr. 17 Feb. 8 10 15 21 22 24 6 .969 6.986 6,980 6.977 6 .966 6 .942 1 1.049 6 .963 3 1.052 1.067 3 3 1.046 1.044 3 3 6,961 1.034 1.064 1.052 4 3 4 8 6.963 1.056 4 23 6.961 1.046 3 31 6.972 1.046 3 4 12 6 .974 6.979 1.048 1 .051 3 4 6:964 6 .979 6 .967 + 1:043 1 1 1961 Feb. .061 .046 6 .976 6 .950 6 .954 6.951 6 .957 6 .966 6 .967 6 .976 1 .030 .050 1 .049 1 .054 1 .045 1 .061 1 .043 +1 .050 mean 6 .964 + 1 .048 = B-V System of primary stds. 1 954 Mar. 30 6: 534 4 f 6.547 6.539 6.526 6.556 6.555 6.559 0:458 .455 .456 .458 .473 .450 -0.463 mean 6 .545 +0 .460 Mar. Vt. = 3 2 2 3 HD 58899 B-V 7143 V Wi. 0931 .927 2 3 6 7.143 .934 2 22 7.153 .931 2 26 7.141 .927 2 8 7.168 .920 10 .946 3 3 3 21 22 24 7.188 7 .168 7 .178 7.156 7.135 1 8 7 .157 7.165 .937 .930 23 31 12 7.155 7.170 7.180 .922 .918 +0.921 .919 .921 .915 .947 10-year stds. 7:163 7 .181 7 .155 +0:911 .940 .919 7.166 7 .143 7 .150 7.153 7 .151 7 .164 7.177 .911 .933 .934 .928 .921 .933 +0.920 .160 +0 .925 1 4 3 4 4 3 2 3 mean 7 UA 55 V V B-V System of 10-year stds. DATE - B-V System of of 7 .147 HD 58551 V DATE :3 .458 .458 .459 .458 .455 0.464 1 15 1 Apr. UA’ 54 u472 prinlary stcls. 1954 Mar. 30 1954 Feb. 1961 6526 6.554 6.551 6.530 6.562 6.562 6.562 B-V System of DATE 30 HD 63772 B-V System of primary stds. V System Wi. B-V of 10-year stds. 1955 6:544 -0.468 1 6 .544 .474 6 6 .540 .466 2 3 2 22 26 6.545 6.540 .476 2 .474 2 6 10 6 .547 6 .553 .454 .465 4 3 15 6 .560 .455 21 22 6.549 6 .538 .472 .484 Apr. May 1961 Feb. 1 System 1953 Oct. Apr. B-V System of 1 0-year stds. Wt. HI 60914 V DA FE 0403 0406 .412 UB 54 Apr. B-V System of prIrnr stds. 1961 1 8 23 31 Mat. HD 58551 UA’ 54 HI 61997 UA 54 3 6Th47 6 .546 6 54.7 +01’452 .459 455 1 4 6 .548 .480 189 8F939 8 .943 4 8 .961 20 25 +0:354 .340 .361 4 4 2 8948 +0353 8 .964 .364 1956 Jan. 17 Feb .3 8.943 8 .944 .353 .358 44 8.951 8 .942 .350 .360 10 14 Mar .5 14 19 8 .968 8 .965 8 .932 8.943 8 .952 .352 .325 .348 .349 .357 4 5 2 3 3 8 .959 8 .955 8 .970 .351 .321 8 .955 .349 .353 Table V. Observations of Comparison Stars Contd 1956 Apr. 1961 Apr. - V B-V System of rimary stds. DATE NB 55 HD 63772 UA 55 V Wt. 4 2 8951 8.960 OP345 .370 8.956 0347 .379 8.952 0.359 3 8.949 +0.358 mean 8.9j3 0.350 5 8P958 18 12 UB 55 V 1955 Apr. May 1956 Jan. Feb. Mar. Apr 1961 Apr. B-V V primary stds. 1956 Jan. Mar. Apr. 1961 Apr. 1 2 2 2 2 8+23 ._0P438 8.919 .473 1956 ,Jaii. 17 Feb. 10 3 3 2 .449 .459 14 19 .5 18 .452 .460 .452 8.901 8.892 Mat. 8.893 8.901 8 .910 8 .873 8.892 8.913 .480 .459 .429 4 3 1 8 .876 8.885 8 .909 .461 .438 12 8.895 +0.472 3 8.892 .0471 mean 8 .897 + 0 .459 Qy35 20 25 4 79400 7 .388 7.416 09386 4 .391 .393 4 7 7.419 .396 17 3 10 14 5 14 7 .393 7.410 7.425 7 .423 7 .370 7 .400 .391 .378 .378 .357 .390 4 4 4 5 2 7 .401 7.408 7.416 7 .413 7 .408 .391 .380 .377 .353 .395 19 7.401 .378 .391 3 3 7.404 .383 .5 7.404 .388 4 18 7 .413 .378 2 7.397 7 .411 .390 .387 7.424 -0.384 3 7.421 +0.383 mean 7 .409 1-0 .381 12 79409 primary stds. 21 79730 3-0344 25 7 .763 .496 4 20 7.729 7.723 .541 .557 21 7.731 .553 17 10 14 19 3 18 7 .701 7.704 7 .713 7.711 7.717 7.718 12 7.714 Wt. +442 .467 .470 .454 .473 10-year stds. Wt. B-V System of 1 0-year stds. 8922 8.902 8.916 8.910 8.905 Apr. DATE Ma’ Jun. B-V V 21 23 4 20 21 May Jun. System of .172 1961 Apr. UA ab HD 67228 V ii B-V System of DATE a’ imary stcls. y t. Cnc. V B-V System of 10-year stds. 1955 NA 55 HD 120186 V B-V System of 1955 Apr. 1955 Apr. B-V Systeni of primary si ds. DATE HD 62720 System of DATE V B-V System of 10-year strls. HI 119869 Vt. Apr. Ma Oct. BSystem of 1O-year stds. 3 2 2 2 2 7i731 .546 .514 .549 .361 .516 .530 .3 3 2 4 7.712 0 .j50 3 Nov. +09540 1956 Jan. Feb. 7.732 Mar. 7 .695 7.714 7 .710 7 .714 - Api. .a39 ill 0 .D49 mean 7.714 +0.546 / 12 21 25 4 5.301 5 .321 5 .287 5 .308 5 .297 5 .293 5 .280 5 .283 5 .308 5.304 5 .304 .622 .642 .640 .637 .629 .632 .633 .625 .639 .633 .641 5 4 4 2 3 3 2 3 3 4 4 5.304 .637 5 17 3 10 14 .5 14 19 5 18 3.287 5 .292 5.306 5.326 5 .271 5.307 5 .302 5 .287 5.308 .646 .644 .636 .620 .628 .625 .633 .634 .630 4 -1 4 5 2 3 3 4 2 23 21 26 5 .296 5.309 5.307 .633 .614 .643 4 1 1 27 28 30 31 4 19 20 27 - l9ai Mar. 190 5P322 - 07638 5 .311 .640 3.295 5 .290 5.297 5.316 5 .309 .643 .646 .635 .616 .633 5 .305 .280 5.304 .625 .636 .639 5 .295 5.311 .635 .638 Table V. Observations of Comparison Stars Contd UA 56 T B-V System of primary stcls. DATE Wt. May 1961 Apr. 5 9 15 16 19 20 1 3 5 5!293 5 .307 5 .305 5.310 5.305 5 .299 5 .325 5.308 5.310 0t633 .632 .626 .633 .632 .638 .650 .639 .628 4 2 2 1 1 2 1 3 1 DATE 1961 Apr. 12 5 .313 H-O .634 3 5o302 HI 68256 B-V System of primary stcls. V DATE 1955 Oct. 5 .311 5 .311 5.299 .646 5 .310 +0 .633 - 0 .635 3 2 a 3 4 4 5 17 3 10 14 MarS 14 19 Apr. 5 18 1957 Mar. 23 24 26 Apr. 5 9 15 16 19 20 May 1 3 5 4.661 4 .652 4.675 4.686 4 .637 4 .658 4.677 4 .683 4 .675 543 .543 .532 .520 .533 .533 .525 .51 0 .533 4 4 4 4 2 4 3 4 2 4669 1.650 4.666 4.676 4.675 + 0540 .545 .531 .516 .538 4 .680 4.676 4.671 .517 .512 .542 4 .674 4.691 4.681 4 .665 4.679 4.671 4.681 4.677 4 .665 4 .689 4 .683 4 .670 .526 .532 .540 .526 .528 .531 .531 .518 .536 .s : 9 .329 4 4 4.673 4.696 .528 .526 .531 0539 -- 0 .530 HD 119638 V B-V System of 10-year stds. 17 19 20 3 10 19 5 18 6907 6.900 6 .899 6 .941 6.905 6.907 6 .918 6 .933 --01542 .541 .535 .527 .546 .566 .534 .529 2 1 1 2 2 4 2 0 6915 +01539 6 .939 6.896 6.910 6 .911 6 .929 .529 .545 .558 .536 .538 6 .900 6.906 6 .942 6.905 6.905 7 .086 6 .861 6.906 6 .910 6.915 .546 .542 .533 .531 .539 .531 .529 .552 .531 .544 2 2 1 4 2 0 0 1 I 1 6 .899 6.911 .548 .536 6 .850 6.909 6 .910 .525 .551 .531 Jun. 23 24 5 6 18 24 1 3 30 1 1961 Apr. 12 6.925 +-0 .510 2 6.922 +0.539 mean 6.912 +0.543 Feb Mar. Apr. System of 10-year stds. +0531 .527 .531 .528 .539 .535 .538 .536 Apr. May NB 56 = HD 121111 4.668 1956 Jan Mar. .535 Apr. 4.678 4 .686 4.659 B-V Systeni of 1riary stds. DATE Feb. 2 1 3 1 4678 B-V System of primary stds. DATE 1957 Mar. 2 3 B nean 1 .674 1956 Jan. 4663 4.671 4 .657 4.648 4 .678 4.669 4 .670 4 .675 1956 Jan. Feb. 4 0540 Vt. V 27 28 30 31 4 19 20 27 Nov. 468 I 0630 8 Cnc A--B+C V B-V Wt. 12 NA 56 mean 5 .304 UB 56 B-T System of prilisary stds. I V B-V Systens of 10-year stds. V B-V V System of 10-year stds. 1957 Apr. nc A LB 56 = HD 68256 p Cnc. Hi 67228 17 19 20 3 10 14 19 5 18 7p691 7 .694 7 .697 7 .714 7.690 7 .718 7.698 7 .685 7.708 23 24 7 .680 7 .681 -- 01549 .550 .541 .534 .548 .545 .554 .365 .528 Vt. V B-V System of 1 0-year stds. 7699 H-00546 7.712 7.681 .536 .547 7.701 7 .678 7.704 .546 .567 .537 7 .679 7 .686 .358 .552 4 a 4 3 1957 .535 .528 .534 Mar. 191 .556 .358 3 3 Table V. Observations of Comparison Stars Confd NB 56 = B-V System of primary stds. DATE CII 57 MD 121111 Wt. May Jun. 5 6 18 24 1 7735 7.690 3 30 7.689 7 .690 1 7 .695 .540 .509 .561 .546 .550 .540 .554 12 7.702 +0.552 + 0538 1955 Oct. 7.736 7.799 7 .656 2 4 2 1 1 2 2 71645 7 .692 7 .690 F 01542 UA 57 -- +0.551 mean 7 .691 *0 .549 HD 72779 B-V System of primary stcls. - V DATE Wt. 6.388 17 6.384 .975 3 6392 3 10 6.389 6.398 .978 6 .387 6.389 14 6.381 .5 6.355 .970 .988 4 4 3 3 61578 +0681 14 19 6.394 6.391 .978 .990 23 24 26 5 6 .388 6.410 6 .380 6 .397 6 .389 6 .407 6 .394 6.387 6 .359 6 .384 6 .398 6 .382 6 .419 6 .391 6 .408 1959 May 1961 28 Apr. 12 Jan. Feb. 35 Cnc V B-V Systersi of 10-year stds. .5 1956 4 4 4 4 2 4 3 4 2 6F581 6 .583 + 0678 .681 6 .592 6.589 6 .539 6 .584 6.578 6 .582 6.594 .681 .679 .683 .664 .688 .666 .684 .679 .668 6 .583 6 .579 6 .577 .682 6 .581 6 .575 6 .590 .676 .681 .677 23 24 26 31 5 7 9 15 16 18 19 20 26 1 3 5 6 .573 6 .596 6 .567 6.589 6 .576 6.583 6.593 6 .584 6.581 6.560 6.584 6 .579 6 .583 6 .601 6 .586 6.608 .685 .683 .691 .693 .671 .692 .679 .668 .675 .672 .674 .678 .682 .680 .678 .663 5 4 1 1 4 5 2 3 2 1 1 2 1 1 3 1 6 .572 6 .601 .687 .677 6 .590 6 .589 6 .597 .677 12 6.600 +0.678 4 6.597 +0.677 mean 6 .584 +0.678 Jan. 17 6.573 Feb. 3 6 .585 13 14 5 14 19 5 18 Mar. Apr. 1957 Mar. Apr. May 1961 Apr. 1957 Mar. .660 .693 16 19 6.383 6.386 20 27 6.387 31 Apr. 5 9 15 16 18 19 20 26 May 6 .581 61380 6.381 6.370 6.378 6.397 6.382 6.387 1956 Mar. 16 10-year stds. Wt. 3 27 28 30 31 4 7 8 B-V System of 3 2 3 3 3 3 5 4 4 5 Nov. 1955 Nov. V .981 .980 .976 .983 .979 .973 .982 .982 .980 .986 .549 .540 7.699 3 39 Cnc 0.966 1961 Apr. System of prinry stds. DATE - B-V V V B-V System of 10-year stds. 1957 Apr. HD 73665 .672 I 3 .977 4 4 6.394 .982 .975 .978 5 4 6 .387 6.415 .977 .972 .982 .990 .965 .973 .970 .982 .967 .980 .978 .985 .985 .980 .960 1 1 4 2 3 2 2 2 2 1 1 3 1 6 .391 .974 6 .408 6 .394 6 .397 .981 6 .373 .979 1 6.391 +0.974 4 6.388 +0.973 mean 6.392 +0.977 1956 Jan. Feb. Mar. 192 19 10 14 71679 7 .692 7 .700 6.371 .979 .963 RD 121608 B-V System of primary stds. DATE .980 .976 .966 .993 V .666 0972 6 .393 NA 57 .676 - V Vt. B-V System 0f 10-year stds. 4 0w536 .523 .539 2 7683 + 01522 Table V. Observations of Comparison Stars Cont’d System of primary stcls. DATE 1956 Mar. 19 Apr. 5 Apr. Apr. May Jun. 1961 Apr. -i- 02548 7 .684 7 .697 .549 1-0556 .546 .531 2 1 23 24 28 7 .685 7 .692 .547 2 7 .684 .529 .519 2 2 5 7 .694 .534 2 6 18 24 1 3 5 30 1 7.671 7 .677 7.811 7 .671 7.671 7 .664 7 .691 7.681 .530 .533 .538 .524 .560 .552 .527 .549 4 2 1 1 2 1 2 2 7 .660 7 .674 12 7 .689 +0 .547 2 NB 57 V Jun. 5 30 1 1961 Apr. 12 6841 Jan. Feb. .548 .540 Mar. .523 Apr Mar. Apr. 7 .653 7 .691 .520 .559 .555 .527 7 .686 +0 .546 May HI 121496 V B-V Dec. +0 .541 Feb. -i-0470 B-V System of 10-year stds. Wt. 6. 703 Q. 860 4 6’7 11 021857 3 10 14 5 19 18 6 .695 6.730 6.726 6.673 6.713 6.723 .885 .860 .853 .870 .867 .852 4 4 4 2 3 2 6 .693 6.721 6.716 6.711 6.716 6.719 .887 .859 .849 .875 .859 .861 23 24 26 5 9 15 16 19 20 3 27 6.711 6.726 6.721 6.710 6.719 6.723 6.719 6.713 6.714 6.716 6 .697 .864 .865 .879 .857 .862 .864 .862 .867 .860 .864 .864 .5 4 1 4 2 3 1 1 2 3 4 6.710 6.731 .866 .859 6.720 .868 6.719 .863 11 6.706 .868 2 6.715 .862 6 .697 6.724 .867 .874 Apr. 10 6.725 .864 11 6.729 .865 4 2 4 4 6.718 6.725 6.729 .872 .859 .859 15 4 9 6.732 6.733 6.734 .859 .853 .849 6.732 6.720 .879 .866 6.728 6.735 6.731 6.726 .855 .852 10 8 9 16 6.708 6.711 .878 .865 3 3 3 3 1 3 4 6.714 .865 12 6.732 10.864 4 6.729 +0.863 mean 6 .720 +0.863 May 62845 6 .859 +09481 .464 6 .846 6 .854 .479 .470 2 2 6.813 .470 2 6.861 6 .836 .459 .462 2 4 6.837 .471 2 .960 .829 .844 .850 .844 .482 .463 .476 .452 .464 6 6 6 6 6 .843 .483 1 1 2 1 2 2 6.853 -10.478 3 6.850 +0.477 mean 6 .846 +0 .470 6 6 6 6 6 17 27 Mar. 20 2 Jun. Apr. .818 .847 .839 .844 .459 .475 .455 .464 UB 58 V DATE Nov. 705 0873 Wt. B-V System of 10-year stds. 16 62671 H 02706 5 Jan. Feb. B-V 17 6 .661 6 .676 6 .711 6 .687 6.637 .712 4 69669 0709 .700 .698 .685 .697 4 4 4 2 6.674 6 .702 6 .677 6 .675 .702 10-year stds. 14 61 V 1956 1955 16 B-V 1955 System of Wr. HI 75974 System of primary stds. DATE System of primary stds. .857 .874 1961 ISA 58 = HD 75470 V B-V V Nov. Wt. 1958 - System of primary stds. DATE I 3 B-V System of 1 0-year stds. 1957 mean 7 .684 May DATE V 1 956 72690 7 .683 7 .690 7687 7 .690 7 .694 1956 Jan. 19 1957 Mar. 23 24 28 Apr. 5 6 18 24 System of primary stds. of 10-year stds. Wt. 4 18 1957 Mar. System B-V V B-V V B-V V HD 75470 LA 58 HD 121608 NA 57 Mai. 5 193 5 .697 .681 .702 Table V. Observations of Comparison Stars Cont’cI NAS8 =HD 123453 HD 75974 UB58 System of primary itt. DATE V B-V V 1956 Mar. 19 6678 + &t’704 Apr. 18 6.683 .698 1957 .690 Mar. 23 6.683 .704 24 6.691 .716 26 6.686 Apr. 5 6.666 .697 .701 9 6.680 .703 15 6.671 16 6.683 .709 .707 19 6.673 .702 20 6.677 .700 May 3 6.664 Dcc. 27 6.666 .706 1958 Feb. 11 6.666 .710 .713 27 6.654 Mar. 20 6.685 .709 .713 Apr. 11 6.692 15 6.686 .712 .699 May 4 6.698 9 6.689 .686 10 6.714 .693 Jun. 8 6.669 .700 9 6.664 .717 16 6.677 .707 1961 Apr. 12 6.693 +0.704 V B-V Wt. Systemof 10-year stds. 3 2 &?681 +0P696 6.679 .707 5 4 1 4 2 2 1 1 2 3 4 6.682 6.6% .692 .698 6.668 .707 6.667 .699 2 4 2 4 3 4 3 3 1 3 4 6.675 .704 DATE 6.679 6.692 6.682 6.700 6.686 6.708 .707 .707 .708 .698 .694 6.680 .707 6.690 -1-0.703 mean 6.684 +0.699 4 System of DATE - itt. Wt. 1956 Jan. 20 7’P629 + 0588 2 Mar. 14 7 .655 393 2 19 7.629 .590 4 Apr. 5 7.650 .581 2 18 7.657 356 1 1957 Mar. 24 7.635 .574 2 Apr. 5 7.650 .598 I 6 7.656 393 4 May 30 7 .632 .583 1 Jun. 1 7 .629 372 1 .588 0 25 7 .632 7.633 .555 itt. Feb. 27 7647 +0’’594 Mar. 20 7 .633 .585 Apr. 10 7.626 377 IJ 7.628 .584 15 7 .623 .586 May 4 7 .629 .586 9 7.619 383 10 7.625 389 Jun. 9 7.620 .586 16 7.640 374 1961 Apr. 12 7.637 +0389 NB 58 V Wt. 10-year B-V Systemof 10-year stds. 0?582 383 7.640 .568 7.632 4 7 .642 7?627 7 .626 7 .628 7.619 7 .631 7.616 7 £19 itt. 365 ,- .574 7 .634 + 0.588 mean 7.632 +0376 2 lID 123255 B-V = 95 Vir V B-s’ System of 10-year itt. 59’462 +O’P334 5 .455 .341 5 .468 5 .452 5 .472 5 .470 5 .458 5 .458 5 .472 .354 .348 .347 .339 .354 .344 .325 5.471 .346 5.471 +0.341 mean 5.464 + 0.343 - UA59 = ND 79096 V B-V V Systemof .583 DATE primary itt. Wt. 1958 Feb. 11 69’489 +0744 2 27 6.478 .740 4 .349 194 0?583 372 .578 382 385 391 384 7 .643 DATE Wt. 1957 May 30 5’P462 + 0fl34 2 Jun. 1 5 .469 .348 2 13 5.463 .352 3 14 5.477 .346 0 22 5.474 .351 2 24 5.464 .348 I 25 5.454 .354 I 1958 Feb. 11 5.446 .347 4 27 5.459 .344 Mar. 20 5 .474 .356 9 Apr. 10 5 .452 .353 2 11 5.472 .353 2 15 5.474 .343 2 May 4 5.456 .355 3 9 5.461 .336 2 10 5.478 .330 2 Jun. 9 5 .458 .345 2 16 5.468 .346 2 1961 Apr. 12 5.474 0.342 3 .688 7’?632 7.643 7.653 = 1 1 2 2 2 2 2 2 2 2 System of primary stds. 1958 11 primary B-V System of 1958 NA 58 = HD 123453 V B-V V Feb. V B-V System of B-V System of 10-year 6?498 itt. +0738 Table V. Observations of Comparison Stars Cont’d System of prinlary stds. DATE 1958 Mat. 20 Apr. 10 11 1.5 4 May 9 10 V B-V V UB 59 HD 79096 UA 59 Wt. 2 4 61496 0:1741 6.497 4 3 3 3 6.508 6.506 6.519 6.506 6.519 .739 .726 .731 .736 .734 .724 .725 .722 .718 .720 .719 .727 .721 .733 .730 .720 4 6.511 2 6 .503 .728 .734+0.742 6:502 6 .497 6 .508 6 .510 0.743 .747 .732 .735 .737 .726 .729 6.517 6 .509 6 .525 2 System of priniary stcls. DATE 1959 Mat. 5 12 24 20 Feb. Mar. 1961 Mar. Apt. .31 4 5 26 1 3 6 .470 6.498 6 .500 6 .400 6.495 6 .486 6.504 6 .490 6 .496 6.492 .31 6.514 6.510 12 6.500 23 LB 59 Mat. Apr. 1958 Feb. 4 5 6.501 6.509 6.506 6.498 4 6.515 .734 3 2 .3 6.510 6 .497 .727 .749 0 .741 mriean 6 .506 -f 0.731 81299 27 Mar. 1 8 .284 .446 4 20 8 .318 .443 9 Apr. 10 8.315 .460 8.308 8.333 8 .330 8.318 .4-50 Ma 11 15 4 9 10 4 4 3 5 12 24 29 31 4 5 26 28 1 8 .277 8.315 8 .306 8 .30.3 8 .298 8 .283 8.312 8 .303 8.356 8.322 Mat. .740 Jan. B-V V lU-year 8.325 - stds. .440 .439 .438 .465 .140 .425 127 .440 1-44 .451 .437 -156 2 4 9 a 5 4 5 5 3 .439 .435 9 8308 -i- 011453 8 .312 8 .315 8 .308 8.329 8 .332 8 .315 8 .319 .441 .455 .444 .436 .438 .446 8.309 8 .320 8 .310 1-4.4 .427 .443 8 8 8 8 8 8 .449 .456 .438 448 .440 .445 .324 .443 3 8.307 0.457 3 8 .299 8.304 .442 --0.456 mneami 8 .315 -0 .446 HD 124401 V B-V System of primary stds. B-V Systemim of 11-year stds. Wt. 61980 7 .011 11020 0 .983 7 .002 6.967 6.971 6 .986 6.978 6.969 1 .020 1 .032 1 .023 1 .018 1 .01:3 1.023 1.017 2 2 6 .932 6 .981 6 .981 6 .981 6 .990 6 .974 6 .990 6 .990 6.971 6 .975 0 1 1 1 1 1 0 1 1 1 2 6.991 +1.017 mean 6 .984 1 .017 AVir V System B-V of 6.090 I lU 18 2 7 .006 7.019 0 .989 1.026 2 4- 7 .009 7 .008 6.967 6.971 6.996 6 .984 6.981 6.975 1 .018 1 .022 1 .037 1 .029 1 .022 1 .014 1.015 1 .022 1 2 2 2 2 2 2 2 5 12 6 .900 6 .976 0 .993 1 .006 0 2 24 6 .977 1 .016 2 31 4 5 28 1 3 6 .972 6 .97.5 6 .969 6 .974 6 .996 6.969 6 .952 1.010 1 .015 1 .023 0 .99-11 .003 1 .005 1 .016 1 1 0 0 2 12 6.994 1.018 26 .307 .298 .317 .319 .350 8 .30,3 6.992 1959 System of Wt. 011459 Feb. .725 6.504 0:448 12 1957 Mat. 23 24 6 1958 Feb. 27 Mat. 20 Apr. 10 11 15 May 4 9 10 .724 .732 .722 5 5 2 8:3 13 23 DATE Feb. 11 1959 Jan. 6 .504 Wt. 4 8:290 NA 59 V .729 .724 .734 6.504 B-T System of 10-year stds. 1961 3 HI’ 79499 B-V System of primary stds. DATE 3 V 0:434 1 1959 Jan. RD 79499 B-V V B-V System of 10-year stds. - Mar. 1 961 Apr. .460 NB 59 V DATE 1958 Feb. 27 Mar. 20 Apr. 10 11 15 Ma 4 195 HI 125337 B-V System of primary stds. Wt. - .997 .008 .032 .015 .020 .024 .986 .004 .015 .030 1 0-yeam strls. 01125 1 4.523 .130 1 4:517 0:128 4.498 4.500 4.527 4.512 .148 .145 .123 2 4.498 4.500 4.523 4.514 .143 .139 .119 .131 4Th1 1 - .132 2 2 2 DATE 1958 May TØl. V. Obsorvafions of Comparison Stars Confd UB6O =11182140 NB59=HD 125337 =AVir B-V V B-V V B-V V B-V V System of System of System of System of 10-year st& primary stds. Wt. DATE 10-year stds. Wt. primary stds. 9 4?510 10 4.505 +0’?122 .142 2 2 4?507 +0?130 .137 4.499 4.483 4318 4334 4.497 4327 4321 .136 .126 .118 .129 .119 .111 .118 .108 .120 .110 0 2 1 0 1 0 0 1 2 1 4.475 4323 4.538 4.506 4.542 4326 4325 4 327 4317 4320 1959 Jan. 5 12 24 31 Feb. 4 5 26 28 Mar. 1 3 1961 Apr. 12 DATE 1959 May 4.509 4.533 4315 4.497 4326 +0.138 +0.137 mean 4315 +0.131 Jan. 20 8.380 8.372 29 8.375 Feb. 17 8.376 18 8.380 21 8.390 23 8.385 25 8.377 Mar. 15 8.370 17 8.386 18 8.403 19 8.365 21 8.362 26 8.375 30 8.373 Apr. 3 8.370 4 8.373 6 8.395 1961 Apr. 12 8.373 28 UA60 = 11181563 B-V V B-V V System of System of 10-year stdt Wt. primary stdz. 9 8’P319 +O’P466 .483 15 8.284 .468 16 8.310 3 1 2 .479 .461 4 3 4 2 3 2 2 2 3 3 2 2 3 2 3 4 2 3 0.497 3 1960 Jan. 20 28 29 Feb. 17 18 21 23 25 Mar. 15 17 18 19 21 26 30 Apr. 3 4 6 1961 Apr. 12 8.282 8.278 8.281 8.272 8.276 .480 .479 .477 .486 .493 .472 .491 .479 .473 .477 .477 8.285 8.294 8.277 8 .277 8.293 8.306 8.270 8.272 8.284 8.268 8.278 8.270 8.292 8.268 .5 .474 .482 .456 .485 . 8’P281 +0M80 8.270 .482 8.276 8.295 .493 .470 8 .278 8.287 8.291 8.278 8.278 8 .277 8 .273 8.284 .486 8.284 .467 8.265 +0.496 mean 8.280 +0.478 I 1 1 1960 .140 .128 .134 .134 .124 .112 .110 .109 .130 .124 4323 2 1959 May 15 8’395 + 0629 16 8.394 .638 .616 28 8 .249 .628 .641 .641 .638 .624 .628 4 3 4 8’375 4-064I 2 8 .374 .643 8.381 8 .386 .628 £31 8 .371 8 .380 .647 .6 .640 .634 .628 .640 .664 .638 .630 £14 .630 .626 3 2 2 1 3 3 2 2 3 1 3 4 2 3 +0.644 3 .633 8 .373 8 .368 8.368 8.378 8.376 .640 £27 .641 .639 .640 .632 £18 8.387 .632 8.370 –0.643 mean 8.377 +0.635 8.388 NA 60 = HD 126251 V B-V V DATE 1959 Jan. Wt. B-V System of 10-year stds. 5 12 4 5 6fl51 6.477 6.482 6.468 +0?’410 .415 .412 .418 0 2 1 0 6’M83 6.482 6.497 6.473 28 17 21 23 Mar. 15 17 18 19 21 30 Apr. 3 6.493 6.475 6.489 6.496 6.489 6.487 6.490 6.497 6.492 6.491 6.511 .407 2 1 2 1 2 2 3 3 2 2 1 6.496 6.473 Feb. .479 .476 .478 .475 .476 Systemof primary nds. +0P414 .417 .417 .419 1960 Jan. Feb. .484 .460 196 .419 .417 .410 .413 .414 .422 .414 .444 .417 .422 6.480 6.497 6.490 6.481 6.475 6.505 6.498 6.496 6317 .407 .424 .417 .408 .420 .420 .421 .415 .419 .419 .426 Table V. Observations of Comparison Stars Confd B-V System of primary stds. DATE 1961 Apr. 12 6497 +01412 Wt. 61494 +0411 mean 6.491 +0.417 2 B-V System of primary stds. V B-V System of 10-year stds. V 1959 Jan. Feb. 1960 Mar. 30 Apr. 3 6 1961 Feb. Wt. Mar. 5 12 4 5 61633 6.643 6 .650 6.641 + 01423 .422 .415 0 2 1 61665 6.648 6 .665 .417 0 6.646 - 01427 .424 .420 Apr. .418 B-V System of primary stds. DATE Hf 126766 NB 60 DATE V V B-V System of 10-year stds. V Hf 83683 UA 61 Hf 126251 NA 60 Mar. Apr. 1961 Apr. 28 17 6 .642 6 .636 .425 .428 2 1 6 .645 6 .634 .425 .433 21 23 6.643 6 .648 .416 1 6.634 .416 15 6 .652 .413 .429 1 2 6.649 6 .653 .411 .436 17 18 6.654 6.660 .405 .411 2 3 6.648 6.645 .411 .410 19 21 30 3 6 .647 6.662 6 .659 6 .660 .432 .454 .422 .441 3 2 2 0 6 .655 6.668 6 .664 6 .666 .433 .429 .424 .445 12 6 .655 +0 .424 IJA 61 V 6966 6 .956 6.994 0469 .470 3 4 61971 6 .962 + 0147 1 .451 3 6.986 J57 6 10 24 6 .962 6.965 6 .966 .492 .483 .487 3 3 3 6 .962 6.958 6 .974 .490 .477 .473 23 31 4 9 12 6 .989 6.987 6 .972 6 .948 6.964 .457 .460 .460 .474 --0 .480 3 3 2 2 3 6 .985 6.981 6 .965 6 .954 6.961 .456 .475 .155 .180 +0.479 mean 6 .968 -fO .473 Feb. Mar. 20 61983 28 17 18 6 .965 +0 .423 mean 6 .652 + 0 .423 B-V Wt. 1 3 1 61968 6 .956 + 01470 .484 6.966 21 23 6 .981 6 .971 .465 .476 2 2 6 .972 6 .972 .465 .474 25 15 6 .972 6 .970 6 .959 6 .983 6 .958 6 .960 6 .967 .463 .458 .480 .475 .474 .500 .479 1 3 3 2 2 2 1 17 18 19 21 26 .971 .953 .968 .966 .966 .960 .474 Hf 83509 V B-V System of I P-year stds. Wt. 1960 Jan. Feb. +01169 3 .474 3 17 7 .035 .473 1 7.034 .466 3 7 .033 7 .040 .472 .468 2 2 25 7 .022 Mar. 15 7 .028 17 7 .038 18 7 .046 19 7 .024 21 7 .027 26 7 .032 30 7 .032 Apr .37.035 6 7 .055 .482 1 .475 .460 3 3 .484 .474 2 2 .494 2 .476 .467 .458 1 3 4 .464 3 .042 .477 3 .040 .477 3 .035 .481 3 .066 .451 3 .045 .038 7 .034 .468 .464 .478 3 2 2 0.488 3 Apr. 197 71048 7 .034 18 196! Feb. .465 .486 .474 .475 .475 .481 20 28 21 23 Mar. 6 6 6 6 6 6 = B-V System of primary stds. DATE V B-V System of 10-year stds. + 01468 .470 .479 .469 6.958 UB 61 Hf 83683 Systeni of primary strls. DATE 1960 Jan. = 6 .652 2 B-V System of 10-year stds. Wt. 1960 Jan. Feb. V 6 10 24 23 31 4 9 12 7 7 7 7 7 7 7.030 - 7037 7 .033 +0474 .478 7 .021 .472 7 .041 .466 7 7 7 7 7 7 7 7 7 .029 .472 .032 .031 .032 .033 .025 .466 .183 .475 .469 .478 .037 .04-1 .047 .469 .4-62 .470 .042 .4-75 .033 .043 .062 .039 .471 .467 .450 .483 .031 .040 7.027 .459 .484 +0.487 mean 7 .037 +0 .471 7 7 7 7 7 7 7 Table V. Observations of Comparison Stars Contd FID 128596 NA 61 V B-V V System of DATE 1 primary stds. NB 61 B-V DATE 960 1 28 7o464 Feb. 1 7. 7 .470 21 7 .474 23 7 .480 Mar. 15 7 .473 17 7 .481 18 7 .480 19 7.479 21 7.483 30 7 .483 Apr. 3 7 .492 jan. 1961 Feb. Mar. Apr. +0o651 * 645 .660 .641 .646 .646 .647 .650 .680 .657 .665 2 1 1 1 2 2 3 3 2 2 1 7fl467 7.468 7.465 7.481 7.474 7.475 7 .465 7 .487 7 .489 7.488 7.498 -H065l .650 .660 961 Apr. 7 .454 7.505 7 .459 7 .508 7 .538 7 .494 7 .480 7.480 .667 .652 .634 .656 .644 .643 .634 +0.652 NB 61 = 0 2 1 2 2 2 mean 7 .485 +0 .650 1961 Feb. DATE Apr. DATE B-V Mar. 10-year stcls.. Apr. 1960 Feb. Mar. Apr. 1961 Feb. Mar. 17 21 23 15 17 18 19 21 30 3 8 22 I 23 31 Apr. 9 6 188 6.201 6.191 6.185 6.180 6.202 6.201 6.220 6 .208 6 .216 6 6 6 6 6 6 .202 .180 .234 .204 .218 .195 1 0457 .450 .155 .469 .178 .450 .460 .488 .457 .469 .487 .464 .474 .438 .450 .449 1 2 1 2 2 3 3 2 2 1 2 1 2 2 2 2 61186 6.192 6.192 6.186 6.174 6.187 6 .209 6 .226 6.213 6.222 6 .197 6.190 6.227 6.200 6.212 6 .201 Vt. 2 8o099 8 .076 8.092 8 .086 8.106 8 .099 8 .092 8.076 8.083 6203 H- 01462 .450 .453 .476 .484 .449 .461 .463 .459 .473 24 23 31 4 9 12 0547 .545 .543 .558 .543 .533 .547 .537 O .555 Vt. 4 3 3 3 3 3 1 2 3 B-V System of 1 0-year stds. 0545 .536 543 .544 .542 .547 .542 .543 8099 8.071 8 .079 8 .094 8.102 8 .093 8 .085 8.082 8 .080 +0.554 mean 8 .088 +0.544 BSystens of I 0-wear stris. 11042 1 .056 1 .036 1 .032 1 .040 1 .022 -31 .047 Wt. 3 3 3 2 4 2 3 71781 7.799 7 .814 7 .799 7 .793 7.792 7.796 mean 7 .796 = i042 1 .042 1 .03.5 1 .046 1 .035 1 .028 +1 .046 + + 1 .039 Hf 129271 V B-V System of primary stds. DATE 0.461 HD 86898 - NA 62 + V B-V 7794 7.791 7 .818 7 .805 7 .800 7.786 7.799 Qn455 Hi 87176 primary stds. 15 B-V System of I O-vear stcls. System of System of Wt. 0456 LB 62 1961 Feb. V 6 8 15 24 23 31 4 9 12 V RD 128429 B-V System of primary stds. - B-V System of prilnary stds. DATE .646 .651 .655 .659 .669 2 2 6i206 LA 62 .652 .665 .643 .630 .653 .643 .658 .640 +0.651 V 12 .639 .653 7 .454 7 .500 7 .469 7.501 7.534 7.488 7.486 7.477 V mean 6 .201 Mat. 6 8 22 1 23 31 9 12 B-V System of primary stds. V System of I O-vear stds. Wt. Hf 128429 V Wt. B-V System of I O-year stds. 1961 Feb. .178 .460 .471 .437 .465 .455 Mar. Apr. 198 8 10 15 22 1 23 9 12 81058 8.052 8 .063 8.021 8 .070 8.051 8 .041 8.058 - 01837 .817 .843 .812 .842 .815 .805 0.811 2 1 2 1 2 2 1 2 8053 8.045 8.050 - 0o828 .811 .843 .808 .839 8.031 8 .063 8 .047 8 .047 8.055 30.810 I Isean 8 .051 +0.823 .814 .811 tudes and colors was formed foi each len-Year Standard using only the nights when at least 12 Tencrc observed: these averages ace Year Standards given with theic mean errors in Table VI. The de viations of iodi idoal observations of the Ten-Year Standarrls from these averages s crc computed. The weighted means of these di’s iations ci e fornied fm t’ach night gis cii in the last tso colouins of Table IV and added to all tIme observations of the TenYear Standa! ds and conipam ison stars observed that night. The magnitotles arid colors corrected in this way are given in Tables IV and V io the fifth and sixth columns for each star. These are the values which can be considered as deterusinerl by coin lfl5O0 with the mean uiagnitudcs and colors of the Ten-Year Standards. These magnitudes and colors will henceforth be considered to he reduced to the system of the ‘lcn-Ycar Standards. nights when the extinction was determined. aQ,i in this equation was replaced hy the mean was determined. error with which From equations 25 and 26 it can be con cinded, that the highest accnracy of photometric ob servations is obtained when all the stars are observed at the same, fairly high. altitude, except for the few standard stars observed at different altitudes for de ternuning the extinction coefficient. the Q1 B. Rr.s u/ti for J’eo-Yr ar Standardc and Comparison stars. The observations of the Ten-Year Standards are listed in l’able IV. On1 those nights are included for sshich at least 4 Ten - Year Standards are ob served. Floweser, in forming a e r a g e s and for furthei discussion onlr the nights with observations of at least 1 2 Ten-Year Standards were used. Obser vations of comparison stars are listed in Table V. ‘Ihe values V. B-V and their weiuht. given in the first three columns for each star in Tables IV and V. were computed from equations 3 . 4 and 27, rcspeetis ely, using the transformation co efhcients clerivetl Irom the observations of primary standard stas s. ‘l’he seiglited moean of these magni The weighted mean magnitudes and colors of the Ten-Year Standards are gis en in Table IV for each season: they arc averages of x aloes reduced to the system of Ten-Year Siantlards. These mean val ties were miser1 for computing the mean blue magni- TABLE VI. Magnitudes and Colors of Standard and Comparison Stars TEN-YEAR STANDARDS in system of primary standards RD V Star B-V mn.e. 58946 76943 82885 89449 90839 102870 109358 113139 114710 115043 115617 117176 120136 121370 128167 121156 p Geom 10 11 40 36 /3 UMa LMi Leo UMaA Vir /3 CVn 78 UMa /3 Coni 61 Vir 70 Vir r Boo zj Boo a Boo 5 Boo 4.181 3.973 --0T002 .002 .002 .001 .002 .002 .001 .002 .001 .002 .003 .002 .002 .002 .002 s-0902 5.409 4.794 4.837 3.609 4.257 4.929 4.252 6.827 4.742 4.976 4.496 2.683 4.463 4.548 n m.c. 0.315 .434 .769 .449 .518 .550 .587 .366 .572 .604 .709 .713 .479 .583 .363 +0.765 Ot’OOl .001 .001 .001 .001 .001 .001 .001 .001 .001 .002 .001 .002 .001 .001 r000l 61 64 64 66 67 62 66 67 66 66 48 66 67 65 61 57 n 11 0 11 11 10 11 11 COMPARISON STARS in system of Ten-Year Standards RD 55052 50692 61997 60914 58551 58899 63772 Star UA 53 =48 Gem UB 53 UA 54 UB 54 UA’54 EJB’54 UA 55 V B-V 5.859 –OTOO$ 0.370 me. .0002 7.129 6.964 7,160 6.545 8.953 .002 .003 .003 .004 .002 0.411 1 .048 0.925 0.460 0.350 .002 .003 .003 .003 .004 sin. e. 199 TABLE VI. Magnitudes and Colors of Standard and Comparison Stars Cont’d Star 1JB 55 VA 56=gs Cnc. UB 56= t Cit VA 57=35 Cit UB 57 39 Cnc VA 58 UB 58 UA 59 UB 59 VA 60 UB 60 VA 61 UB 61 VA 62 UB 62 NA53 NA 54 NB54 NA55 NB 55 NA 56 NB 56 NA 57 NB 57 NA 58 NB 58=95 Vir NA 59 NB 59A Vii NA 60 NB 60 NA 61=NB 62 NB 61 NA 62 HI 62720 67228 68256 72779 73665 75470 75974 79096 79499 81563 82140 83683 83509 87176 86898 116681 118704 118705 120186 119869 119638 121111 121608 121496 123453 123255 124401 125337 126251 126766 128596 128429 129271 7.409 5.304 4.674 6384 6.392 6.720 6.684 6306 8.315 8.280 8.377 6.968 7.037 8.088 7.796 ni.c. –0.002 .003 .003 .002 .003 .002 .003 .002 .003 .002 .002 .002 .002 .004 .004 8.494 9.171 7.714 8.897 6.912 7.691 7.684 6.846 7.632 5.464 6.984 4315 6.491 6.652 7.485 6.201 8.051 .004 .004 .004 .006 .003 .004 .003 .004 .003 .002 .003 .003 .003 .002 .004 .004 –0.003 V B-V 0.699 0.731 0.446 0.478 0.635 0.473 0.471 0.544 1 .039 zn.c. –0.004 .002 .003 .002 .002 .002 .002 .002 .002 .003 .002 .002 .002 .002 .002 0.541 0.461 0346 0.459 0.543 0.549 0.541 0.470 0 376 0.343 1 .017 0.131 0.417 0.423 0.650 0.461 +0.823 .002 .003 .002 .005 .003 .002 .004 .003 .003 .002 .003 .002 .001 .002 .002 .003 –0.005 0.381 0.635 0330 0.678 0.977 0.863 n ii 17 15 15 13 21 20 20 20 14 14 21 21 9 7 0 9 9 8 8 12 12 11 7 15 11 20 18 16 16 19 17 8 OTHER STARS in system of primary standards RD 12929 18331 55156 62345 61421 69221 69994 73344 73666 75528 76508 79009 81361 81581 83343 84722 Star Ari HR 875 49 Gem K Oem a CMI a 40 inc 54 Cnc. V 2.017 5.171 7.068 3574 0.384 7.630 5.830 6.899 6.610 6.376 6.172 6.886 6.288 7.754 6.641 6.450 B-V +1.137 +0.079 +0.036 +0.931 +0.418 -j 0.948 -i-1.134 40542 +0.001 +0.636 + 1.002 +0.062 +0.966 +0.308 +0.438 +0.428 n 11 11 3 38 39 5 3 10 41 10 9 9 7 7 16 15 HI Star V 87777 8.400 110379-80 y VirAB 2.749 114449 7.614 116658 a Vii’ 0.994: 121325 6.188 121865 7.047 121981 6.957 124897 a Boo -0.039 126660 J Boo 4.047 128752 6.729 128986 6.982 129157 8.410 130109 109 Vii 3302 134083 45 Boo 4.929 * 200 Eclipsing variable B-V +0378 -1.0.353 +0.403 -0.227 -1-0326 +0.978 -I 0.997 -11.227 +0.499 +1.005 + 1.631 +0.867 -0.009 +0.429 n 9 35 4 40 7 2 2 34 28 11 5 8 29 25 955 56 57 58 59 60 6! Fjc’ure 5. The yearly mean blue magnitudes of the Ten-Year Standard stars. I’eiv point is based on 5 to 13 n igli Is. J7 e vertical lines indicate mean errors. 201 deriving the improved values. The corrections de rived from observations in different years and with different multiplier tubes are in good agreement. The improved values given in Table VII were obtained after finishing all the reductions of the ob servations of the present program. Therefore all the values of the transformation coefficients, the mean errors of single observations and the magnitudes and colors of Ten-Year Standards and comparison stars given in this paper are based on the data for primary standard stars given by Johnson and Harris 7. tudes which are plotted in Figure 5. Examining this figure, and also the nightly values given in Table IV, we can see that there seems to be no variability in the Ten-Year Standards which can not be ex plained by the errors of observations. For none of these stars does the r.m.s deviation of mean seasonal values from the final mean value exceed –11009. The weighted mean magnitudes and colors of the comparison stars, reduced to the system of TenYear Standards, are given with their mean errors in Table VI. The last column in this table gives the number, n, of nights included in forming the aver age. Table VI also contains the weighted mean mag nitudes and colors, not reduced to the system of TenYear Standards, for some other stars which were observed occasionally in this program. Most of these stars were candidates for comparison stars or TenYear Standards which were later rejected. C. Improved Magnitudes and Colors for Primary Standards of the UBV System. The deviations, 8 v and 6 B-V , of observed magnitudes and colors of primary standard stars from the catalogue values were used for improving these last values. Only those 32 nights were used on which at least 6 different primary standard stars were observed and night1 extinction coefficients were determined. The mean 8 v computed by assuming Q2 = -0.002 and the mean 6 B-V were computed for every star; let us denote these mean values by 8 v and 8 B-V The values 8 V and were averaged for the stars B-V /3 Cnc, ie Hya, a Ser, /3 Lib, CrB and r Her; these average values are denoted by 8 and 8 . The _80 quantities . v = 8 y B-V = v and 8 B-V are now treated as corrections BV which should be added to the magnitudes and colors given by Johnson and Harris 7. These corrections and also the corrected magnitudes and colors are given in Table VII, together with their mean errors computed from the scatter of values 6 v and 8 u-v The mean magnitude and mean color of stars de noted as primary standards by Johnson and Harris remain, of course, unchanged. The last column of Table VII gives the number of observations used for IV. Magnitudes and Colors of Uranus and Neptune A. Color Indices of Uranus and Neptune. The yel low magnitudes and color indices of Uranus and Neptune are given in Table VIII. They were derived exactly in the same way as the values for the com parison stars in Table V and both of these tables have the same arrangement. The energy distribution in the spectra of Uranus and Neptune differs strongly from the energy dis tribution in spectra of color type stars. H. L. John son in Progress Report from 1955 writes: "There has always been some doubt whether the blue-yellow color index B-V that has been deter mined from the standard U B V system filters, satis factorily represents the planetary gradient in the blue filter spectral region. We would, in fact, expect the gradient determined from the ordinary B-V to be too blue because of the methane absorption in the yellow region. This is an important matter since this gradient enters into both the extinction and systemic re ductions. We have, therefore, made color measures using two filters formed by splitting from the spec tral standpoint the blue filter into two filters. The exact procedure that we used is the following: We selected a yellow-transmitting sharp cut-off filter glass whose cut-off wavelength lies approximately in the center of the blue filter. During these special ob servations of the planets and standard stars, deflec tions were taken with the standard blue filter and with the standard blue filter plus the above yellow filter. By subtraction, we obtain deflections corres Table VII. Improved Magnitudes and Colors for Primary Standards of the UBV System ,Hya V 3Th34 –01’002 4.299 .002 Star 8 Cnc . B-V y -1- 011014 - 9OLeoAB 5.947 .003 HR 4550 /3 Lib 6.448 2.608 .003 .003 - a Ser 2.640 .002 - CrB rHer 4.144 3.895 .002 .003 + - + 1477 -0.195 -0.159 + 0.753 .001 .002 .010 .006 .005 202 B-V –01’OOl .001 .001 0U1003 .000 36 37 27 30 + .001 .002 28 29 - -0.109 + 1.170 .002 .002 .002 + 1.231 .001 + .001 28 -0.151 .002 + .001 29 - TABLE VIII. Two-color Observations of Uranus and Neptune Uncorrected for distance, phase and oblateness effects Uranus Uranus B-V System of primary stds. DATE Wt. DATE Oct. 30 5t518 Nov. 6 5 .520 Apr. +0568 .551 2 2 5.537 5.563 5 .572 5 .577 5 .539 5.537 5 .545 5 .584 5 .586 .558 544 .554 .533 .532 .532 .528 .535 .543 2 3 3 2 2 3 2 2 11 5 .502 12 5 .520 20 5 .547 21 5 .566 25 5 .546 4 5 .594 May Oct. 27 5 .537 28 5 .541 30 5 .528 31 5 .519 Nov. 4 5 .536 16 5 .501 20 5.501 19 5 .507 27 5 .480 .520 .534 .535 .537 .532 .535 .523 .523 .523 .527 .531 .534 .528 .532 .529 4 4 4 3 2 3 3 2 3 3 5 4 4 5 5556 5 .567 +0534 .533 5 .597 .538 5 14 19 5 18 5 .413 5 .405 5 .440 5 .454 5 .433 5 .474 5 .487 5.511 5 .550 .541 .549 .523 .518 .527 .523 .532 .529 .527 4 4 4 5 2 4 3 4 2 5 5 5 5 5 1957 Mar. 23 24 26 31 5 Apr. 9 5 .470 5.486 5 .482 5 .499 5 .496 5.519 .525 .533 .526 .529 .516 .517 5 4 1 1 4 2 1954 Feb. 17 23 24 28 Mar. 30 1 6 22 26 1955 Apr. 1956 Jan. Feb. 17 3 10 14 Mar. Apr. Wt. 1957 1953 Apr. B-V System of primary stds. B-V V System of 10-year stds. V B-V V System of 10-year stds. V May 15 5’525 16 5 .531 19 5 .524 20 5 .529 3 5.568 5 5 .584 +0’521 .524 .525 .523 .523 .497 2 2 1 2 3 1 5522 +0’525 5.571 5 .573 .522 .500 5 .394 5.411 5 .413 5 .393 5 .391 5 .388 5.393 5 .396 5 .407 5 .410 .523 .513 .507 .527 .518 .521 .531 .535 .526 .512 4 2 3 5 4 5 5 5 2 4 5 .426 5.416 5 .417 .527 .515 .523 5 .400 5 .403 5.398 5 .412 5 .409 5 .433 .523 .526 .532 .527 .536 .526 5 .407 5.408 5 .400 5 .380 5 .390 5 .414 5.411 5 .400 5 .412 5 .418 5 .442 5 .422 5 .422 5 .434 5 .435 5 .436 5 .476 .526 .522 .523 .531 .532 .520 .530 .542 .537 .533 .524 .527 .549 .533 .529 .524 .515 4 3 4 1 3 2 2 1 3 3 2 1 3 1 3 4 3 5.411 .522 5 .378 .536 5 .405 5.412 .520 .528 5 5 5 5 5 5 5 5 5 .413 .412 .427 .430 .428 .427 .440 .442 .468 .544 .539 .523 .528 .524 .535 .531 .528 .521 5 .384 5 .387 5 .389 5.441 5 .415 5 .430 5 .426 5.456 .525 .540 .538 .512 .538 .517 .510 +0.531 3 3 3 3 3 2 2 3 5 .379 5 .380 5 .397 5.437 5 .409 5 .423 .516 .534 .524 .511 .553 .512 5.453 +0.530 1959 5 12 24 29 31 4 Feb. 5 26 Mar. 1 3 Jan. .421 .403 .431 .444 .491 .538 .551 .522 .514 .532 5 .490 5.504 5 .546 .524 .531 .536 5 .469 5 .491 .527 .527 1960 Jan. 20 28 29 Feb. 17 18 21 23 25 Mar. 15 17 18 19 21 26 30 Apr. 3 6 1961 Feb. 8 10 24 Mar. 23 31 4 Apr. 8 12 203 TABLE VIII. Two-color Observations of Uranus and Neptune Cont’d Uncorrected for distance, phase and oblateness effects Neptune Neptune V primary stds. DATE V T B-7 Systetn of B-V System of primary stds. DATE 10-year stds. Nt. V B-V Systens of B-V System of 10-year stds. Wt. 1957 1954 May Jun. 31 2 12 14 16 17 71’901 7 .912 7.916 7 .911 7 .881 7.913 –01404 2 .396 .396 .410 .412 .398 2 1 2 2 1 21 25 4 20 7 .864 7.877 7 .899 7.933 .406 .391 .392 .379 3 2 2 2 7’865 -2 02402 7 .902 .395 17 19 20 3 Feb. 10 Mar. 19 Apr .5 18 1 957 Mar. 23 24 28 Apr. 5 6 1 May 3 7 .944 7 .935 7 .922 7 .921 7 .911 7.896 7.85’.3 7.884 .398 .392 .407 .411 .389 .401 .427 .381 2 2 2 2 2 4 2 0 7 .952 1955 Apr. May Jun. 1956 Jan. 7 .869 7 .862 7 .928 7 .870 7 .852 7 .844 7.859 .415 .410 .393 .402 .393 .380 -70.412 1959 Jan. Feb. 2 2 2 2 4 1 2 Mar. 1 960 Jan. Feb. .395 Mar. 7 .919 7 .902 7.899 7 .846 7.880 .413 .388 .393 .429 .390 7 .868 7 .867 .417 .404 7 .833 7.862 .376 –0.411 1960 Apr. 1961 Mar. .Apr. H 0’7 21 for Uranus. and 28 02628 for Neptune: 29 1 7’t’069 –O’396 12 24 4 5 28 1 3 7 .942 7.925 7 .894 7.902 7.890 7 .872 7.854 .416 2 7 .947 .418 .414 .429 .407 .409 .402 .402 2 1 0 2 2 2 7 .929 7 .909 7.907 7.884 7 .874 7.877 .430 .434 .408 .410 .412 .416 28 21 23 15 17 18 19 21 30 7 .910 7 .877 7 .860 7 .845 7 .845 7 .852 7 .854 7.854 7 .846 .422 .424 .436 .438 .429 .431 .437 .468 .432 2 1 1 2 2 3 3 2 2 7 .913 7 .868 7 .861 7 .846 7 .839 7 .837 7 .862 7.860 7 .851 .422 .424 .434 .445 .435 .430 .438 .443 .434 3 7 .854 .442 I 7 .860 .446 1 8 23 31 8 12 7 .897 7 .875 7 .880 7 .856 7 .831 7.849 .450 .428 .419 .422 .421 --0 .424 2 1 2 2 1 2 7 7 7 7 .890 .863 .876 .850 .447 .426 .418 .437 7.846 p0.423 the further papers of thus series. B. Obsereatious of Plonet.s in Blue Color. The brightness of Uranus and Neptune in blue color is 5 peejat ubservatious uf Lrauus auct Neptune at the luw altitudes of 20 tu 250 were made with the blue filter on four nights in 1961 fur determining what values uf colorindices woutd be necessary fur correcting the observations tor eulor-tlepeudessee ef extinction. ‘The color indices B-V 0.32 -t-O’et 1 use. fur Uranus and B-V’ - t. 0v50 tttt5 in .e . for iN eps one were obtained. Taking into ac count the luw aeenraev of these values they are in satis factory agreement with Johnson’s gradient euler-indices. * B-V –01396 color rlependence of extinction and reduced to the BY system using the rlirectly observerl color-indices given in the same table. The discussion of data con tained in Table VIII will therefore he postponed to Johnson are ‘ 71’869 cision antI therefore these magnitudes cannot be properly transformed to the BY systessi. The yellow magnitudes given in Table VIII were corrected for ponding to the amount of light cooling through the two halves of the hlue filter. We can then compute the planetary gradient in the blue filter region corn parerl with stars observed in the sanw spectral region. This proceelsire gives considerably redder values of B-V than the standard U B V filters. The new alues learl to snore accorrlant results especially for I urge hour angles.’’ The new values of color-indices obtained by I B-V 30 they are called henceforth the gradient color indices antI are used in the transformation of the blue triag nitudes in all subsequent reductions. Similar gradient color indices for transforming yellow magnitudes have not yet been rleterminerl with satisfactory pre 2&4 Since the eat thi. sun, antI planets change their relative positions. the measured brightness is cor tected to some arbitrary fixed distance. The oppo sition position for 1 950 has been used for this pur pose. FIle correction is rletermined according to the formula coutpai ccl with that of conq arison stars at least once a week os ci a period of se eral months around each opposition. The blue filter is the same as that used for tss o-color observations. The comparison of each planet with two comparison stars takes an av ‘rage of about 80 minutes: the duration of such ob servations should not exceed I … hours. All obsers atioris are made with a diaphragm 48 seeonrls of ate in diameter 2mm at the casse grainian focus of the 21 -inch telescope . Therefore the satellites Mit anna . Arid, Limbriel and Triton are abs ays measurerl together with theit respectis planets. All the photometric rlata for planets given in this papr’t refer to planets nteasured together with the aforementioned satellites. Ut anus’ satellites Titania ann Oberon, shich are occasionally within the cliaphragnt together. may increase the planet’s brightuess by about 0.0008: rlus fact is neglected in the present discussion. Denoting by A the measure for comparison star A, by B that for comparison star B, by P that for planet and by S the deflection for radioactis e standard soutce, we can reptesent a single observation as: log K 5log k logs logo 30 . where K is the distance of the planet from the srtn. _ is the distance of the planet front the earth and K,, antI , are the arbitrary fixed distances to which the corrections ate made : their values are given by Hat die and Gielas 3 . The distance corrections coin 1nttenl frotti equation 30 are given in the 9th cotutnrt of fables IX and N. ‘l’be 7th antI 8th columns of these tables give M, and the nhiflerential extinction coriection. the cot t eetiott for the color rlependetice 0f extinction. Q52Mx B-V . respectively. ‘I he s aloes Q5J 02033 and the mean seasonal values of are mtsed, except for the year 1961 ss lien the use is niade of the nightly s allies of this coefficient. The differ ence B-V is defined as SABABA...BA.AYA...P/ABAB&JjAS .5xB iOxP :ixB B-V B-V star A ‘ 31 ss het e fot the gradient eolm index B-V ‘ the values gis en by equations 28 antI 29 are tisecl. The dif ference in air mass is eomptttetl front the approxiittate formula A total of 10 t neasut es of tile planet, 10 measures of star B, and 21 measures of star A are made. Each measure consist’, of two deflection’, separated by the deflection for sky background. In the middle of each measurement of sky background the hour angle is read on the telescope’s setting circle. The standard time is t earl during the 11th measure of star A. All obsers ations of planets in blue color tnade front January 1 9.53 to June 1961 are listed in Tables TX and N. The first eoluntn gives the Unix ersal ‘lime at the tuidrlle of the observation with an ac curacy of a hundredth of a rlay . The second column gives the hour angle of the planet at the middle of the obset ation E denotes East. V West . The 3t d, 4th annl 5th columns give the amplifiers gain usetl sshett obsers ing the planet. the comparison star A ann comparison star B, respectively. The first num ber in each of these columns gis es the setting of the 2.5 magnitude gain steps, the second number that of the 0.5 utagnitude steps. They are given to permit a future rediseussion of the effects of possible nonI inearitv of the aniplifiet antI errors in its calibra tion. The 6th column of Tables IX anti X gives tile number of measut es of the planet. which is usually 10. ‘1 he niunher is smaller than 10 when the obsers ations were stopped by elourls or when the planet eoulrl he obsers cr1 only at low altitude: in this latter case thit’ met ease in the number of measures ss otilnl ntean that the planet is observed at still loss er altitudes sshieht ss mild only rerluce the accuracy. - M planet AsinH ---- M star A Beosli CM 32 where II is the mean houi angle of the planet and star A, positive westward, M is the mean air mass of the planet ann star A, while A B C - sina star A plitnet 8 planet sin 8 star A sin8 star A 8 ne eos 4 cos ‘‘ eos 4 sin , 33 34 sin 4 eos3: 35 here antI 8 are tight ascension and declination, 8 is the mean declination of the planet and star A and 4 is geographic latititnle of the observatory. 4 he cot reetions gis en itt thin’ 7th and 8th coluntns of ‘fables IX antI N refer to the middle of the observation. Sintilar corrections are. howev er. eoittputerl for es cry mnteasurentenr of the planet. The individual measures correeterl for extinction are ntserl fot eottupuung the nightly mean value of tlte rttagnitutche nlifferenee betss ecu tite planet antI comparison 205 Z 0 ci 0 *1 50’ H 0 ‘00 - is SM H 0 - 0000H SOSOSOHHH .5OtOHHHH SM + H 0’ 15 H SM 5.. 55 H H ‘00-0 5’ H ‘0 55 0 - 5050505050 5.. 0 - 0’ SM L 0’ SM H H H H H H H H H H5’ H H H H H H H H H H H HSi 5055 H Si 50 H SM - SM 5.. 55 SM - 5.. 5’ -0 ‘0 ‘0 - 0’ 05005... 0 SM 5’ ‘0 SM HHHHH ‘0 SM t tO H 0 5. - SM to H 0 ‘0-0 0’SJS i . to to 50 50HH HHH to 050S0 tOH 5 0P-0-0 0’O"-0 0’- 00 E-SM Ho 0’- Sos SiHHHHH5..JH OHH 000HH 000HLOHOHHO OHH50OHOHHOO H H HHH HtsH HHHHHHH HH 00H00000000’0’0’H00’H 00’OO’O 5.. 5.. 5.. 5.. 5.. SM SM SM SM SM - - - - - s_i 5.05’ 5 H H H H H 00000 5-’ H H H H H H H H H H H H H H H H H H H H H 0 OSM 0055000 H 05000000 05.. 000000 H OH 0’O 1111111111111 I III I IllIl 11111 00000 I II lIlt I I I to0000050H000Si55 0000- to 505O 505550 11111 55 5’ IIIIIIIIIII ++++++++++++++++++ SM SM 4 5 555’ H H H H to 5 5..’ SM SM SM SM 0’ 500 05 05’ 000 t00’tOO 0’ - -0 0’ H 45 I I I I I I I I I I I I I I I II I II I I II I H H HH H HH H HHH H HH H H H H H H H H H H H H H HH H SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM ‘.1s SM SM SM SM SM SM SM SM 5... H 0 5 0’ 5 H 70 55 0 0’-0 0’ -50 0".0 5 ….. 00555 H HHHHHHHHHHHHHHHHHHH SM 45 5..0 5.0 SM ‘M SM SM SM SM SM SM 00005’ OH---H O -Si00’- I I 0’ I 0’ 50 0’ 1+1+1+1+1+ 5. 5’ 5’ 5’. 5’ +I+I+I+I+I+I+J+I+I+I+I++t+I+I+I+I+P+I+J+I+I+t+I+II+I+l+I+ 0’ 0’ 0 SM SM SM - Us SM S..’ 5’ 5’ SM 5’ 50 Us 5’ 5 II - SM 0’ II SM SM Us SM 515 ++++++++++++++++++++++++++++++ HHHHHHHHHHHHHHHHHHHHHHHHHHHHHH 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ I I I I 11111 505050 50505.05.. I I I HHHHH - - - 0’ 0’ ….. - I I I I I I I I I I I I I I I I I I I I I I I I I III 5.05.0’ 5.05.0 I I 555.0 ‘.0 ++++++ H H HHHHHH 1+ 1+ s_0 1+1+1+1+1+1+ I I 5.0 5 505050505’ +++ +++ +++++++++++++ H HHH HHHHHHH 0 H H H H H H H 0’H H H 0’O’H I I I I + ++++++ - --50lo.t5_ I I I I I I I I I HHHHHHHHHHHHHH00000 11111 III II 111111111111 I I I El I 5050505050505050705570505055505050505050501570505050505050 HHHHHHOOOOOOOOO0OOOOOOOO0OO0OH El 11111111111111111 SD5J5’ HHHHHHHHHHHHHHSiS0505O I III I I I I I I I I II I I I I I I I I I I I I HIH H H H H H H H H H H - H H H H H H H H H H H H H H H H H H HIH H H H H H H H H H H H H H H H H H H 15SM 0’5J50’0’U,SMSM O’SMO’0’0’SMSM 0’0’0’0’0’S15SMSMSM 0-0’ SM -. .0J0 ‘ 0’ 00 - -0--DO CO H H 0 - 0" 05’ 05 - 000’ 0 H 111111111111 III I 5015’ 5’. -0 loSs,, --- to 505050505050505050505550 11111 II 0’SM SM 0’ 0’ 0’SM 0’ 0’ 0’ 0-SM 0’SM SM SM SM 0 HH H ‘0 0 5.0 H 55 ‘-05.050 0 05005050-0 5 -Thi 00H’0O II + I to5’5S I + + ‘0 0000000 0 0’0 ‘0 ‘0 ‘0 ‘ 0 H 5.0 - SM 0’ 0’ 0 ‘0 H H 50 5O 5 +I+l+I+l+I+I+I+I+I+l+I+I+l+I+I+14-I+I 5.05.0 55 +++++ 0’0 0 O’0 0’ OOHOH H III I I 505’Jt -i--O-0’00" HHHHHHHOHHHOCOH00000 5050505050 tO’ 507055505 CCC SDSDSDSDSDSDSDSDSDSDDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSSD H H H H H H H H H H H H H H H H H H H H I-’ H 5-’ H H H H H H H SDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDDSDC H H H H H H H H H H H H H H H H H H H CH P’’. CD 0 P C r * HHHHH C-’C/NHH -0 0’C-, 4’- C-.’C 0- 0’ H 0 00-’, C-fl HHHHHHHHHHHHHH 0’ 000-;- C-fl 0’C-’ C-’ C/ C/u 4’ 00’ H H H H H H NNH H HH N NH NN NNN NC-’C-’C-’ C/ut’ 00 C-fl CC- 0.’C N H ‘0-0-0 -000 C-00 N H ‘000’. 4’ N -0 C-s C-’ NNHH C/C/NNNHH Ho’.;- H;- O- C’C/ N 0;- -0C/ C/u C/u H C/u;- C/u ;- C/ 4’ - C/u-- ;C-.HC-flH-OH--00NH;--’, NN NC-.NNNHHHHHH OH 0 000000000000 OOH000H0HOOH 00 000 C-’ C/u C-. C/u C/u C/ C/u C/ C/ C/ C/ C/ C-. C/ C/ C/ C/ C/ C/u C/ C-. C-. C/u C/ C/u C/u C-. C/ C/u C/ C-’ C/u u C/u C-’ C/u C-. C/ C/ C/u C/u C-, C-, "C C-fl C-fl C-fl C-fl ‘CC-, C-, C-fl C-, C-, C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-, C-fl C-fl C-, C-, C-fl C-fl C-’ C-. C-. C-. C-. N N "C 4’4’- C-fl C-fl N C-’ C-’ C-’ C-’ H H C-, C-fl;- ;- ;C-fl C-, C-fl C-fl 4’- C-fl C-fl "C C-fl C-fl 4’ C, C-fl 4’-;- NNNNNNHHH C-’ N H 04’- C-’ N H O’0 0- C-.- 0’C-, HH C-’ N;- o ‘." 4’- N H 000000 N 0 H H H C-fl C-fl C-fl C-fl C-fl C-fl C-, C-fl C-fl C-, C-fl C-fl 4’-;-- 4’-;-- 4’-;-;- 4’-;-;- 4’-;- 4’-;-;- 4’-;- 4’-;-;- 4’- 4’-;-;- 4’-;C-fl C/u C/ C-. C-. C/u C/u C/ C/u C/u C/ C/u C-’ C/u C/u C-’ C-. C/ C/ C-’ C/u C/u C-’ C/u C-. C/u C-7’U C-fl C-fl C-fl C-fl C-, C-fl 4’- , C-fl C-, C-, C-fl C-fl CC-C’ 0’ CC-C-, C-,C’CO’ N N N C-. C-’ HH -00’ 0000 "C C-. C-fl H 0 HH ‘O’000 H HHHHHHHHHHHHHHHHHHH 0 0’0 000000000000000000 0’C-fl I ++ HHNHHHHHHHHHHH + +i+ + + + + .1. + + + 000 ‘0 ‘0 ‘0 ‘0 ‘0’O +++++I HH N 000’ 11111 ‘0’0’C III HNN4’C-’C - N C-fl -‘00 C-’ 0’- H 11111111111 III I +1 ++++ ++I II H 0- HNHH’CH’0-4’-NHH--1C-fl -. HHHH o;- 00 O-u-C 0000;- 000 I I I + 0ONH0ONHHC/NC/ 0OC-.NNN’.’NNH0000 OHOHOH0000H 0000 H H H H H H H H H I-’ H H H H H H H H H H H H H H H H 000000 H 0000 H 00 H 00 H H OH H OH 00 +++++++++++++++ HHHHHHHHHHHHHHH 000HOOHHOONOHHH II I I I 1111 I I II II Ill I 11111 II HHHHHHHHHHHH 0’-_---_]-_-_ 0000CtC000CO’C’C0000000HHHHH C-’ N N 00 H C/u;- 0’N C/4’- 0’- 0 0 H ON C-’ 4’-;- C-fl C-fl H H H H H H H 000 ‘0 H 0 00’;- 0 II II I I II I I I I II 1111111 11111 ‘0’C 0 ‘0’. ‘0’0 ‘0’. ‘0’. ‘0-..’. NNNNHNHHNNNNNN I HHHH HHH 0C-uHN-.O’C’CoC-o-.C/u-’Co’C-’C’o-C-,C/uco--.C-fl -0--u’. 1111111111111111 ‘000000 0--- ‘.J CC/u’o-D;- N -0 0 0 H 1111111111111111 HHHHHH ‘0’. C-’ OH ‘CC-, 0’. C/u C-n -0 C-’ C-’ I+I+I+I+I+I+I+I+I+I+l+I+I+I+l+I+I+I+l+l+I+I+I++I+l+ I+I+t+I+I+I+I+l+l+l+I+I+l+l+!+ C/u C/u C/u4’- N C-. C/u C/u C-’ C-. C/u C/u C/u N C-’ N C/u C-. N N N N C/u C/u C-’ C-’ C-’ C/u N C/u N C/u C/u C/u C/u N C-.u4’ N N N -0 C-. 4’- ;- 4’- 4’.;-;- 4’-4’---4’- ;- 4’- ;-;-;- 4’-;-;- ;-;- 4’- ;- ;-4’-;-;C-7’C-,C-,C-fl 0’C-fl 0’C-fl 0’0’0’0’C-n 0’0’C-fl 0’0’0’0’0C-0’-0’C-fl 0’C-fl 04’-;- 0’ 0-ON- C/u N;- 0 ‘DC-fl C/u’. N N CI C-u, C/."00’ 0’ NC-0 ;-4’- ;- ;- 4’-;0’C’ C’ 0’ 0’ 0’ N 0-u;- H H +I+I+l+I+I+l+I+l+l+l+I+I+l+ I+l+I+I+I+J+I+I+I+I+I+I+I+I+I+I++I+I+l+l+l+l+I+I+I+ 1+1+1+1+1+1+ C-. C-. C-’ C-. C-. N 4’- N C-’ N N N C/u N ++++++ HHHHHHHHHHHHHH "C 0 N N C-fl C-, C-fl C’ C-fl N 4’ C/u- C-. C-J C/u C/ C/ C-fl H H H H H H H H H H H H H H 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ III HHHHHHHHHHHHHH C-. C’ C-’ C/ C-’ C/u C-’ C/ C-. C-. C/ C/ C-. C/u III -0;- -;- ;- - ;-..o- C-., C-fl ;- C-ui;- C-fl C-fl ;- ;--;- ;--4- C-fl C-fl C-fl C-fl C-, C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-fl C-, C-fl "C C-fl C-fl III I I I I II II I I II I I II II 11111 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’.’ 0’ 0’ 0’ 0’.’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ II I U I I I I I II I I I I II NNNNNNNHHHHHHHHHH000000000 11111111111 III NNNNNNNNNNNNNN -0 -0 -0--- --0 -0- -0 -.0 -0 -0 --0- I 1111111111111111111111111 CDNNNNNNNNNNNNNNNuNNNNNNC-.C-’C/uC/C/ -.0 -. -0 -0 -0 -0 -0 --0 -.0 - -.0 -.000 000CC. 0 00000000 H I I I II I I I I I I I I I C/uC-.C/C/C/uC-. 4’ C-fl;-;- N N N 0- C-fl ;- C/ ‘0-u I I I I I I I I I I I I II HNHHHHHHHHHHNH ‘OO’0’0’0’0’0’0’0’0’0’0 0’. ‘OO’0’0’0’0’C’0’C’C’C’0 0-C 0;- "C C-,. 0;-;- 0’. -.0’ C-fl’C C-fl C-, C-fl C-, C-fl C-fl C-fl ‘C C-fl III I I I I I I I I I I I I I I I I I III I I I I I HIHHHHHHHHHHHHHHHHHHHHHHHHHH ;-I4’----;-;---;-;-;---;-;-;-;-;-;--4’-4’-;-;-;-4’0’0’00’0’0’---0’0’-----0-.-0---0 N N ‘0 "C 0’ H;- C/u N ‘0’C 0’- C/u 0’. N 0’..’ H 00’C N N C-us ut I I U I I I I I I I I I I I I I II I U I I I I I HIHHHHHHHHHHHHHHHHHHHHHHHHHH ‘0I’0’C’0’C’Cu’C’C’0’0’0’0’C’C’C’C’0’0’0’0’C’OC-0-0’C’0’0 ;-If-C/u;-;-;-;---;-;-;---4’-4’-;-;-;-;-;-4’-4’--C/u;-sus IH;- 0 C/u N N 0’ 0 C-’ N H 0’ C/u 0’ C/u C/u;- N C-fl-u;- H C". C-is C-fl "C C-fl s’C C-fl C-fl C-fl 1111 0’ 0’ 0’ 0-0’ 0’ II I NNNNNNNNNNNHHH ‘0’C’0’0’0’0’0’C’0’C’C’0’0’C 4’- ;- ;- ;- 4’-;- +++++++++++++++ +++++++++++ III I I I 111 00000HHHHHHNNNN 111111111111111 C/u C/u C/u C/u C-. DC- N C/u C/u C-. C/u C-’ C/u C/u C/u C/u C-’ C-. C-. C/u H H H H H H N N N N -.0-0--- -u - -0’-’-. -0- -0 C-fl C-fl ‘00’.’ 0’C/ 0’- H C/u 0’C/ C/u; I I III H H H H H H ‘0’. ‘0’CD ‘C’. ;- C-fl C-fl C-fl;-;- o;-u H’. CO CC0000000000000 HHHHHHHHHHHHHH HHHHHHHHHHHHHH ** *- C H --0 0 CD j CD CD’O . .Cn a H H H H H H Cu C’ H H H H 000 H H a’ CuHHHHHHH CuCuHHHHHHHHHHHH HHHHHHHHHHHH 0CuHH’.000en’.HH00-0HO0HH--CuP-CuHH H IS Cu IS Cu H H Cu C’ H en 0 H 0’ en ‘.0 Cu 0 Cu 0 en P-en en en P-en P-CuP-en en P- P- P- PPP-P-P-P-P-P-en PP-P-en en en en en en HCu 0 0’H 0’HCu 0-en 00 0’ Js-0-OP-en 0"0’.0’.0P-en H’.0 05’s 0 a’-.---i 00 H OH H HHHHHOHOH HH HCuCu H H H H 00 H OH 0000000 OH H 000 OH H OH H H H H H H H H H H H H 0’ H 0’ H Cu H IS Cu ZHt1t"I Cu a’ Cu P- Cu Cu Cu Cu Cu Cu Cu Cu Cu C’s en S’s Cn en en S’s C’s C’s Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cr en en en en en C’s en en en en en C’s en n en en en en en en en C’, C’s en 5,5 P- p- P- P- P- e0 Cu Cu Cu Cu Cu Cu Cu P- P H H H H en a’ en en en en en en H H en en en n - en en en en en H H H 0’ H H H H H - en en 0’ H en s’s en en ‘Os en P- en en en en p- .- P- P- P- P- en P- en en en en en en en en en en en en en s’s en en en en en en H H H H H H H a’ H H H H H a’ 0’ a’ a’ a’ a’ H a’ H H IS H H H Cu Cu Cu Cu H H H H H H H H H H en Cu P- P- P- P- P- P- P- P- P- P- P- P- P- P- P- P- P- P- P- P- p- p- is- - P- p- p- P- p- jr- 4r- P- p- p- p- p- p- p- P Cu P- P- - P- P- Cu Cu Cu Cu Cu Cu Cu Cu Cu P- P- P- P- Cu en en en en P- P- Cu Cu P- P- P- P e- +- P- P- P- P- en a’ en HHHHHH HH 000000 Sas 00 H I ++ I I + ++ H H H 00 H 0 H H o ‘a’ H H H H H H H I- H LoCus’, - HHHH HH H liii -I--I- en liii 11111111111111 ‘-0 0- Cu 0’ Cu 00 en 0 Cu H 0 H F-’ H H 0 H Cu H H H H H a’ a’ H Cu Cu -0 P- -u s’s -0 en en Cu C’s H ‘. HIS o Cu en 0 HIS II I+I+I+I+I+I+J+l+I+ - HHHH +++++++++++++++++++++++++++++++++++IIII II HHHHHHHH HHH HH H OO’0’00 a’a’a’a’a’enP-P4r-CuCuHHH HH H H H HCuHO’.0a’0CuP-’.Oa’P-HO0--P-CuHS’sa’O-0000P-H000HOHHP-a’0O II I I Cu Cu Cu Cu Cu Cu Cu Cu Cu H H H H H H H H H HHHHHHHHH 000-i0’ Cu HH H H H ++ Cu Cu Cu Cu HHHHHH en en en en 000000-0 0 en 00 en 0000 en en P- 00 en en en 000 H H 0 Cu en Cu C’s -o en - - en en Cu +++++++++++++++++++++++++++++++++++++++++ HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH en a’- en Cu en Cu Cu CuP-Cu Cu Cu Cu Cu Cu CuP-Cu Cu Cu Cu Cu Cu Cu CuP-P-Cu Cu Cu en P- e,s P-S’s P-P-CuP- P -0-’- HCuC’s o a’ C’s +++++++++ HHHHH ‘.0 ‘.0 ‘.0 H H H H H H en en en a’ H 0’ +++++++++ I’_ 0 C Cs. 0 CD si . lien en -0 I I I I I I I III I I I I II I II I I I I I I I Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu H + + H I HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH OHHHHHOHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHO H 0 Cu - 0000- -OH-’ P- a’ P- H en -u Cu’0 en 0 Cu H Cu P- H a’ 0en"s en H H 0 H 0’ 0 Cu P- P ‘- l+l+I+l+I+I+t+t+I+I+I+I+I+I+I+t+l+I+I+I+,+I+I+I+l+I+I+I+I+I+l+I+I+I+I+I+l+l+I+I+11– 1+ enena’a’P-CuCuCuCuCuCuCuCuCuCuCuCuCuCuCuCuCuCuCuCuCuP--P-P- 0 Cu H O + I I H H H en en en HHH a’ - en HH C’s ‘a’ o H -0 Cu en en en en en en en en en en en en Cr, en en en en en en en en en en en en en en en en en en en en en en en en en en en en HHHHHHHHHHHHHHHHHHHHHHOHHHHHHHHHOHHHHHHHO O en P- a’en H -J Cu H a’ HP-Cu-’ en en P- a’ a’Cu 0- 0 H 0 0 CuP- P- H a’ 0 ‘.0 sjs P-en Cu 05,5 H ‘0 Cu Cu I+1+1+ 1+1+ I+l+l+I+I+I-fI+I+I+I+I+I+I+I+I+I+t+l+I+I+t+I+I+I+I+I+I+I+I+l+I+I+I+J+l+I+I+I+P+I+I+ I+ HHH H Cu H H HH H HHCuHCuHHHH HCuH HHHHH HHHHH HCuP-HH HHH HCuHHHCu en +++++++++ HHHHHHHHH -0 - -i -o - - - - ++ HIS -0-0 H - +++++ ++++ ++ +++ +++++ +++4-+ +++++++ +++++++ ++ + H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H --.i-- --.----i----O -0-i--- ----O-- --0--0--i-i--- - -S ---------- - - HHHHHHHHH C’s C’s C’s C’s S’s en en en Cr, ++ H? en en +++++++++++++++++++++++++++++++++++++++++ HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en en I II II I H H H H H H H 00 I I I I I Cu Cu Cu Cu Cu Cu Cu Cu Cu - I en en en en en en en en I I C I I I I I Cu Cu Cu Cu Cu Cu Cu Cu Cu HHHHHHHHH HCuHHHHHHH ‘00’00 0 ‘0 Cu a’ PII I HHH -0-0-0 HHH en0a’ I I I I II I II I I CIII I I I II I I I II I I II I I I II I HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH 0 CD Cu Cu CD -0 0’ 0 III I CuICu Cu HIH CuIH P-Ia’-0 III I HIHH -iF- -0 HIHCu HIO0’ o I I II I I I I II III II II I II II I I I I I I I I I H H H H H H H H H H H H H H H H H H H H H Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu I I III C I I I II I I I I I I I I II I I I I II I I I I I I I I I I C Cu Cu Cu Cu Cu Cu Cu Cu P- P- P- p- P- P- P- P- P- P- P- P- P- P- P- P- P- P- P- P- - P- P- P- P- P- P- P- P- P- P- P- P ‘0’-0’0’0--0’-0’0’0000000000HHHHHHHHHHHHHH HHHH 000000 I I Cu Cu Cu H H H H Cu H Cu H 0’ Cu H Cu 0 I I Cu Cu Cu Cu H H H H Cu Cu H Cu Cu H H Cu I I I II I I I II I I I I II I II I I I I C I I I Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu Cu H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H IS H Cu Cu Cu Cu HP-Cu Cu P-P-Cu P-P-Cu Cu H Cu Cu Cu Cu Cu Cu Cu Cs H Cu Cu H Cu Cu Cu Cu H H H a’ H ‘.0 H ‘0-00 Cu ‘.0 en H - 0 ‘00 H ‘.0 Cu en H H H 00’-.i-- HP- ‘.0 00 I I III II I I II I II III I I I II I I I I I II I I I III II I II H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H -0 -0 -0-i--- -0-0-0- -0-0-0-0- -0-0-0-0-0-0-0-0-0-0-0-0-0-- -0-0-0-0-0-0-0-0-0-0 OHHHHHOHHHHHHHHHHHHCuHHHHHHHHHHHHHHHHHHHHH en 0 P- 0’ 0 H a’ H H -a’ 0 00’ a’P- 0 ‘0 en P-Cu HP- ‘0 H Cu 0 H Cu Cu 00’ H en en P- H a’ a’ H Cu H 0 + 0’. I H Cu I Cu CD H Ps CC 0 I I ‘.0k CuICu P-len I II HIH ‘OIsO ‘0I’0 -Th-i 0 H 0Sn H H CH O o 0 to 0 CD * .0’ 0 - ‘J U H-HHH ‘-0 tO DO DO H H a’ 5-5-ODODOHHHHH 5-DODOD-DO 0-1 H H 00- 03-05-OH O0-H 003- DO DO DO DO H H 5-. DO DO DO H a’fl H 0 0H H -55-. 0 - 5 HDOHHHDODOCs a’ 0 CO’0 0’ DO H DO - H 5J 0 - 0-0 0’0 0 _ - t O H - _ - - - - - - 5-fl ‘-fi UI H H5-fl a’UI5-0 a’- 000 0-C --D HtJHH H H Cs DO H DO DO DO DO DO DO DO DO DO DO DO DO t .tt ‘ … t L‘ 0’ 0’ 0’ 0’ a’ a’ a’ a’ 0’ 0’ a’ C’ 0’ a’ 0’ a’ a’ a’ a’ 5--. 5- 5-. 5- 5- 5- 5- 5- 5- 5- 5- 5- 5-. 5- 5-. 5-. 5-. 5-55-0 5- 5- 5-. 0’ 0’ a’ C’ a’ a’ C’ 0’ a’ C’ C’ a’ a’ a’ a’ a’ a’ C’ 0’ a’ a’ a’ C_. 5-05- 5- 5-05- 5- 5-. Srn. Ci 5-. 5-fl 5-fl 5-fl 5-fl 5-fl UI 5-fl 5-fl 5-fl 5-fl 51 5-. 5- 5-. 5-. 5-. 5-. 5- 5- 5-05-. 5-. 5-. 5-. 5-. 5- 5- 5- 5- 5. 5-. 5. 5-. a’ a’ 0’ 0’ 0’ a’ 0’ 0’ C’ C’ C’ C’ a’ a’ a’ a’ a’ a’ a’ a’ a’ a’ 5-fl 5-fl 5-fl 5-fl 5-fl 5-fl 51 5-fl 5-fl 51 5-fl 5 ‘00 ‘0 L.t ?0s to to 0’ to .n Co ts 0 HO 0Htoto - - - …__ a’a’a’0’a’o’ J t - - - - a’0’0-’a’a’a’a’a’ C . C - - - - - - t - - - 5 - - _ 5 0’ a’ 0’ a’ ts - - - - - H H H H H H H H H H H H H H 0 0000000 0 00000 HHHH 0000 fl - 0- H is - 00 +t+ + + + + + a’ a’- a’ - - 0 0 H + + + + + + + a’ 0 a’ a’ - a’ 00 HHHHHHHHHHHHHHH t… t. C’ -0 -10000 H H H 0000 OH - a’- DO ++++ 0 - -1 0’ 51 DO 0 5J +++++++++++++++ ‘000 0 ‘OO’0 00000 ‘-a 00 0 ‘0000 ‘00 ‘00 ‘0 ‘0’00 ‘0’-0 ‘-00 -0 OH’-0 t0 0 0 i’00 s ++++ I+I+I+I+J+I+I+I+I+I+I+I+t+I+I+ 1+1+1+1+ 5 DO DO Cs DO +-f-++++ ------- -----0 5HHHDOC DODOsHDOtsH -DO0 1+1+1+1+1+1+ I+l+I+I+I+l+l+I+ DODODODODOH DOH.OHHH ___ - - _ -_ UI I I I I I I I I C II CCCII HHHH5-.DO - 00 DO -1 DO 0 DO-C DO 5-o UI UI DO UI - -0 H 0’ 50’ ++++++++++++++++++++++ 5- F- 5- 5-b 5-. 5-. 5-. 5-. 5-b 5- 5- F- F- 5- F- 5-fl F- F- UI 5-J.’0 s-il ++++++++++C DO DO F- F- F- 5- 5‘0- H UI 5. H - UI - UI H H DO DO DO …. 5-. 5-. F H a’ CO H 5-0 00 - -05-. 5-fl + +++++++++ ++ ++++++++++ H H H H H H H H H H H H H H H H H H H H H H a’a’------- a’---a’--O-OHHH’OH DO’.05-. OH a’H O5-0030H’00H DOS a’ s-fl 000000000000 I CCI ‘-51 - 5fl I I 5-fl 5-i 5 5. 5- 5- DO 5-. a’- a’ a’ 5-fl 5-fl UI UI UI - 5-fl 5 ++++++++++ UI 510’ a’ DO UI 5-. UI’0 DO 5-0 H 0 ‘0 I IC I CCIII I 5-05--. 5- 5-05- 5-05-. 5-. 5- 5- 5- DO0DODO HHHHHHHHHHHH DO H UI a’UI - - 4e- H0 I+l+I+l+l+I-4-I+I+l+I+I+I+I+I+I+I+I+14-l+I+I+I+ 5-. 5- 5- 5-a 5- 5- 5- 5-. …-. 5- 5-. 5-. F- FC -1-0 -1-5 H H H H H H H H H H H II 11111 III DODOD 5-. UI - ++++++++ a’…0 5- 5-. 5- 5-i i F- F- F- F- F- F- F- F- F- F- F5. 5-. HHHHHHHHHHHHHHHHHHHHHH 0000000000000000000000 I - DO DO DO DO H DO 5-. 5-. 5-. 5-. 5-. 5- 5-. 5- 5-. 5- …-. C I C C HHHHHHHHH CI s 5. 5- 5-o - _ - 0- C0------- 003 tIll I I I I I C C a’ a’ a’ C’ a’ 00’ ICC II I C II -1 - -0-0 - -1 - - -1 - -0 -0-0---0-0---0--0 5-.DO DOs.HOOr O’0 03-’00H-- Oa"0ODOO5-h0 - - - - - - - - 4e- 1111111 C III H H H H H H H H H H H 51 UI 5-fl 515-11 ‘051 UI 5-115151 HHHHHHF-’HHHH DOHUI ODO DOF- H a’5J1 DO 1+1+1+1+ +l+t+l+lI+l+l+I+I+I+l+I+I+I+I+f+I+tI+I+ l+l+I+I+I+I+l+I+I+I+I+l Cs DO DOH0DODO HDODOHHHDOHHDODOD H DO H 1-5-1 +++++++++++++++ ++++ H H H H H H H H H H H H H H H H H H H 0000000000000000c00000 DODODODODODODODODODODOD -3 - - - - -0- - -3-0- 000000000000000 0000 + +++ ++++++++++ + +++++++ HHHHHHHHHHHHHHHHHHHHHH UI UI 5-fl 5-5151 5-fl 51515fl 51 5-fl CI I 000000000000000 DO DO 5 DO 111111111111111 CI F-- F- F- F-- F- F- F- F- F- F- F- F- F- F- FF- F- F- F- F- F- F- 5-fl 5-fl 5-il UI UI UI 0’ 0’ C C C’-F- a’ 0’OUI ++++++ HHHHHH F-DO5-. H0ODO’OH a’F- HUI a’-0’0 ++++++4-+ HHHHHHHH s5-DO OHODO-35-.-’03 ODODOC-. C H 0 to CCC C I C C I I I CI I I I I CCI I F- F- F-- F I C I C CDI C C C C C I C C C I I I I I I I C CD F- F- F- F- F- F- F- F-- F- F- 4- F-- F-- F-- F-- F-- F-- F-- F- F-- F-- F‘0- ‘0 ‘0 ‘0 ‘-0 ‘0’0 00 0000 03 000 -3-0 - -0 0000 HIH H H H H H H H H H H H H H H H H H H H H H DOIH H H H H H H DO DO DO H DO DO DO H DO H DO DO DO DO DO C C ‘0’0 ‘C’0 +1+ 0 000 000 000 000 0 CO a’ F- F- 5-. UI 51 5-fl 5-fl UI UI s-fl 0 UI F- F C 5--. 5-. 5-05-. 5-. 5-. 5-. …-. 5-. 5-. 5-. …. 5-. … DO DO DO DO DO DO DO 5-51515151 DO 5-. 5-. H ++++ H H H H DO DO DO DO 5-fl - 050 DO DO DO DO aCD + + ++ + + + + + + + + + + ++ + ++++ ++++++++++++ DODODODODODODODODODODOD 111111 I CCCI 5-05-. 5-05-. 5-. 5-. 5-. 5-. DO DO DO CDI CCCIII CCIII C 5-. 5-. 5-0 5-. 5-05-. 5- 5-. 5-. 5-. 5-0 5151 F- F- F- F- F- F-- F- F-- F11111 CIII CIII 5-DO 5-. 5.05- 5-05.35- 5-. 5-05-. 5-0… DOIDO DO DO DO DO DO DO DO DO DO DO DOIDO DO DO DO DO DO DO DO DO DO DO O103-’0’00--’00DODO’0 OUIO’05-.0ODOOHDO a’DOF-HUIa’UI-Sli0 +1+ CII I C C C I C C I C C HCH H H H H H H H H H H ------3---- CHIH H H H H H H H OH H F-I5-1F-- H 5-05-51 a". 0’ 000 + + + + + + + + + + + + + + + + + + + + + 0310 0000000 00 0 00 0000030000 UI 5-il 5-fl 5-51515-5151 F- F- F-- F- 51 5-fiF- 51 UI 5-fl F- UI OIH H H 0 0 0 0 0 H O-0 ‘0- 00 00 H UI H -3 H UI F-fl UI UI aCD CD *11 o H 0 a H 0 a H 0 aCD CD aa- HHCD* 0CDCDs 0 CD 0 sO O ts 0 -. O"O0 ‘7’ 0 CD 0 0 0 - 0’ -H- I- - - - - - - - - - ‘.7’ - - - - - 07 - ‘ 07 0 ‘.0 O 0’ 0.0000 H 0 H OH t’. ‘... 0’1HH 07 0 07 ‘.77010101 00 ‘.700 ‘7 U 0 ‘77 01070101 000 ‘C CY’ H CX O’.’ O"O ‘0-.7 ‘0’J 01 ‘-7’ ‘. 01070707 U 0107 01 ‘.77 07 01 ‘.7’ ‘.77 010101 ‘.7’ ‘.7’ 07 7’ ‘.7707 ‘.7’ 01 r HO H ‘00 0’ HP- 0 O’- OH ‘0 ‘.7’ ‘.7 M ‘7 77 ‘.7’ 0000 ‘.J ‘..0000 000 000 …..’... 00 ‘. … 7 0 ‘.7’ M 7’ 0000000’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0 7 ‘.770’ GJ01 J1 07 7’ ‘.fl 0707 ‘.7707070701 11 01010101070101 C.. ‘. ‘.0 000’. 0000 00 -0 0HHr H H - HH-HHF HO -H OO’. - - - P- - - - - - - - - 07 U ‘.77 07 ‘.J7 ‘.7’ .‘ 07 ‘.77 77 0107 ‘. -F-H 00 O- 07 ‘.77 ‘.11 ‘.77 ‘.77 ‘.. 0 L 0 ‘.. 0000 0 0 L0 0 0 0000 0’O’O 0000 00 HF-F-HHHHHI-H 00000000.00000 O0’4D O H-Hi00000000 u I I Cliii 1111 .0 v-- + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + G’,’..fl C’. t.H C. HHHH H HH 1? O’O’.fl a’..OOsC- C I I III 0’-. O’0100 HHHHI-H 07 ‘.7’ 0101 01 HHHH J 00 +++++++++++++++++++++++ J M H ?l i’. ‘ H ---‘H ‘J ‘.71000 - HHHi-H 00000 +++++++++++++ C. –+++++++++++++IIIi O… I-’.O O’ H’O- I- C.i0 0’ ‘.‘H 00 0’ - -. 0 -]‘0 H 01 0’ 0’ Q 007 00 H H 77 07 iuuIIIIIII I 11CC III HHHHHHF--H H H H H I- I- l- H H H H H H H H ‘.77 ‘.7707 ‘.7701 07 0107 07 ‘J ‘.7701 ‘.77 ‘J -. ‘00 H ‘0 t’. 070’ 0 - 01 I0 ++++++++++++++++++++++++++++++++++++++ ‘C’0 ‘.0 4D D ‘O’0 ‘ ‘O Q ‘0 ‘O’0 O O’0 a ‘0 0sO 0 0 ‘0 sO ‘.O’0 ‘.0 0 ‘0 ‘0 ‘ OOOOOOO0OOO’OOOO0OO’.OOOOOHHOOOOO H I’. H 0 H ‘ H a ? t 0 ‘0 - 0 0 H ‘Or- 0’-. 0 Os- ‘C -. 00 H 0’ I+l+t+P+I+I+l+I+I+I+I+I+I+I+I+I+I+I+ I+I+I+I+I+I+t+I+I+I+I+I+I+I+I+I+I+J+I+p+J+I+I+I+I+I+I+I+I+I+I+I+l+I++i+I+ C. t’rt ‘J MC. C. ++++4-+++++++++++++ + t+I+I+I+I+J+I+t+t+t+I+I+I+I+I+I+I+I+ 0 C’. t ‘ 0 i’. ‘ t C. 00 - ++++++++++++++++++++++++++++++ -.7 o H H 00 - H 00 H 0000 0000 ‘OH O07s t’ ‘J- O’07 0.0’- I- O --- H OQ’.o0 O’0’CO 1+ I+I+t+I+I+I+I+I+I+I+I+I+J+I+I+I+I+I+I+I+I+I+I+I+t+I+I+I+I+I - t’. +++++++++ COO 0000000000000000000000 000 OHI-HHH HHHH I I I I IC I I I III II III ++ HHHHHHHHHHHHHHHHHHH000000000 - - - - - - - - - - - - - - - ,- - - IC I ‘ ?‘. I I I C III I I III 111111 .. ?. I 0 0 t 0000000 I I I I I IC I ICC I I I I I I I I I I lull i;i C IC IC C I I I I II 111111111 C I 1111 IC II II I I III I I HHH HHi-’HOOO Illillil CICCII I CI I -HOHHOh-HHOI--Hoo ‘.77 - I P 0 O C J .. II II III I CCCIII 0…00 t H JHH t 007QC010JO0.010O 0701’.70’07010107 00 ‘0 H 4 ‘0 0’ 00’ H 0 0’ - - 0 001 J ‘. + + +++++++++++++++++++++++++++ - HHHHHHHHHHHHHHHHHHHHHF-- 0 07 C H 0 II H H F- I- H H H C H 0 ‘D’F- C 0 i’ C. r., ? C H 0 0 CD CO t ? H CD a’. C’ 0 "0 CD 0 H H H H to to C H H H H O to H 0000 O’- to 000 toto -o 0’ itO o H to - 0 HO H HO ‘C H H H to to to to H to H H 00 - tototOtoHH it-00 H -0 00-0 it CD C 0 r X II’ OH 110 CD 0 0 * totoH toH to 000 totototo itO’OoD Otto H 0000 000 0 ‘0 Ot’0’00’0 00 00 00--0--t 0-0 00 0 _ ttoH * H HHH 0-00’ to to to H H 0 ‘0 H 0 HHHHH0O 00 - 000 H 0’ 000 00 - ‘0 0 HtoOtoHto OOH H HtotoHtoOitHtotoH00it0- - 0 00 H ‘0 to 00 to 0 H H 0 - ;- - - - - - - - - - - - - - - - - - 00 00 0000 0 0 00 00 00’ 00’ 0’ 0’ ;- - - - 000000 0 - - 000 - 00000 0000000000000 to to to to H H HH H - HHH 00 to to 00000000000000 000000 00000000000000 - - - - - - 00000000 000000 to it 000 it to it 00000 00000 0000000000000 to to to to H H H H H H H H H 00 H to 00000000000000 - it - 000 OtoO 000 it to it 00000 00000 HHH HHHHHHHHH HH 00 HHHHHHHHH HH HHHHH O000O0000’000Oa0OOO00 HHHH HH 0000 - 000 HH O 0 HHHH ++ ++++i It II liii t HH H 0 to 0 H 0-0 HO 000 0 to to to t toHtoHto HHH I- to to to t ++++++++ +++ HHH 000 toNH H H H H H 0 to to H H 0 ‘0 0 0 0 iii HHH HHH 000 11111 HHHHH HHHHH 00000 1+1+1+ 1+1+1+1+1+ toHto HtotoHto 000 ‘0 0 H 0000000 liii H HO 0 to to to H to to 0O’J I I ii I I I I 000 0’ 0’ 0’ 0’ 0 H H H H 0 HHHHHHHHHHHHH 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0000 0 H 0 0 - 00 to 0000 tea Hto HH to 0 0 Z CD C it ii 00 00 - 1111111 Cliii iii H HHHH 0’- 4- 0 H H 00-] 00O to to i’00 1111111 lilt II 0000000-]00000000tOotO’0 ++ ++++++++++++++l to H 0000-0000 to to 0-0000000 J- 00000 to +++ liii to 00 - Ot - H - 000 to toO HO to - Ii HH 00’ tot- 111111 III 111111111 HHHHHHHHHHHHHHHHHHH - - - - - - - - - - - - - - - - - - 000000’0’-0000’0’0000000’ 0’000-’0HO-]00’Oa4e-O0’0Ooc0 I+I+l+l+l+I+I+I+I+l+I+I+I+ 1+1+ I–I+p+I+l+I+I+I+I+I+l+I+I+I+I+I+I+I+l+ H H Hitto0H H H to H H toto liii Ci 111111111111111111 H H H to H to H H H to H H H -0 ‘0 ‘0 0000 ‘0 ‘00’0 ‘0 ‘0 -0 0’0’0-]00000’-0--] -] HH ‘00 00’ HHHHHHtoHHHHHtotoHHHH ‘000000 00000000’0’000 ‘000’0’000’-0toH-- 000 f+I+I+l+I+I+I+I+I+I+I+l+I+ 1+1+ I+l+l+I+l+I+J+l+I+l+I+I+I+I+J+I+I+I+ toHtoOHtoHHHHHHH HH HHHHHHHtoHtoHHtoOtoHtoto 1111111111111 II Cliii tototototototototototototo toto 000 00000 0 0000 00 ii liii liii 0000000000000 H H to to to to to to 00000000 to to to to to to 1111111111111 0000000000000’ II 0-0’ i 111111 Cliii liii liii CD00000000000000-000xOxQ--Ox 0000000000 itO to to lilt HHHHHHHHHHHHH 0000000000000 0 to 000 - 0000000 000000000’ 0’0"-0 H H 00 too HIHHHHHHHHHHHHHHHHHHH 000000000000000000 00000 to to it to to it ittot 000000 liii lit 111111 HHHHHHHHHHHHH 0000000000000 000 to 00000000 HH to 0 000 0’toO-] 0 _ to to to to to to CD CD CD H C ID -OO0’ +++ +++++ H ‘0 0 HH 00 00 HHH 0 ‘0 HHH HOH 0-00 HHHHH OHHOO cxtHto’0s 1+ 1+1+ J++I+ 1+1+1+ I+t+I+I+I+ -0 -00 toto0 totototoO ++++++++ +++ +++++ totototototototototototototototototototo HHHHHHHH HHH HHHHH lii 11111 00000000000000000000 _ _ _ ;- - _ _ _ 000 HHHHHt 111111111111111 i 0’ liii lit 11111 I IlIlIIliIiilIItIi to it-C H 0-] 00’ 000 - it to to 11111111111111111 HIHHHHHHHHHHHHHHHHHH ittO00O0O0OO0000000O t0’00O0’00H0-]to00’OOto I H 0 C 0CO ii I I I 0000 to H 00 t 1111111 CD00000000 00000 H toO IjilIlilli HCHHHHHHHH to to to tO to to to q 0 0 0 H 00 0 - 00-0 H SM 0’- I Ii H HH it itO H HH ‘0 to 00’ ‘ 0 0 0CD HH’0 +++ iii itO too ‘00 - ++ liii OH - I I I it HHHHHHHH HHHHHHHH 0000 it 00 000 I 000 OH to to to to to 000 00000 Il 1111111 00’ 111111111 liii H H H H H H H H H H H H H - - . - - - - - - - - - 0’ 0’ 0’ 0’ -0 - ----0--]-0 - -0 0-] 000 0’ H to 0 H H - 11111111 - DC CD CD C-" C OlD Ill HHH 000 HHto s0-]P00 HF00 00 C-C00 I Ii CD000 I 11111 00000 000000 IlI 11111 HHHH to to to to H 0 HHHHH to 0 liii HHHH it itO toHtoto C’-] ‘00 H 00 DC .Cfl 0 C’ to to to t ‘C t 11111 HHHHH 00000 Cttototot t00000’ C H 0 0 C ci an cat ,0 un 0 un C a ci ci a ‘0 C C 0 H U 0 0 o H o HOH’00’N HSOO1N 0000 H’0’ 0’ c" 0’ N 0’ N 0’ N N 0’ 0’ N N 0’ N 0’ N N N N N 0’ N 0’ NIC’ 0’inin’0OinNin0’N0’40’C’Nin4O’00-40 0’ 0 0’ 0-a-- 0 0’- 0 0 0’ 00 0 0’ 00 0’ 0’ 0 0’ 0 0’ 0 H N H H H N H N N H N N N H H N H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H I I I I I I I I I I I I I I I I I I 000’0’C’0’0000000000000O00O0’C’0’ ‘0-C inininininininininininininininininininininininin ci I till lilt liii 11111 HHHHNNNNNNNNNNNNNNNNNNHHH 0-0-0-0-0-0-0-0-0-0-C-0-C--C--0-0-0111111 1111111 I III liii 000 H H H N N N N 0’ 0’ 00’ 00’ 0’ 0’ 0’ 0’ 00’ ON N N N N N N N N 00’ 0’ 0’ 0’ 0’ 00’ 0’ 0’ ON N N N N N N H 1111111 II 1111111111 1111111111111111111111111 0000000 0000000000000000 0000000000000000000000000 N NNNNNNN NNNNNNNNNNNNC’INNN 0000000000000000000000000 1111111 1111111111111111 +I+l+i+i+l+I+I+I+I+I+i+l+I+I+I+l+l+l in C-C’ 0’ 0’ 40 in in 0 0’ in C-CO 4 N in 0-0-H 0 C-CO H C’- N 0’ 0’0’ 0’ 0’0’ 0’ 0’ 0’ 0’0’ 0’ 0’ 0’ 0’00’ 000 0’ 0’ 0’ 0 0’0’ H H H H H H H H H H H H H H H N H H H N H H H N H H NHin000’0’0-Hinin000-’0H’C NNNNHHHNONNNNONNNN I I Ill II I i II I lIlt II I I I in C-C’ 0’ 40 in ‘C N 00 in 4 in O in in in 0’ -00’ in 0-0’ N H ‘C C 0 ‘C ‘C’C’0 ‘0’0’C 0 ‘0 ‘C’-C ‘0 ‘0 0’0’0 ‘0-0’C’C in C- in TOJ OONNHHHNNHHHHHNHNNOHHHHHH +I+l+l+l+l+I+i+l+l+l+I+l+I+li+l+l+l+l+I+I+l+I+I+ 444444444-4-444-4444444-4444-44 0 0’ H CO in 0’ C-’0 4040’ 0’0 00 N 00’ H H 0"0-4 H 0 H -4 0’ N N N H 0’ 0000 C’-’C ‘C in -40’ N H H H H H H H H H H H NO 0’ -4’-- 0’O N 4’0 4’0 -0 CO H 0-0’ 0 OH OH 0 HO’ NN44inin’0’0O0O’0HNNO4-44 HH HHHHHHHH I+++++++++++++++++++++ ill in 0’ in in in it’0 H H-C C--n 0-000 0- H H H H H H H H H H H H H H H H H H H H H H H H H ‘0in in H 0 in CC in in H in in in lilt liii 1111111111 lilt II II I II I II I II I i II I I I I I lilt UO0JJJ0 UOLPUI1XJ JL’!UJZJJ -JbP HHHHHHHHHHH.-IHHHHHH +++-f++++++++++++++ HON NN’000-040-CO0’0-4C--OC’in-000inO NONNNNNNONNNNHHNNHHHHNHNN HHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHH III 1111111111111111111111 H H H H H H H H H H H H H H H H H H H H H H H H H H I III III lilt I It I I I i I II I I I I Job ioJ in in in in in in in in in in in in in in in in in in II +I+I+I+I+I+I+H-I+i+I+I+I+I+l+I+I+l+I+l+I+l+l+l+I+I+I UOUi NNNNNNNOONNONNNNNN +l+I+l+l+I+I+I+I+I+i+l+l+I+l+I+I+I+l+i+l+I+I+I+I+l+i N H H H N C’ H H N H H N H N ON N N 0’ 0’ 0’ 0’ 0440- aucpucdcp 4 0’ 0 H H H H I 0 II JO cci ,o ONHOO’00O0-0-40C’N H N 0’ N N N N N N N N H H N H N 0 N C-N-’-’-C’0-0-0-0-C’-’N N N N N N N N N N N N N N N N N N II Ii I I I I I Ill II Ill N H H N N N H H N H H H H H H N H H H N OH N N N 4 -Xc cc ‘0 C 0 H cc, ‘o H H H H H H H H H H H H H H H H H H H H H H H H H H1H I I I I I I lii II I I Ill I I 0-C’HH’000-040H00-0000-’0ON HinH N N 00’ N 0’ N N N N 0’ N N N C’ N N N N N N N 0’ N 0’ -110’ in in in in in in in in in 0’ in in in in in in in in in in in in in in in inlin H H H H H H H H H H H H H H H H H H H H H H H H H HIH I I I I I I I I I I I lit I I I I I I I I I I I till uOcccI0c cUCSTQ 0’ ci ci ci C’- UOflJJO lJU?1d JO sainstacil JO Jaqu01-l -o N 0’ 0’ N 0 H H 44 N 000 H 0 0’ C-C---4C----O 0- COO H H HHH 11111111111 l-t--+I-i--I--f--II I CO’0 40N NN NNHHO HHH HOH H00 HOHH 00000000000000000000000000 H H H H H H H H H H H H H H H H H H H H H H H H H 000000 0’O 000000000 00000000 H HHHH HHHHHHHHHHHHHHHHHH 11111 + I I++ 1+ ++++ C’ON N 000N N in in in in in 4-$44444inin44-4inin0000 N N N N N ON N N 000’ N N 00’ 00’ 00’ N 00’ ON N in in in in in in in in in in in in in in in in in in in in in in in in in in ‘C-C in in in’C’0 C’0 -0 ‘C’0-C N N ‘0-0-0 N N in in in in 4444444444444 in in 444 in in 4444 N N N N N ON N N 000NN N in 4 ++++++ in in in in in in in it in in in it in in in in in in in in in 44-4 in in in -4-4 in in in in in in in in 0’ in in in 44444-4444444444-44-4444 SliUCJfl in in in in in in in in in in in in in in in in in in 4400044444-4-4-4-4-4-4-4 44444444444444444 -4000NN 444-444 0 OO’C-C in-C 00-H 4-4H H 0’N’0 004 eOdOOO00C’HHc’OWci4-4 444404000’ N N H H N N H 0 N 0 H H N 0 H CO -4 ‘0 0-COOn-C’ 0N -4-04 C’ -4000 in 0 H N H C’ N H N H H H H H H H H H H H H H H H N H H H COO 0’0-0-00 ininC--CO 0’0’0 00 NO -4in4-4-444-4-3-444in4c-4in4 in HHN HHHNN in in 0’ in HHHHNNN HHNN C’ in-C 0’ ci H OH -4’0 C-O 440400 040-0 40’ H N N 00-004000’ 00 H in 0-00’ HHNN HHNNNOHHHHHNN 0 U 0 z U ci 0 CD ‘O 0 CD U’ C 20 2 2 - ‘0 CH P’’U CD 0’ 2 II ‘0 CC 00’ NHH 0 U"U H 0’U ‘U H H N N H H N NHHH NNNHHNN NNNNHH N O’U’U HO N-U H U’’U H H’US.fl’U’U’U N H 0-U’U 0 ‘U ‘U ‘U U"U U"U 0 0 - ‘U ‘U HHHNN NU’U’U H N 0 ‘U N 0 0 0 ‘U 000 N -U 0 U’ U’ 0-0 -U U’ ‘U NNHHH NHHH H 0 ‘0 U’ ‘U ‘U ‘U -U ‘U ‘U CD ‘U CD H ‘ ‘U’U’U -]0U"U ‘USJSH’U5SHHCDU’ N NN H 00 N H H H H N N H 000000 N N ‘U ‘U ‘U CD ‘U N N CD- N N H H ‘U ‘U ‘U ‘U H H -U H 0 H 0 000 00DH ‘U H ‘U’U0’U’U’U t’t1H - - - - - - ‘U H ‘U ‘U ‘U U’ U’ ‘U U’ ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘J ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘UCD-CD-’U’U _ - - _ - _ _ _ _ _ - CD-N CD - - - CD CD- CD CD CD- CD CD CD CD- - CD-CD-CD CD CD - CD CD- ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U - - 55 ‘U SM ‘U ‘U ‘U ‘U ‘U CD ‘U ‘U ‘U ‘U SM ‘U ‘U ‘U ‘U ‘U ‘U CD ‘U N N N ‘U N ‘U N N N N H H H ‘U ‘U 55 ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U 55 ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U CD ‘U CD ‘U CD CD- CD- CD CD- -I CD CD CD- C CD ‘ CD- CD- CD 55 ‘U ‘U ‘U ‘U ‘U’U ‘U ‘U ‘ ‘U ‘U ‘U ‘ ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U 55 ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U CD- CD CD- CD CD- CD- CD- CD CD CD CD CD ‘U ‘U ‘U ‘U CD CD- CD- CD CDCD’U H H H H H H 000000 H H H H H H H 00000000 H HH H H H H U’ 0’ U’ U’ -U -U 0 U’ U’ 0 U’ U’ U’ U’ - 0 U’ 0’ U’ 00 - 0 ‘U 0 HHHH HHHHHHHHH 000000000 ‘U 0000 1111 H 11111111 III C +111 C ++ N H H H H H CD ‘U ‘U ‘U U’ H 00 N 0 N ‘U CD- ‘U N 0 ‘U N H 0000 H H N N N N NCD - +++++++ +++I N N N ‘U H H N H +++++++ 0’ N N N + + + + + + ‘U +j I I I I I I CDC I H H NP N’U’UP 11111111111 111 ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘0 ‘U ‘U ‘U ‘U H HHHHHHHH H ‘U ‘U ‘U ‘U N H 00 ‘U ‘U ‘U 0 ‘U ‘U ‘U ‘U 0 ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U H H H H H H H H H H H H H +++++++ HHHHHHH ‘U ‘U ‘U - - U’ 0’ ‘U ‘U 0 ‘U N ++++++++ H H H ‘U ‘U ‘U -0 0- -U N 0 ‘U H ‘U ‘U- ‘U 0 ++ + + + ++ ++++ + ++ ++ + + + + +++ HHHHHHHHHHHHHHHHHH ‘U ‘U CD CD ‘U U’ -U 0 ‘U ‘U ‘U CD- ‘U ‘U U’ U’ -U 00000000 N 0 N U’ H ‘U N CD- H ‘U U’ H U’ ‘U N CD- U’ H ‘U ‘U ‘U CD ‘U ‘U ‘U - II I III HHHHHHH ‘U ‘U ‘U ‘U ‘U ‘U ‘U N N N N H H H N’U 0 0’U O"U III II II I H H H H H H H H ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U HHHHHHHH - ‘U U’ U’ U’ ‘U 0’ II I II I I I I I I I I I II I I I I I I I II -NN U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ CD- ‘U CD- CD- ‘U CD CD-CD- ‘U ‘U ‘U ‘U ‘U ‘U ‘U CD- ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U CD H 00 ‘U OH 0 ‘U 0 ‘U ‘U 0 U’ COO N -U U’- U"U -U -U ‘U 0 11111111111111 H H H H H H H F- H H H H H H H H H H H H H H H H H H N N H N N N N N H Cs N N N 0 U’ ‘U CD -U ‘U CD CD ‘U ‘U ‘U ‘U U’ C I+I+I+I+l+I+I+I+ l+I+Il+I+I+lI+l+I+l+I+l+l+l+l+l+l+I++I+l+I+I+I+ N’U’U U’--N’U N ‘U ‘U ‘U N N N U’ O U’U’U’U’CDCDCD N N’U N N N N Cs N HHHHHHHHHHHHHH ‘U ‘U CD ‘U N ‘U ‘U 0’0 N CD- ‘U l+l+l+l+I+l+l+I+l+l+I+l+l+I N N N N N N N N H N H N H N H H H - N N N ++++ ++++++++ ++ + +++ HHH + H ++ HH ++++ HHHH ‘U ‘U ‘U ‘U ‘U ‘U ‘ U’ U’ U’ U’ U’ U’ U’ U’ U’ U’ 00’- U’ 0 N NNNNNNNNNNNNNNNNNNNNNNNNN CD ‘U CD ‘U ‘U ‘U ‘U ‘U ‘U ‘U 55 ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U U’ U’ 0 ‘U H 0 H 00 N ‘U N 5s CD H ‘U H ‘U U’ 0 ‘U - CD CD N ‘U ‘U ‘U 0’ U’ 0’ U’ U’ 0’ U’ U’ 0000 ‘U 0’ HHN 0- ‘U 0 ‘U HH N N HHHN ‘U CO H I+I+I+I+I+t+I+ I+t+I+I+I+l+I+I+ l+J+t+l+l+I+ll+l+I+l+l+l+I+l+l+l+l+l+I+l+l+I+l+l+ 1+1+1+ 1+ 1+1+ l+l+l+l H H H H N H H ‘U H H ‘U N N N 0 N CD ‘U ‘U ‘U ‘U ‘U ‘U N +++ I I ‘U ‘U ‘U I I I I II ‘U ‘U ‘U ‘U I III I II II ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U II I I C I I 00 H 01 011 0-ID InC-a. I I II I I I I I II I I II I I I II I I I N N N N N N N N N N N N’Us’U5s’U’U’U’U’U’U’U’U’U I I I I I I I I I I I I I I I I I II I I I I 00000000000000 I ++ I 1111111 00000000 I I I I I I I I I I I I I I I I I I I I I I I I I -U -U - -U ID -U -U - -U - -U -U -U -U -U -U -U -U -U -U -U -U -U -t ‘ ‘U ‘U ‘U ‘U N N N N N N N N ‘U ‘U ‘U ‘U CD- CD CD CD CD- ‘U ‘U - 0 ‘U ‘U ‘U 0’ ‘U ‘U ‘U ‘U -U-U U"U-U’U0U’N N ‘U N N ‘U ‘U N N N N N ‘U H NNNHHHHH000000 liii I I I 0000000 ‘U ‘U ‘U ‘U ‘U ‘U CD-e-CD-CD- N ‘U ‘U N ‘U N N ‘U H N N ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U N N N N H H H H 000000000 I 1111111 HHHHHHH +++ ++ ++++++ N N N ‘U ‘U ‘U ‘U N 000 H H H H I I I H H H CD-CD-CDH 00 0-U U’ + HH0000000 00000 ‘U ‘U ‘U ‘U ‘U ‘U ‘U ‘U I H CD H H +++ + H H H H H H H H H H H H N N N N N N N N N N N N N ‘U ‘U ‘U ‘U ‘U ‘U ‘U II I H H H CDH H 0 OH-SO +++ ++ + I II I I I I I I I I H H H H H CD-CD-CDCD- CD 0 0 0 0 0 CO’U 0-U I I H H CD0 0 U’0 11111111 HHHHHHHH CD -CD-CD- -U-U-U---‘UU’CD’UCDO C H 0 0 0CD III NIN -UI-U HIH -Uj’U I I N N -U -U H H U’0 I I N N -UN H H’U I I N N -U -U H H 0- I N -U N I N -U H I N -U H I N -U H I N -U H I N -U H I N -U H I N -U H oCD- H’UCD5s-U-U I I I N N N -U -U -U N H H H’U’U I I N N -U -U H H U"U I I I I N N N N -U -U -U -U H H H H O- I N -U N N 11111111111111111111111111 NNNNNNNNNNNNNNNNNNNNNNNNNN ‘U’U’UU’U’U’U’U’U’U’U’U’U’U’U’U’U’U’U’U’U’U’U’U’U’U U’U’-UU’-UU’U’U’U’--U’U’U’U’U’U’--U’U’U’-U’-U0’U’-U 0CDH’U’U’U ‘UHN-U’U--0’U’UCD-’UOOHOOH 0 H 0 0 0CD 0’0 H 0-CD InID CD P’H 0 H 0 U 0In - 0 ID 0 0- :C-’ 0 10- CD ‘ I I I I I I I 1111111111111 U’0’U’U’U’U’U’U’U’ U’U’U’U’U U’U’U’U’U’U’- -U--J-U--- 0- 0 III HIH HIH ‘UlO I H H ‘U I H H CO OICOCD’U 11111 NINNN -UI-U---- OOHO -U’HU’ I I H H H H ‘U ‘U HI N 0 ‘U I I H H H H ‘U ‘U ON I H H ‘U N I I H H H H 0 ‘U U’N I H H ‘U N I I H H H H ‘U ‘U NCD 1111 II NN -U-U 00 CDCD --UUOHOH ‘U0JSC 00 HH 00 11 C’ In I1P 11 ‘U IC’ IC’ d 5. N N H H H-0 NsO H5.o C H 5.S N r5 H H H CDCD N 00 0 000 H 5. 5.. 0’ 5.. SM SM - - - - - - - SM 0’ SM op SM SM SM SM SM SM ‘.5 - _ _ - SM - CD SM SM SM SM SM SM _ _ - - SM II II 0 0 - SM SM SM SM SM SM ++++++ - +++ 0’0SMSM 0 ++++++++++ HHH SM SM H ‘0 sO sO sO 50 sO ‘0 H 0CC n SM SM SM SM SM H HHHH H 000000000 .ii ‘ii N N H H H H H H N N t C 0 0’ 0 -0 - - 000 0’ ++++++++++ HHHHHHH 000 SM’000 ‘0 sO SM H 0 sO SM SM SM 0 . III I I I III H H H H H H H H H H SM SM SM SM SM SM SM SM SM SM HHHNHHNHNH HNSMsO 000HsO N i+I+I+I+t+I+l+I+I+I+ _ - SM SM SM N N N SM SM cl H H D’ i- ++++++++++ 0505 o’0’0-a- 0005 0 -C ‘0 - 00000 sO I+I+I+I+I+I+I+I+I+I+ N N N H H H H H H H H H II I II I I I I I SM SM SM SM SM SM SM SM SM SM III I I I SM SM SM SM SM SM III I I I I I I SM SM SM SM I SM SM SM N N N H 000 II C H - I! liii O000HHHNN 0 III I I I I I I I I I F-IHHHHHHHHHH - - - - - - g- - OIs000H000000 N 00 - 0-a m 0 O p-N 11111 H ‘_5 H CD CC H o * lii I000---a---------aSMso-aSM Q- 05.5 0 0CD * HH-4HHHH HHHHHHHHHH,-4H HHHHHHHHH I’C 4O-0"0 4N-1’N C U U N- C U U U N- U N- U ‘N 1 U NC H H H H H H H H H H H -4 H H H HH 11111111111111111 N-’NNU N’NO’C U U U N- U U U U U N- N- U C U ‘N’Ncc H H H H H H H H H H H -4 -4 H ii liii I II sO ‘N ‘N ‘NO’ N-SO U ‘0 H ‘0 4 ‘0 N- ‘N H U C U U ‘N ‘N U U C 0 ‘N N- ‘N U U ‘N 0 U N- N- N- N- N- N- N- N- N- N- N- N- N- N- N- U N- N- H 0 ‘NsO ‘0 ‘N ‘N U N- ‘N ‘N H ‘N 0’ U U N- N- N- N- N- N- N- N- N- U U N- N- N- N- N- N- N- N- N- N- N- N- N- N- C’N N- N N H N 0 N- U ‘N ‘NsO N- - ‘NO ‘0 0I’-O H H H H N H 4 -4 H H H H H H H H H NIH ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N I I I I I I I I I I I I I I I I 9’N iii I I I I I II I I II II III I I I I I I I I I I CsCNHHHHHHHO HHHC’1NN I I Ii 11111 I ++++++++++++++++ H H H H H H H H H H H H H H H H ++++++++++++++++ ‘N N ‘N N ‘N ‘N ‘Ns0 ‘N’0 4 ‘N ‘N 4 ‘N I I I I I I I I I I 0000000000 00000 000 000000000000 H H H H H H H H H H H H H H ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N + + + + ++ +++ + + ++++ N NN ‘NN’N’N’NN4N’NNN +I+I+I+I+I+I+I+I+I+I+I+I++I+I ON-H 0 ‘N 0 ‘0 ‘NsO I 11111 ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N N- N- N- 444444444444444 I +‘+I+I+I+I+I+I+I+I+I+I+I+I+I 4U 00 N-44N N Q:’N 4 U U 00 ‘N ‘N ‘N 0 ‘N 00 ‘N ‘N’NsOsO ‘N’NSNSO ‘NSO’0 ‘N 0’NN-U’OH$4C’’N’NN-NH H000HHHHHOOHHOO ‘0 ‘.0 ‘.0 ‘OsO ‘OsO sO s0’-0 ‘0 ‘OsO ‘Os +++++++++++++++ c’N +I+I+I+I+I+J+I+I+i+l+I+I++I+I+I+I+I ‘N U U ‘N 4 U ‘N 0 N- N- U ‘N ‘0 U N- N U N NHHHCsHHNHHHHHHHH-4N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N N ‘N ‘N I I I I III I I I I III I I II I I II I I I NNNC’ ‘N ‘N HNNN’ +H-I+I+I +1 +1 +I+I+I+I ‘N444U U ‘NN-N N-sO 4’O N-’NN U U C ‘N ‘N U U U U C N- ‘N U U ‘NO N- N- N- N- N- N- N- N- N- N- N- N- N- N- N- C N-SO ‘NO H H 0 H ‘N N N-C’ N-U U U U U U U N-U U U N- N- U U N- N- N- N- N- N- N- N- N- N- N- N- N- N- I H 0 ‘N U H ‘N 4 ‘N ‘0 N- H ‘N 4 ‘0 U H N ‘N SN ‘N 4s0 N- N- N- N- N- N- U U U 0 U 0’ ‘N ‘N I ‘N4N N’0 N N N N C’ ‘NC’ ‘N +J+I+I+I+t+l+I+I+I+L+I+I+I+I+I+ N N I III 111111 I 4 ‘N NO N-sO ‘NC ‘0 ‘N N U N--’ 4 ‘N U U U U N- N-sO ‘OsO sOsO ‘N ‘N ‘N ‘N ‘N liii I III III I I ‘NC N-sO ‘0 -.0 sO ‘0 ‘N’Ns0’.OsO ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N 11111 I I II 111111 I U U U U C U U U U U U U U U ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ++++++++1-++++++ +-*-++++++++++++ NONN N H N HO ‘NO 000000000 OH H HO N HO N H H HH H 0’OOsOU 0000000000000 HHHHHHHHHHHHH HH 0000 ‘NO 0 ‘N’O 0 0 000 0-45 HHHH HH HHHHHHH N-N-N-U ‘N’N’NN’N’N’NNNN ‘III ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N +++ ++ 000 ‘NO sO HHH H ‘N ‘N +++ ‘0 ‘N ‘N I++ 000 ‘N ‘N ‘N HH-4 ‘.0 ‘N ‘N ‘N ‘N ‘N ‘N Sf’. ‘N ‘N ‘N ‘N ‘N ‘N 444444444444444 ‘N ‘N ‘N ‘N ‘N ‘N ‘N ‘N 4 44444444 ‘N N ‘N ‘N 4 ‘N 55’. ‘N 4444 00 H ‘N ‘04 ‘0 C C C N-C H 0 ‘N H ‘N ‘NC U U N- 4 U N- ‘N ‘0 ‘04 ‘N 000 H H H H H H H H H H C’ H N N N 00000000H0000000 ‘N N N 0 ‘NC U ‘NO C ‘N ‘N ‘N ‘N N-U C N 444N H H H H N H H H H H H H H H ‘NH’NN N ‘NO 0 N ‘NC CsO-5 4’N4’N’N4’N’N’N44444 -.0 N- N 0 ‘N ‘NsO N- C ‘N N 4 ‘N N-U H N ‘N H H H H H H H H N N N C- N 4 4. H 0 0 ‘NQ H55 ‘N" N- 0 H N-U 0 H 4 U H N HHHHNNNN ‘N 4 ‘N’.’ N 4N-N NO N N-U OsO N5OH H00 OHH00000NOHO H N- N- ‘N U U ‘N 4 C H N U 0 H 4 ‘N ‘N ‘N ‘N N ‘N ‘N N ‘N ‘N ‘N ‘N ‘N U H 4’O O’N ‘N4’O N-N’Ns0 N’ N HHHHHNNN -.H *1 * 0 - 0’ N i- -HH N H 0 - C’- C’ N - N0E-H ….. 0 O"-h H 0….. H so NHH ….. …... - HHHHH’J ….. C’ 0’ - 0 H ….. - 0’ sO …... 0 ‘0 000 s0 -.0 N N ‘0 0 N 000 ….. H N N N N N N H H N N H H H H H H H H 0 H H H - - - - - - - - - - - - - - - ‘ …J ‘.J ….1 ‘. h U ….fl ‘J ‘J ….7 - - - ‘..7 … J - - - 5J - - - - …Y .- - H H 00 H 0 H 0 H - - - - - - - - ;J sJ ‘. fl ….fl 5.fl J1 J - - - - - ….fl …. - - - - - ….I ….7 sfl C-. C... * - - L.N …..NNNNNHHHHHH NsOO- 0’ N H H 0 s H 0 ‘0 0 N H OsO0-. 0’ H H H H N N N N H N H N N H H N N N N N N N ….. N ‘050 0sO 0 N H N- N so ….. N ‘050 C’ N. N H N H N N N H N H N H 00 H 0 H H H H 0 - …. …7 - - - ‘M …. .fl …X ‘J ….7 ….1 …X 5J T …. 7 ‘ ‘0 ? ‘J J fl N N N N N N N N N N N N N N N N N N N N N N N N N N N N H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H 000000000000000 000000000000000 11111 I I Ill I III III ill I II I I HNNHHHHHHHH H HH H H H 0O…..’0H000N00H 0-000 0…J-.0Z--0 ;- - - - - - - liii - II Ii - I - 000 ….. 0 -0 N -0 C’ liii I ‘o ….. ….. ill I ….. ….. . ….. ….. ….. ii H 0 H III I N H till I II 500 II I I …... ….. ….. …... ….. ….. Ii I Ii I - -0 0’ C’ 0’ C’ -00 H 11111 Ii I ….. ….. … liii - J II NNNHNNHNHHHHHHHHHHHHHHHHHHHHHH C’N H NsO 00 C’ 0 …M 0-. - H T ui N 0 V Q’- 0 - - N ‘. C’….. HHHHH 00000 ….’ ‘j …i 1111111111 ….. C’ 0’ N C’ C’ ‘.fl III 00 C’ III HH OH ….. I I III I eY …-’ J … SJ’ U ‘ II++I H N N H N H 000 H H N 0 C’ .7 C’ C’ C’ …J -0 N II C’ … … till Ii V ‘.X ‘J 5J I I I 5J it 0000--. - - - -0 C’ C’ C’ C’ C". …J … ….. N 00….. N 0 0 n ‘00-. C’sO 0- … 11111111 I II II II I I I II 7 Ii ‘ … II -0-0- -0- -0- -0- -0- -0- -0- -0- -0- -0- ‘0000-. 0-.-. 0500-. 0- 0’0 0sO 0000 0 C’ 0- s … ….. 050 N … 00’ H 0 ‘0 50 ‘0 s 0 I’. I+I+t+I+?+I+I+I++I+I+I+I+I+I+I+J+I+I+I+l+I+I+I+I+I+I+I+I+I+ C- N…..…..NNNNNHH…..NH N NNHNHHH N…..N HNNH N ++++++++++++++++++++++++ HHHHHHHHHHHHHHHHHHHHHHHH H00000000H0000000HOOH000 -.0 0 sO -0 ‘0 050 sOsO sO 50 sO ‘0 O 0 sO ‘0 ‘0 sOsO so 0’00’00’0000’J’0’00H’0-N0--C’ +++ HHH HH 00 0NsO I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I+I++I+I+t+I+I+I+ 1+1+1+ HHNNHNNNNNNNNHNH…..HNHNNNH NHN -.ooo ….. ….. …... ….. N ….. N N’... N N N N C’ ‘... +++++++++4-++++++++++++ ….flC’C’-.C’C’C’C’C’C’C’C’C’C’…0’C’C’C"J’C’ sO H-. C’H OH HOC OH 0050 OH 005000 COsO- C’0’J N’.7.- 0-i C"... 00 H 050… I+t+I+I+I+I+I+I+I+I+I+I+I+ITI+I+I+I+I+I+I+I N H N ….. N N N ….. N …. ‘.e’ ….. ….. ‘. ….. …... … … ++++++++++++++++++++++++++++++ ++++++++++++++++++++++ H H H H H H H H H H ++ ++++++++++++++++++++ ++++++++ HHHHHHHHHHHH HHHHHHHHHHF-HH n … ….fl ….P …. ….. ….. ….. ….. …-h ….. ….. ….. ….. ….. ….. ….. - - - - - - - - - ++++4-+ +++++++ + +++ H H H H H H H H H H H ….. ….. ….. ….. ….. ….. …. ….. ‘a’.. 000000000000 till NNNNNNNNNNNH00000 Il I I I I I I I I I I I I I I I 0000000HHHN I I I I I I H H H H HIH H H H H H H H H H H H H H Hf- C’-. J H s 0….. H 00’.. ….. 0 00 00 N 0 H …’ ‘-a -00--0---0-------- N N N N N - 0’ 0’ 0’ C’ C’ C’ C’ 0’ C’ C’ C’ C’ c- H H C t+I+l+l+I+I+I+I+I+I+I+l+I+I+I+l+I+I+I+I+I+ I I C’-.o I tIll IIIIIII1IIIIIIIIIIII HHHHHHHHHHHHHHHHHHHHHHHH H H H H H H H H H H H H H H H 0 H H H 0 H 0 00 H o 0 0 0 0 0 0 0 0 0 0 0 0 ‘0 0 0 OsO OsO sOsO N-H…….H…J,SJ0C’NCOHNCOC’--s0sO 00’ o 0000000000 I I I I H H H 0050 H III HHH H H H 0 0 0 NC’U 3… …’ … … …J… ‘.X… ‘SJ .fl U 5J … II II liii I III III I I I I I I NNNNNNNNNNNNNNHHHHHHHH III I I I I I I I I I I I I I I I I I I I I 0F-0 0050 - 0--- 050 0-0 0- 0 0-0 000 00 ….. .1…s0 0….. -.0 0 N N 0…’ 0’ …fl 0 ‘J…s0 C’ N N 0’ lIlt HIHH …aN. COIsO 0 0’IN…. IIIIII1IIIIIII 1111 HHHHHHHHHHHHHHHHHH ….. ….. ….. ….. …... …... ….. ….. ….. ….. ….. ….. ….. ….. …. ….. ….. 00 0 0 00000 ‘0 00 C0 sO’0sO0CONsO0.0’.. 0000 HHHHHHHHPHH I-.. + … +++ + =jCH P’’0 p’d’ 0 -HuH 0? 00 H H CD ‘-1 SMSM5HHHHH 555OHHHHH SMH 0’ MCH HHHH5NNHHHH N - SM SM SM SM 0 ‘0 SM SM SM 0"0 - H 0 0 H H H 00 H H H N H H N 55 H H H H 55 C’ 5- 555 ‘000 0 ‘O’0 005 00 CO ‘0-C 0 0 40 CS C’ 40 SM 005 00 H 0’0 5 SM 540-40- -0 SM 0’ 0’ H 5 5 O’40 SM 0 N 00’ SM HHHHHHHH000000000000HOHH0HHHOHHHOHHHHHOHOHHH0HH 00 - SM -0 SM ‘0 L’lt,jt - SM SM SM SM SM SM SM SM SM SM ‘is ‘Js SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM 00’ 0’ 00’ 00’ 00’ 0’ 0’ 00’ 0’ 40 40SM SM SM SM SM SM SM SM SM SM ‘is SM 505 SM SM SM SM 505 SM SM SM SM SM 40 40 40 SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SMSMSMSMSMSMSMSMSMSMSMSMSMSM0’0’0’0’0’0’00’0’0’0’0’0’0Hu40Hu40 SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM SM 40 SM SM SM SM 40- ‘is SM ‘is SM SM SM SM SM SM SM SM SM SM 0 SM SM SMSMSMSMSMSMSMSMSMSMSM SMSMSMSM’JSSMMSMSMSMSM HHHH H 00 000 000 0 00 SM SO till H - 0000 ‘0 SM 5 HH HHHHHH SMSM 0’ SMSMSM 00’ SMSM 0000’ SMSMSMSM SM 40 4040-40- 40 400’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ 0’ SM 0’0’0’040Hu 40 SMSMSMMSM4040 0’0’0’0’0’0’-0’0’0’0’ HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH 00-0000000-00000000000 OSMSMSMSMSMSMSMSMSMSMSMSMSMSM OSM 0000000000 + + 000000NHH’0’000O’0’0’00000’0000O0SMSM’00"000’0’0SMSM50 000H0 +++++++++++++++++++++++++++++++++++++++++++++++ 40- 40 I 5 ‘is SM I I I I 40- 40 40-40-40-40-- ‘0SM SM SM SM SM SM SM SM SM SM SM SM SM 40-40- SM 40-40-40- SM 40-40-40- SM 40-40-40-40-40- SM 40- SM 40-40-40- SM 40 I SM SM SM 0’ 0000 OSM 0’SM’0 0’ HHHHHHSO1 0’ 00 40 ‘000 SM 0 5 I I I liii I I I I 0000 C50’0’0’0’0’SMSMSM H 0-CC’ 0-0’ SM 40- H 040-40- H SM I I I I 40-40- 40-40-SM Cs II I II II III I I III I I I I I 40- II HH SMSMSMSMSMSMOC----0-’0--000’0’0’OHH -000 5 SM SM SM 0’0’--000 Cs SM -SM 000-C 40- 0000 H ++++ +++++++++++++ +++++++ ++++ ++++++ ++++++++ +++++ -0-0-0-0 -0 --0-0’0 -0-0-0-0-0 - ‘0- -0-0 -0 - -0-0 ‘0-0-0-0-0-0 -0- -0 - -0-0-0 -0--- -0 --0----0 ‘00 00- 0’s0-0 00’0’0’0’C’C’0’C C0’0-0’O’0 0-400-0 0’0’C 0 CC’0’0-0--0’OsO 0050-0 0’0s0s0’0 CDH-0’0’0’0 H 0 SM 005 -0 0’ 5 H Cs 5 0’SM ‘050 SM Cs H 40- 00 H sO SM-C H H’0 asH 0 0 40 N H 0’SM 5 0 H 5 000 C’ 40 SM N -0 SM SM SM H H 55’0 N H SM 00000 ‘-0 ‘0 ‘0000005000000 0 000’0 00-C 0 sO ‘0 00 ‘0 H - ‘0 ‘0000’ 0’ 0’ 0’ SM SM 00’ SM 0’ 111111 ‘0’0 ‘00 ‘0 ‘0’0 000 ‘0000 40- SM - ‘0- +++++++++++ -0--0-----0-0--’0 -000SM’00s0s0-0D00 0’ 0 ‘0 0 H’0O N ‘Os 050 +++ -0--- ++ ++++ +++++++++++++++++++++++ ‘UsD50 -OH N --5000 SM 0’ -0-0-0’C0s000’ 0’ SM I’ SM 0. -0 0000’0000’Cs00’0’0000’0’00’000’0’O’O5 C N-000 H 40- 40- H 040- 40-0000’00 5 Ns000 50 l+I+t+l+I+I+l+ I+++I+l+I+I+I+I+I+I+ 1+1+1+ 1+1+ I+I+I++ I+II+I+l+I+I+l+l+l+I++I+I+I+I+I+l+I+I+I+I+l+I 5 SM 5 I’ 5 H N N H H H H H H H HHHHHHHHHHH 40-SMSMSM000SMHOH HHH 000 HH 00 HHHH OCSHSM HHHHHHHHHHHHHHHHHHHHHHH HSMSOSOHSOSOSMHSONSMSM00000HOOHH ooooooooooooooooooooooooooo000ooooooo000000000c’ ++++++++ SM 5 5 5 5 5 5 5 00000000000000000000000000000000000000000000000 1111 I HOOHHN5J5 III lilt I II III II 11111 II I I II II I NSOSOSOSOSOHHHHHHHH0OOO000O0O0O0000HHHHHHSO0SOSOSOSONSO5CsNS ++++++++ +1+ H H H H H H H C40’0 H -0- -0--------- -0-0-0 - -0 -----0--0-- --‘0---0----0 -0-- -0 ‘0- -- -0-- ‘0-0 -0-0-0-0 OH-0 0- 0"OsO 0’0’0’O’C’0’0s0 0s0505050 05000-0 OsO’0 0 00’0’0’C0’0’0 0’0’0 00 0’0’0’0 Cca’OsO’0S0 0’ SM 000’ ‘is H OH H SM 40-5 ‘0 SM Cs H 40- 0 H -C SM-C H H -0-- H 00’0 H 0 ‘05 N H 0"00 40 40 005 SM 0 +++++++ 50’0-0s00 ‘O’0 NH5H NOON 40- ‘040 00540- 0’ +++ + +++++ + ++ + + + + + + + ++ + + + + ++ + + + + + + + + +++ ++ + + ++++ 1+I++I III I++ 0L000H0SMHSMSM0 I++I I+++I+l 111+1 II 1+1 1+ +11+ I++I SMH HSM SO5SM H’0SM00’5’0HSM’00SMSO00000SM0N00’00S eH C-. ‘0 Us -H H-HI0HHH toHHi ‘C ‘0 ‘C 03 ‘C H 03-0 Us’0 03 ‘0 03 0 ‘C 0’ H sjs ‘C to Us H 0’0 H - Us 0 0300’ Us to - 030’ ‘C 00’ ‘C ‘C ‘C to ‘C ‘C ‘C ‘C L ‘C ‘C ‘C ‘C Us Us Us Us Us Us to to to 0 to -3 to to ‘C to to to to ‘C C to 0 ‘C ‘C ‘C H to 0-a to 0’ to Us Us 03 0 0 H 0 ‘C 0’ ‘C Us Us H ‘C Us 0 Us ‘C H to H 0 ‘C 0"C Us ‘C totototo tototoHH 0-to 0C-’CC-’C C- O toHHtoHHHOOHH0000to000HHOH000HOHOH000HHH000HHHHH HHHHH000HO Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us U. U. Us Us U. Us Us U. Us Us Us Us Us Us Us Us Us Us Us --- tol.’C’C U. US Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us US Us Us Us Us Us Us Us Us Ui Us Us Us Us Us Us Us Us ‘J5 e Us Us Us Us ‘C - ‘C ‘C - - - ‘C - - - Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us U. Us US Us Us Us ‘C Us SJS Us Us US Us .0 - - - - - - - - - ;- - - - - - - - - - - - - - - - - Us Us Us U. ‘C - ‘C ‘C Us Us Us ;- - ototo-3totototototo HO to to HO 00- C"C Us Us Us Us Us Us Us Us Us Us Us Us Us Us Us U. ‘C ‘C ‘C ‘C ‘C ‘C - - - ;- - - - - - - Us Us Us US US Us Us Us - ‘C ‘C ‘C ‘C ‘C ‘C - - - - ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C HHHHHHHHH H HHH HHH HHHHHHHHHHHHHHHHHHHHHHH 0 00’O’0’C 00 OUs 0000000000000000000000 0’C 000000000030 H HH H HH 0’ 000300- 00030 ++++++++++++++++++++++++4-++++++++++++++++++++ HHHHHHHHHHHHHHHtoHHHHtoHHHHHHHHHH -00303 00000000 H 0 + ++++++++++++++++++-l-++++++++++++++++++++++++++ 0-0-C-C-C-C- ‘CC- C- C- ‘C to Cl to to to to to to to to to to to to ‘C to to to to to to Cl to to to to to to to to to to to to Cl to to to to to to to to to HHHHHHHHHH 03UsC-’C to’CH0-’C07 I+I+I+I+I+l+t+I1-14-I+l+I+l+I+l+l+l+l+I+I+l+l+l+14-l+l+l+l+l+I+I+I+l+I+I+I+l+I+?+14-I+I+l+I+I+ !+I+I++I+l4-I+I+I+i+ I I I I I I I I I Iii I I I I I I II III I I II tototoHHtotototo’CtoHH’CtotoHHtotototototoHHHtoHHtototoHtoHHtotototoHHto H ‘C to to Us -3-- 030 ‘C 57 03 0 H 0 ‘C H to 03- 0’ H Us ‘C ‘C Us 0’ 0 to Us 0’ Us Cl 0’ to -3-- to ‘C ‘.0 0’ H -3 ‘C H III I I -3---- G’0’UsUsUsUsC0"C H Us 0- 0’ H H 0’C liii I Ii I ii I I HHHHHH e- - - - - - ‘C ‘C ‘C ‘C ‘C ‘C is- - - - - - Us Us Us 0-C’ 0’ -3 - 0 H H to to to ‘C 03-0-000’ 0’ Us Us Us to03’Cto03totoO0’003O30303030000’03HtoNiUs0’C’C0 I ++++++++++ Us ‘C 0’ ‘C ‘C ‘C to ‘C ‘C to to H H to to to H III lilt 1111111111 liii II to to to to to to to to to to to to to to to to to to to Cl to to to - ‘C ‘C ‘C - - 0- - - - H 000 H 00000 0’C 00 OH 0 0’C’C 00000 H 0- to ‘C 0 Us Us -3 ‘C 0-0- ‘C H ‘C -3 0 ‘C ‘C 0 ‘C ‘C 0- G’Us to Ci ‘C’C07 ‘C ‘C’0’0 ‘COO ‘C 0000 -30- H ‘C to C- C- t ‘C ‘C ‘C ‘C ‘C ‘C ‘C Us ‘C ‘C ‘C 111111111111115 to to to to to to to to to to to to to to to to ‘C - - ‘C ‘C - - - - - ‘C ‘C ‘C H’C 00’C’C 0000 0s0’O’C OH H -0 to ‘C 0- 0’ H ‘C 0-0-0- ‘C ‘C ‘C -3 0 liii to to to to - r- ‘C 0 0’C H 03 to ‘C to ‘C ‘C to Cl Cl ‘C ‘C to to to to I l+l+l+ll+l+I+lI+l+l+II+I+l+I+l+I+II+l+I+l+Il+l+I+I+Il+I+I+ll+l+I+Ill+lI+I+I+l+l+ -3 Us 0- H H H’Cto H toH ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘ H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H ++++++++++ C- C- C- C ++++++++++++++++++++++4-++++++++++++++++++++++ 0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-C-C-C-C-C-C-C-C-0-0-0-0-0-0-0-0-0-0-0-0-0- 0- 0’ 0’ 0’ 0- C- Cill 111111111111111 III III I+l+I+l+l+I+l+I+ Us Us Us 0- ‘C ‘C 0- ‘C ‘C ‘C ‘C 0- Us ‘C ‘C ‘C 0-0- ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C 0- ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C Us ‘C ‘C ‘C ‘C Us 111111111 III I I I I I Ii to to Cl H H H H H H H totototoHHHHHHHH000000000000000000HHHHHHtototototototototo +1+ + + + + + + + + + to totoHHtotototo’CtoHH’CtotoHHtotototototoHHHtoHtiJtototoHtoHHtotototoHHtoH 03 Us 0- ‘C H C- ‘C to Cl Us -3 0 ‘C H C- ‘C ‘C H to H C- to ‘C ‘C CC- to 0’ 0 ‘C Us 0’ 03 to Us Us C- H Us H 0’ Ci’ H 03 HH H H H H H H H H t 0’Us Us C- Us ‘C 0’Us 0 +++++-Cl+++++++++++++++++++++++++++++++++++++++ + ‘C C- to to to H to to Cl Cl ‘C ‘C H Cl C- ‘C ‘C ‘C Cl to ‘C ‘C ‘C to to ‘C to to ‘C Cl to ‘C to ‘C ‘C ‘C to to ‘C H to to Cl to to N Us Us 00’ 003’C’C’C to’C 0 H H -3 00- ‘C -.3 Us H -.3 ‘C Cl 0’ Us to -000-0 H H Cl 0-. 0 0- - - ‘C Us’C ‘C to O ++++++++ ‘C’.0’C’C’C’C’C’ HtoHHHtototo Us00’U50’HO’C 5. 5’. 0 ‘-5 5’ H 0 j 5’ ‘5 tDP’’O C O0C’ ‘0 0 ‘C 5. 5 5’ H S. S. Is S. Sc 5’ H H Sc S. ‘C Is S. H H H H 5’ 5’ Is 0-.’CH-300"C’CHOOtC-J’CH’COH O’C0-Os’CH’C H 5050501050 50 H’C’C 0J0 H H 0’0 50 ‘C ‘COO’ 0 Ss’C C"-0 0’C’C- C’C"C 0’C’C 15 0 SOHHHH000000H00000HHHHHHHHOH H ‘C 0’ 0 ‘C 550 ‘C 50 H ‘CO ‘C S. H H C’ o ?OSCHHHH ioroH HHH ‘C ‘C ‘CO-C ‘C ‘C ‘C H ‘C ‘COO 0 ‘C ‘C ‘C - ‘C ‘C ‘C 0500 ‘C - 15 O 15 ‘5 - ‘C H ‘C ‘C NHH HH H 00 ‘C H - ‘C ‘C ‘COO 0 0 ‘COO 0 ‘C 0 - ‘COO ‘C ‘C 50 H ‘C ‘C ‘C H 000 00 00 OOHOO 00 00000 050 50 0 5’ H 5’ 5’ 0 C’ ‘C Is ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C 000 ‘C ‘C 0 ‘C 000000000 ‘C 00 ‘C ‘C ‘C ‘C 00000 ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C 000 4- 0000 ‘C ‘C ‘C 00000 - ‘C ‘C ‘C 5’ ‘C 5’ ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C 00 ‘C 000 ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C H H H H ‘COO 0 ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘CO ‘C ‘C ‘C H ‘C ‘C ‘C H H H H H H H H H H ‘C H H H 00000 ‘0 ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C H H H H H 000 ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C 0 ‘C ‘C ‘C ‘C ‘C SM H H S. H H H H H H H ‘C H H H 000000000000000000000000000 C’50 HHHHH H H H H H H H H H H H H H H H H H 0000 O’CO5O 000000 0C’OC’- 0 C’OceO’C 50 HHH 000 III II 111111 I I I I I II I I I I I I H H H SOt’0000C’C’C’C’O’0’-C’-0000C’C’C’C’C’C’-’C’-’ 5’ 50 5’ 5’ 5’J 5’ H H H 5’ 5’ H H 00 ‘C ‘CHHHHHHS.HHHHHHHHHS.HHHO I I I J tIll I ill II I I H H H H H H H H H H H H H H H H 5’ H H H 5’ 5’ H 5’ 5’ SC ‘C ‘C O ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C C ‘000 ‘C ‘C ‘0 5’ 5’ ‘C S. 5’ ‘C II -3-C ‘C 5’ I 11111 II tIll II Ii I I I I C’ C’O 00000000 ‘C ‘COO ‘C ‘C ‘C ‘C 0 C’ S. -3 0’ ‘C 0 ‘C S. S. 0000 ‘C - ‘CO ‘C C’ I I I I HH HHHHHHHHHHHHHHHHH II I 0 0 005CC ‘C ‘C II H O’0 0 C"C 0000000000000000000 I I II - 111111 it HHHH HH 5’ 0 0’ 0 - ‘C 0 0’ ‘C ‘C II I I II II I I I I I H H H H OH 5’ 5’ -C C" S. 0-’ HO O’C 0 OH H 5O-C’C’C’C H OH 00 O’C ++ +++++++++++++++++ ++ +++++ + HHHHHHHHHHHHHHHHHHHHHHHHHHH ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C50’CSs C5s’C’C’CS.S. S. 0000053 C’0 H-C050’C-COO’0-’C’C 0-OH 00 H500 00H’C’C 5’ 50 5’ 5 5. 5 5. 53 5 53 5’ 5’ 5’ 55 5’ 5 5’ 5’ 5’ 5’ 5 5’ 5. 10 5’ 5 ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘CO ‘C ‘CS ‘C ‘C ‘C ‘C ‘C ‘C ‘CS. ‘C ‘C ‘C S. ‘C 50 ‘C- 0’-’C-- S. C"C CP- 5’C H’C H H-’C 0 S.’C S. C’ l+l+l+l+l+I+I+l+i+l+l+l+l+l+I+l+l+I+l+l+I+l+I+I+l+l+l+ +I+I+l+I+I+l+t+I+I+I+I+l+T++I–I+I+I+I+l+I+I+l+ I+lI+ +++ ++++ +++++++++ +++++++ ++++ S.’ 50505’ 5 H S. H 5’ S. 5055 H 5 H S. H H H S. H H SOS. ‘C ‘C Is S. 0 ‘CO 00 ‘COO 00000000 C’O ‘C ‘C 0 ++ ++++++++++++ +++++ ++++ +++ + HHHHHHHHHHHHHHHHHHHHHHHHHHH C’ C’- -30’ 0’ 0’- -3 C’ C’- - C’ C’ 0’- C’ C’ C’ C’ C’ C’ C’ C’ C’ C’ O ‘C 0 0 C’- COO 0 O"C ‘C H -3 -3 ‘C 00’ 0" C"C C"C C"C H II ‘C ‘C ‘C ‘C ‘C ‘C 00 ‘C C’ ‘C ‘C I ‘C ‘C ‘C ‘C I+I+l+l+l+l+l+l+l+l+I+l+l+l+l+I+I+l+I+I+l+l+l+l+l+l+l+ I+I+I+I+I+I+I+I+I+I+I++I+I+I++l+I+,+I+I+I+I+!+I+l+I+ ‘C ‘C 0 ‘C SCSs ‘C Is ‘C S. ‘C ‘C ‘C ‘C ‘C ‘C 5050505050 ‘C ‘C ‘C ‘C 50 I I III I III I III I II II I I I I I 50505050S.SC505050SC505050S.S.50S.Is ‘C ‘C ‘C ‘C ‘C ‘C I I II III II I III I III I I I I I I I I I ‘C ‘C ‘C 0 ‘C ‘C ‘C H 0 ‘C 0 0 0 ‘C Ii I I ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C 0 ‘C ‘C S. ‘C ‘C H ‘C I ‘C ‘C 0 ‘C I ‘C ‘C ‘C H ‘C ‘C 0 ‘C HHHHHHHHHHHHHHHHHHHHHHHHHHH HHH HHHHHHHHHHHHHSCHHS.’C’CH’COC’C’ 000 000000000000000000000000 I 111111111 5015 S.HH000000000 0000HHHH HHS. S. Is ++ ++++++++++++++++++++++++ + HHHHHHHHHHHHHHHHHHHHHHHHHHH ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C 505 5050S.’C000’C5050505050 5050505050 505 S.0SOHH ‘C I’ 0 C"C ‘C -3 0 ‘C ‘C ‘CO -3 0 0 C’O 0 0 0’ 100 ‘CO ‘C ‘C ++ ++++++++++++ +++++++++++++ HHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHHH C’ ‘C ‘C 0’ -3 -3 -3-3-CC’ ‘C ‘C C’ C’ C’ C’ C’ ‘C C’ C’ ‘C C’ C’ ‘C ‘C ‘C ‘CO 0 5 0 ‘C ‘C C"C 0 ‘C ‘C ‘C H S. H 00 00 S.- 0 ‘C ‘CO C’ ‘C II I ‘C’ ‘C ‘C ‘C ‘ ‘C ‘C ‘0 ‘C 00 H 00 ‘C I ‘C ‘C ‘C H H HHH HHHHHHHHH HHHH’C’C’C’C’C’C000 11111 I I I I I II I ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C 000000000 H 0 H ‘C 05’ -C 00 000000000000000000000000 000 11111 111111111111 F-’ H H HH000000000 OH H HH S. Sc S. S. S. Is S. S. +1+ 515’ + + + + + + + + + + + + + + + + + + + + + + + + + + S. S. 50 50 5 5’ 155 S. 5 S. S. 5 5’ S. 5’ 5 S. S. S. 5’ 5. 5’ 5. 5 S. 0500 ‘C ‘C ‘C ‘C’ ‘C ‘CO ‘C ‘C S.’ ‘C ‘C ‘C ‘C ‘C S. 53 ‘C 5. ‘C S. ‘C Oj0 O"C C’O- 5. 0"C C’O0’C0 5. Ic o 5 O’C’C H 00 HO ‘C 5’fl ‘C ‘C ‘C 5M ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C ‘C 0100-----0---- 0-C’C-- 00000000000-0-CO-010 ‘C 0-C 5 -3-0 0 ‘C ‘C 0 10 000 H 0 ‘C ‘C H 00 ‘C ‘C 0 H ‘C + S . "jH CDO PS o’o’ H COH it0Cu COHH HH 0OH’0HHCu’.7,O H H H I-’. ‘1 tO 0 0 H Ot 0 ‘JS HH 0’C -4 ‘0 ‘0 ---i,-0’ H 0’ 0’ 0 - HCD H00?000H00000000HH tOC CD 0"J’-i-’H 0"00tOHtfl’"0’ HC 1 CD ‘1 PC ‘Jr"J CD r- sJssJ- 5+ CD H H H I-’ H H H C000’J’-00’000’-0000"0’0 0’0 II C CD 1-’ 00 CD III! H to 4’- 0 H I III II 111111111 HH CO ‘o t-.a to 4’- ‘-o to k-. 4’- 0’ - 1111111111 ++ HH HHHHHHHHHHHHHHHHH 11111111111 ,, ,, i,., 5+ 4’ - -44’- tO 0 tO III C Il C H 4’ 4’- 53 4’- 4’- ‘Ji 51, 0’ -4 0 ‘0 0 00 0 ta 04’- 4i- - ‘J ‘-O H 0 -0 0 4’-0 0’ CD I-H ‘.-. 5-. - H * CD tO I+l+I+l+I+I+I+l+I+l+l+I+l+I+I+t+I+ 1+1+ H4’HHtoHHtoHHHHHHCs HH II H H to C’ 8 H H H H H H H H H H H H H H H 0 0’0 C5-0 000 0C 0 ‘0’ 514’H 11CC Cl 11111111111 HHHHHHHHHH 0’ H 0"-0 51 0’ 0’4’ ‘as 0’ H H 5151- 51 51s ‘0’0-3’0--4’0-O---O--O--40’----4 HH 0’-4 0 H COHCOHHHHHHHHCOCOC’ 4’4’ 00000000000000000 COCO a 5+ +1+ I * II 11111111111111111 II 0 H COCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO HH o C + + + + I I I C C C I I I COHHH00000HHHHCOCOtoCO I toto PS Cl- CD Ii + CD PS +I+++++++++++++++++ HH H HHHHHHHH HIH Oi00’0O0s0OO0OO0O0O00 C,0 0’.0 I! O 5 Cl- ‘4 Ce 0 Cs 0 0-04’1, 51 0’51-44’-’0 +I+++++++++++++++++ HIHHHHHHHHHHHHHHHHH "51515 s 00’-O---O--4--4--4-O-O----4--4’to0to-451to4’H--4OHCO---44’-tO51to 0 +I++ HIHH COHHC - 0 0- +++ HHH F-’ H H 4 0’ CO O . A sinular corrective terum for the magnitude difference between the planet and comparison star 13 is given in the 13th column of Tables IX and X. As can he seen in Table II most of tIme rleterminations of the coefficient A5 were made be tween January and April. Therefore the assumeri values of this coefficient for other snnnths are usually highly uncertain. For estimating errors of corrective terms given in the 12th and 13th columns we should also take into consideration the uncertainty of the gradient color indices, B-V’. of the planets. The uncertainty of terms A S B-V seems to lie the principal source of inaccuracy in our observations. tu the present author star A. Such mean values, corrected for extinction effects anti with distance corrections added, are given in the 10th column of Tables IX and X. They are accompanied by their mean errors computed by taking into consideration the scatter of individual measures and uncertainty of extinction corrections. Ve can see in Figure 4 that the r.m.s. deviation of the nightly value of the extinction coefficient Qs1 from its mean seasonal value equals approximately 5 of this mean seasonal value. Assuming the same relative uncertainty for coefficient Qb2 the mean errors given in the 10th column are computed from the formula {r-- Ql,SM 51+ C. P/test cud Obtateuess Effects. ‘l’he coefficients rlescribing the dependence of brightness of Uranus [Q5MSI3V:5]2 }‘h 36 anrl Neptune on their phase were computed by Sinton 1 3, who used the observations made in the present program. These coefficients, a, and the phase angles, i, are userl for emnputing the phase corrections, S where m is the mean error of the mean nagniturle difference between the planet and the comparison star A computed from the scatter of individual meas ures corrected for extinction. This intrinsic mean error r1 is computed either froni the sum of squares of the deviations or from the approximate formula [ef Pearson 12] Max X -- Mm X/n a2, which are given in the 14th column of Tables IX and X. The maximumn phase angle is about 30 for Uranus and 2 for Neptune. The polar axis of Uranus is situated approximately in the plane of the ecliptic anrl in November 1945 it was directed approximately towards the earth. For the purpose of eliminating the photometric effects of the changing tlireetion of Uranus’ polar axis relative to the earth, two assumptions are mane. First, we assume that the equatorial plane of Uranus coincides with the mean orbital plane of its four brightest satellites Second, because of tIme lack of quantitative inforsnation about the brightness distrihution on time disk of Uranus, we assume that it is ‘ ‘where Max X and Mm X are the largest and the smallest values of magnitude difference and n is the number of values used. The formula 37 gives for 10 the estimates of mean error of mean values which do not differ systematically from those com puted from the sum of squares of the deviations, and are only slightly less accurate. For the obser vations near the meridian under good atmospheric conditions values of m b e t w e e n –O’P0006 and –090012 were obtained. The 11th colurrin of Tables IX and X gives the mnagnitude difference between the comparison stars B and A, corrected for extinction. The extinction corrections were computed for every measure of star 13. using the equations 31 - 35, in which the values for the planet are replaced by corresponding values for comparison star B. The mean errors are emputed from equation 36 The magnitude difference between the planet and comparison star A reduced to the BV photometric system can be obtained by adding the corrective term A8 SB-V to the values in the 10th column of Tables IX and X. The values SB-V found from equation 31 and the mean seasonal values of the transfor mnation coefficient A given in Table II are used for computing the values of this corrective term given in the 12th column of the above mentioned tables for the years 1953 - 1954 the values of A5 given in the last column of Table I are used the observations used for deternuning these values were not available uniform and hence that the total brightness of Uranus is proportional to its projected area, as seen lrmn the earth. The last assumption is, of course, a very rough approximation to the real situation. On these assumptions Uranus is brightest when its polar axis is directed towards the earth. The cor rections are added to all the observerl magnitudes of Uranus to give them the values to be expected on our simplifying assumptions if the polar axis of Uranus is directed towards the earth. These oblate ness corrections are computed from the following formula, resulting from the expression for the projeeterl area and from the rlefinition of stellar magnitu rle, obl = 1.25 log [l--l-hU eos o1L] . 38 where the square of the ratio of the polar-tn-equa torial axis is h2 0.833 according mu Lowell 14 and time longitude of tile node of the orbits of Uranus’ satellites referred to the earth equator is i3 = 165981 for the epoch 1900 and I 66 53 for the epoch 1950 according to Nesvcomnh 15 for tile period covered 221 adopted magnitude differences between the p1amet and the comparison stars, computed from the for mulas b’s the obser’s aflons here reported we assume 166965. By L is denoted the geocentric longitude of Uranus which can be found from the formula ob tained by simple trigonometry, sinL - = R - cosL + 0 ABplanet-star A AB’pianet-star A Lhel + A5[B-V’ Lhel B-V A All planet-star II Mean of Final Valar, i’sBU-UA BU-UB 40 All’ plan’t-star A -AB’star B-star A A5[ B-v star A + A TABLE XI. Mean of Final Values A phi 39 where L Itel is the heliocentric longitude of Uranus given in Nautical Almanac, L0 is longitude of the sun and B. is the distance of Uranus from the sun, expressed in astronomical units. The ohlatencss corrections computed from equa tion 38 are given in the 15th column of Table IX. The 16th and 17th columns give the finally star - B-V star B 41 – A ubl Blue Magnitudes of Uranus Blue Magnitude of Star A in Syttrru of TenYear Staudords Slur Magnitude of Star B far Systrroof TenYear Staudards Blue Magnitude of TJrannss deeivrd from Star A Blur Maooitnnfsnsf Uranno drrivr-d frotrr Star B B B Corers hoe Corses nor to he to he added ta arided to B if B if N N firer tie photomortris sfstsrvrd ohlatenem afar for of Urania Stuns, reel mealIer than Ofnsrtratioot arolla-ts] Tn Feoem B B UA 1953, 1953, 1953, 1954, 1954, 1955, 1955, 1955, 1956, 1957, 1957, 1957, 1958, 1960, 1960, Jan. Feb. Oct. Mar. Oct. Feb. Sep. Nov. Sep. Feb. Sep. Dec. Oct. Jan. Oct. 21 23 30 15 11 10 23 16 22 1 21 26 3 28 20 1953, 1953, 1954, 1954, 1955, 1955, 1955, 1956, 1957, 1957, 1957, 1958, 1959, 1960, 1961, Feb. Apr. Mar. Apr. Jan. Apr. Nov. May Jan. May Dec. Jun. Apr. May May -0.161 -0.159 -1.472 -0.934: -3.234 -3.226 +0.120: +0.132: -1.210 -1.207 -1.533 -1.531 -1.190 -2.717 -1.407 19 25 5 26 12 26 8 17 18 2 12 1 10 28 21 -0.272 -1.945 -1.997: -1.722 -1.714 +0.850 +0.855 -1.324 -1.319 -1.334 -1.332 -2.707 -2.968 -1.475 me. 6229 6.229 7.540 7.005 9.303 9.303 5.939 5.939 7.262 7.262 7.583 7.583 7.237 8.758 7.441 TABLE XII. Mean of I F I Mr.soof F- I Values 1ITB +0.004 +0.004 –0.003 +0.004 +0.004 +0.084 –0.004 –0.004 –0.003 –0.003 –0.003 –0.003 –0.083 –0.004 –0.003 nor. m 8.012 8.085 7.790 7.790 5.204 5.204 7.369 7.369 7.383 7.383 8.761 9.012 7.508 +0.004 –0.005 –0.004 +0.004 +0.004 –0.004 –0.004 –0.004 –0.004 +0.004 Th.0O4 +0.003 –0.003 U 6O68 6uO7O 6.068 6.071: 6.069 6.077 6.059: 6.071: 6.052 6.055 6.050 6.052 6.047 6.041 6.034 S 11 5 color +0.012 +0,011 +0.015 +0.013 +0.020 +0.017 +0.024 +0.022 +0.028 +0.025 +0.033 +0.030 +0.034 +0.038 +0.042 Blur Magretade Maaoitrsdr of Nrjrt urea1 Ni-yturse dinned doris-rd ta hr added to B if 6O67 6.088: 6.068 6.076 6.054 6.059 6.045 6.050 6.049 6.051 6.054 6.044 6.033 Blue Magnitudes 0f Neptune Blue Mognitude nl 5tar A fin System of TenYear Stoned rds Blue Magnitude of Star B firs Sv,trmo of TenYear Staedardn Star’s Star B 1953, 1954, 1954, 1955, 1956, 1957, 1958, 1959, 1960, 1961, * Mar. 6 Feb. 4 Mar. 28 Jan. 12 Jan. 17 Jan. 17 Jan. 8 Jan. 11 Jan. 29 Feb. 10 To 1953, 1954, 1954, 1955, 1956, 1957, 1958, 1959, 1960, 1961, if directly obnrrvrd Neptune in used Olamrmations Frnm uhl -0.013 -0.017 -0.012 -0.019 -0.021 -0.021 -0.010 -0.010 -0.010 -0.010 -0.010 -0.010 -0.008 -0.006 -0.004 Jul. Mar. Jul. Jul. Jun. Jun. Jul. Jun. Jul. Jun. 3 6 1 8 27 24 5 10 16 28 ‘sBN-NA Brm-NB -0.516 -0.788 -0.782: -0.011 +0.790 +0.017 +0.020 +0.234 +1.327 +0.102 -1.383 -1.386: -1.105 -0.001 +0.920 +2.427 +3.580 +1.162 +1.574 BNA 8784* 9.035 9.035 8.260 7.455 8.225 8.208 8.001 6.908 8.135 Not to be reduced to the system of Ten-Year Standards me. –0.004 –0.004 –0.004 –0.004 –0.005 –0.004 –0.004 –0.003 –0.004 BNB 9’i632 9.632 9.356 8.240 7.316 5.807 4.646 7.075 6.662 B are. –0.005 –0.005 –0.008 –0.004 +0.005 -4-0.003 –0.004 +0.003 +0.005 8268* 8.247 8.253: 8.249 8.245 8.242 8.228 8.235 8.235 8.237 BN 8I249 8.246: 8.251 8.239 8.236 8.234 8.226 8.237 8.236 rolnr -0.017 -0.015 -0.022 -0.026 -0.013 -0.017 -0.013 -0.011 -0.009 -0.007 TABLE XIII. Since the errors of the coefficients A8, of the plane tary gradient color indices B-V’ and of the oblate ncss corrections are not known, the mean errors of the final magnitude differences, computed from equations 40 and 41, can not he estimated. Their weighted mean values are computed for every inter val of several months during which A5 apparently rlirl not change rapidly. These mean values are given in the corresponding columns of Tables IX and X and in the 2nd and 3rd columns of Tables XI and XII. The weights osed for computing the mean val ues of Bplanet - star A are taken as inverse squares of mean errors given in the 10th column of Tables IX and X. The mean errors given in the 10th and 11th columns of these tables are used for com pting the weights of B planet - star B The mean blue magnitudes, B, for the two planets, obtained assuming H. L. Johnson’s gradient colorindices of planets antI photometric oblateness of Uranus equal to geometric. Opposition 1953 1954 1955 1956 1957 1958 1959 1960 1961 D. Variations in Brightness of Uranus and Neptune. The mean magnitude differences between the plan ets and their comparison stars, the blue magnitudes of comparison stars and the blue magnitudes of the planets obtained by comparison with star A and, separately, by comparison with star B, are given in the 3rd to 8th columns of Tables XI and XII. The blue magnitudes of the comparison stars, given in these tables, are reduced to the system of Ten-Year Standards and obtained by adding the yellow magni tudes and blue-yellow colors of the same stars given in Table VI. The blue magnitudes of the planets given in the 7th and 8th columns of Tables XI and XII are obtained by adding the 3rd and 5th or 4th and 6th columns of these tables, respectively. The values for the year 1954 marked by colons are ob I Uranus 6.069 6.068 6.072 6.056 6.050 6.050 6.050 6.042 6.034 I I 8.248 8.250 8.242 8.239 8.231 8.230 8.236 8.236 I I I Neptune I I I Uranus 5!b04 C I I I I 0 0 0 I I I 0 0 tained with Lallemand’s multiplier tube and may not 1953 he directly comparable with other values which were all obtained with the 1P21 multiplier tubes. There is no obvious evidence of variability of any of the comparison stars except for UAS6 tsCnc. The values obtained by comparison with this star are marked by colons in Table XI. The blue magnitudes reduced to the system of Ten-Year Standards ace not avail able for the comparison stars LB 53 = HD 50692 and NA 53 = HD 116681. The value for this last star obtained by comparisons with primary standard stars during the year 1 953 is given in Table XII in parentheses. For every opposition the average of blue magni tudes given in the 7th and 8th columus of Tables XI and XII is computed omitting the values with colons and in parentheses and given in Table XIII. The blue magnitudes of the planets given in this table are plotted in Figure 6. This figure shows an in crease in brightness of Uranus by about O’t’035 and an increase in brightness of Neptune by about 07014. Examining the mean values of the transforma tion coefficient A5 given in Tables I and II we no- Neptune I I I 54 I 55 I SB I 57 I I SB 59 I 60 61 Figurc 6. The nican bloc niognit odes for the two planets obtained using H.L. Jo/i uson’s calues of the gradient of th energy distribution in the spectra of these plan ets within tli c blue filter spectral region. For Uranus it is assumed that the distribution of brightness ozcr the apparent disc of the planet £c uniform. tice that the values of this coefficient are tlecreasing during the lseriorl covererl by the present observa tions. Therefore, if we assume another value for the gradient color-index of the planets we would obtain another rate of increase in their brightness. In par ticular, assuming for the reduction to the BV systens and for correction for the color-dependence of ex tinction the directly observed color-indices of the planets as given in Table VIII, instead of gradient color-indices B-V’ given by the equations 28 and 29, we must add to the blue magnitudes of 223 Figuie 7. No significant change irs hiichtness of Nep tune can he seen in these data. The brightness of Uranus also will not show the significant chanste in the years 1953 - 1961 ii, in ad dition to assuming the lirectI obsers cci color-index. we shall assume that the photometric effects of ohlateness of Uranus are half those computed on the assuusption of unifoi us hi ighitness distribution on the disc of the planet. 1 aking into consideration the presence of equatorial belts and limb darkening on Uranus this last assumption seems reasonable. The cm rections which should he added to the blue magnitudes of Uranus if ‘photonietric oblateness is half the geometric. are given irs the last colunin of Table XI. The final blue magnitudes of Uranus ‘a ith the con ections from the last two col umns of Table XI are given in Table XIV and in Figure 7. Our pm esent kno’a ledge of the distribution of energy in the spectra of Ltranus and Neptune and of the distribution of brightness on the disc of Uranus is not satisfactory for deciding whethei there are an changes in brightness of Uranus and Neptune caused by variability of solam energy output As soon as these can be determined by actual observations the degree of solar variahihit can he more accurately found from existing data. V. Suggesl-ions for Future Observers in this Program Special observations should be undertaken for redetermining the gradient colors B-V’ of the planets which are used for transfom fling tile observa tions into the NV system and fom computing the corrections for the color-dependence ol extinction. It should be taken into account that these gradient colors depend criticall on the width of the band-pass for the combination of the filter, multiplier tube and the telescope. The limb darkening of Uranus and, hence, the photometric effects of its oblateness should, if pos sible, be determined from photoelectric scans across the disc of the planet. Every series of measurements of the planet in hitit’ color should he accompanied by observations of at least 4 standard stars, preferably in 2 colors. Two loss altitude 22 - 28 standard stars and two high altitude stams should he observed. One of the low altitude stars should he situated in the East and the other in the Vest. One of the standard stars observed at high altitude should 1x’ blue, the othiei red. These observations will he used for determining the coef ficients Q and A5. Planetaiy obsers ations at hour angles larger than 1 ‘/2 hours for neiative declinations and larger than 3 hours for positive declinations should not be usade. The comparison stars shosslcl he chosen so that their colors do not differ much from the gradient the planets the corrections given iii the 9th column of Tables XI and XII. They are computed from the formula A5 color QSM I B-V B-V] ‘ . 42 where B-V is the dii ectly observed cob! mdcx of the planet. I’he nican blue magnitudes of Neptune cor rected in this was’ are given in Table XIV and in TABLE XIV. ‘Ihe mean blue magnitudes, B, for the two planets. obtained assuming the directly observed color-indices of planets and photometric oblateness of Uranus half as great as geometric. Neptune Uranus Opposition 6.066 1953 8.233 6.071 1954 6.070 8.224 1955 6.069 8.229 1956 6.067 8.222 1957 8.2 18 6.072 1958 6.076 8.2 19 1959 6.074 8.227 1960 6.072 8.229 1961 I I I I Uranus 0 6’8 I I B I 8"22 8"24 Neptune I I 1953 54 55 56 I 57 I 58 I 59 60 6! Figur 7. i/se inc an blui iusagnil udes for i/se two planets obtained assuming that lb e gradient of f/u energy diuiribution m the spectrum of ‘ac/I of these planet Zit/iiii f/ic blue fili r spec tral region is the sanu as for a star hacin 1/u came B-I’ color-irids x as the planet. For Uranus it ic assumed that f/se photometric ffects due to its oblaten e us are half as great as i/so cc for f/ce o nif os in di strib u tio is of brig/i tne o 5cr the apparent disc of the planet. 224 observations of a star can be accompanied by the measurement of the standard source with only one e.g. blue filter. However, before and after measur ing the bright star for which, say, B<40 the standard source should be measured with both yel low and blue filters for checking if the fatigue of the multiplier tube is the same in both colors. The observations should be made only on photo metric nights with no trace of clouds. It is much better to have fewer but superior observing nights. The observations made on poor nights may destroy the accuracy of the whole program. When the obser vations are made in the presence of the Moon, the sky background should be measured alternately north and south from the star or planet to eliminate the influence of moonlight reflected within the telescope tube. color-index B-V’ of the planet; one of them should be redder than the planet, another bluer. They should have very nearly the same declination as the planet. The telescope, filters, multiplier tube or ampli fier should not be changed without serious reason. If the multiplier tube must be changed, the new tube should be selected so that the coefficients A6 and A8 are very near to zero. The image of the telescope’s mirror on the cathode should be carefully centered for maximum output. The calibration of the amplifier’s gain and tests for linearity of the amplifier and recorder should be made often, preferably every 2 or 3 months. These tests should be done at widely differing tempera tures for checking any temperature effect. The battery used as a power supply for the multiplier tube and that used in the recorder should often be checked. Every observation should be made at such gain of the amplifier that the deflection of the recorder is not smaller than 0.55 and not larger than 0.95 of full scale. This means that in most cases the obser vations with the yellow filter should be made at an amplifier’s gain different from that used for the ob servations of the same star with blue filter. To avoid fatigue of the multiplier tube no standard stars should be used for which B<3’’7. In particular, i Boo, / Lib and a An should not be used as standards. The list of stars used for determining the extinction and transformation coefficients should contain not only primary standards of the UBV sys tem but at least 8 other well observed stars selected from among the secondary standards. The stars K Gem, HD 73665, Y Hya, p Leo, 109 Vir, Her, /3 Oph and i Her A may be suitable for that purpose. The accuracy of two-color observations can be highly increased if comparison stars and standard stars are all measured at the same fixed altitude. Only a few 4 to 6 standard stars should be observed at substantially different altitudes to make possible de termining the extinction coefficients. On those nights when Neptune comparison stars are observed, the fixed altitude must be low because of the low dec lination of Neptune and extinction stars can be ob served near the zenith. On these nights the Uranus comparison stars should not be observed; they should be observed on other nights when a higher value of fixed altitude is chosen. Every year each of the comparison stars used since 1953 and each of the comparison stars chosen for the next year should be observed on at least 6 nights. Eight stars or more should be included in the least-squares solution for simultaneous determination of extinction and trans formation coefficients for every night. The radioactive standard source should be ob served through color filters. Usually the two-color Acknowledgements The constant interest and support of John W. Evans which has made this program possible, is greatly appreciated. It is a pleasure to acknowledge our indebted ness to R. H. Hardie, B. Iriarte, H. L. Johnson, C. F. Knuckles, R. I. Mitchell, J. B. Priser and W. M. Sinton-the astronomers who made most of the ob servations discussed in this paper. We also acknowl edge our indebtedness to R. Ayers, P. B. Downum, W. Livingston, C. L. Osterberg, A. H. Seeglitz, Mrs. K. Serkowska and C. V. Stableford who carried out most of the computations. The author is particularly grateful to John S. Hall for his advice and encouragement and for his many helpful suggestions on reading the manuscript. August 2, 1961 225 8. Siedentopf, H.. in Astronomical Optics, ed. Z. Kopal, North Holland Publishing Co., Amster dam, p. 317, 1956. 9. Banachiewicz, T.. Aj., 50, 38, 1942. 10. Kopal, Z., Close Binary Systems, John Wiley and Sons. New YoriL p. 448 ff, 1959. 11. Borgman, J., BAR., 15, 251, 1960. 12. Pearson, K., Tables for Statisticians and Bio metricians, Cambridge. vol. 2, Table XXII, 1931. 13. Sinton. W.M.. Lowell Obs. BulL, 4, 93. 1959. 14. Lowell, P., Lowell Ob.c. Bull., 2, 81, 1915. 15. Newcomb, S., Washington Observations, App. I, p. 65, 1873. R.f.nncn I. Johnson, H.L., and Iriarte, B., Lowell Obs. Bull., 4, 99, 1959. 2. Giclas, ILL., 4/., 59, 128, 1954. 3. Hardic, ILH., and Giclas, H.L., Ap.J., 122, 460, 1955. 4. Mitchell, ILl., P.A.S.P., 69, 565, 1957. 5. Johnson, H.L., Lowell Obs. Bull., 4, 123, 1959. 6. Schoenberg. E., Handbucli der Astrophysik, TI/I, Table XII a, 1929. 1. Johnson, H. L., and Harris, D.L., Ap.J., 120, 196, 1954. 226